首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study explores the possibility of combining the BacT/Alert Microbial Detection System with the VITEK 2 system to achieve rapid bacterial identification and susceptibility testing. Direct inoculation of bacterial suspension to the VITEK 2 ID-GNB card and AST-NO09 card was made by differential centrifugation of blood cultures of organisms with gram-negative enteric bacillus-like morphology. A total of 118 strains were investigated; of these, 97 (82.2%) strains were correctly identified to the species level and 21 (17.8%) strains were not identified; by comparing the results with those of the reference method of API identification systems using a pure culture, it was found that no strain had been misidentified. Among the 21 strains with no identification, 13 (61.9%) strains were nonfermenters. The direct-identification reporting time of VITEK 2 was 3.3 h. Direct testing of susceptibility to 11 antibiotics, i.e., amikacin, cefepime, ceftazidime, ciprofloxacin, gentamicin, imipenem, meropenem, netilmicin, piperacillin, piperacillin-tazobactam, and tobramycin, was also performed by using the broth microdilution (MB) method according to the NCCLS guidelines as a reference. After comparing the MICs of the VITEK 2 system with those obtained by the MB method within +/-twofold dilution, it was determined that the 1,067 organism-antibiotic combinations had an overall correct rate of 97.6% (1,041 combinations). The rates of susceptibility to the 11 antibiotics ranged from 88.7 to 100%, respectively. Only two (0.2%) and four (0.4%) combinations of the susceptibility tests gave very major errors (i.e., reported as sensitive by the VITEK 2 system but shown to be resistant by the MB method) and major errors (i.e., reported as resistant by the VITEK 2 system but shown to be sensitive by the MB method), respectively. The reporting time for the direct testing of susceptibility against the 11 antibiotics for 97 blood culture isolates by the VITEK 2 system ranged from 3.3 to 17.5 h. Compared with conventional methods that require 1 or 2 days, this method can make same-day reporting possible and thus permit better patient management.  相似文献   

2.
The performance of the new VITEK 2 Advanced Colorimetry yeast identification (YST) card for use with the VITEK 2 system (bioMérieux, Inc., Hazelwood, MO) was compared to that of the API 20C AUX (API) system (bioMérieux SA, Marcy-l'Etoile, France) in a multicenter evaluation. A total of 12 quality control, 64 challenge, and 623 clinical yeast isolates were used in the study. Comparisons of species identification, platform reliability, and substrate reproducibility were made between YST and API, with API considered the reference standard. Quality control testing to assess system and substrate reproducibility matched expected results >/=95% of the time. The YST card correctly identified 100% of the challenge strains, which covered the species range of the manufacturer's performance claims. Using clinical isolates, the YST card correctly identified 98.5%, with 1.0% of isolates incorrectly identified and 0.5% unidentified. Among clinical isolates, the YST card generated fewer low-discrimination results (18.9%) than did API (30.0%). The time to identification with YST was 18 h, compared to 48 to 72 h with API. The colorimetric YST card used with the VITEK 2 provides a highly automated, objective yeast identification method with excellent performance and reproducibility. We found this system useful for timely and accurate identification of significant yeast species in the clinical microbiology laboratory.  相似文献   

3.
A study was conducted to evaluate the new VITEK 2 system (bioMérieux) for identification and antibiotic susceptibility testing of gram-positive cocci. Clinical isolates of Staphylococcus aureus (n = 100), coagulase-negative staphylococci (CNS) (n = 100), Enterococcus spp. (n = 89), Streptococcus agalactiae (n = 29), and Streptococcus pneumoniae (n = 66) were examined with the ID-GPC identification card and with the AST-P515 (for staphylococci), AST-P516 (for enterococci and S. agalactiae) and AST-P506 (for pneumococci) susceptibility cards. The identification comparison methods were the API Staph for staphylococci and the API 20 Strep for streptococci and enterococci; for antimicrobial susceptibility testing, the agar dilution method according to the procedure of the National Committee for Clinical Laboratory Standards (NCCLS) was used. The VITEK 2 system correctly identified to the species level (only one choice or after simple supplementary tests) 99% of S. aureus, 96.5% of S. agalactiae, 96.9% of S. pneumoniae, 92.7% of Enterococcus faecalis, 91.3% of Staphylococcus haemolyticus, and 88% of Staphylococcus epidermidis but was least able to identify Enterococcus faecium (71.4% correct). More than 90% of gram-positive cocci were identified within 3 h. According to the NCCLS breakpoints, antimicrobial susceptibility testing with the VITEK 2 system gave 96% correct category agreement, 0.82% very major errors, 0.17% major errors, and 2.7% minor errors. Antimicrobial susceptibility testing showed category agreement from 94 to 100% for S. aureus, from 90 to 100% for CNS, from 91 to 100% for enterococci, from 96 to 100% for S. agalactiae, and from 91 to 100% for S. pneumoniae. Microorganism-antibiotic combinations that gave very major errors were CNS-erythromycin, CNS-oxacillin, enterococci-teicoplanin, and enterococci-high-concentration gentamicin. Major errors were observed for CNS-oxacillin and S. agalactiae-tetracycline combinations. In conclusion the results of this study indicate that the VITEK 2 system represents an accurate and acceptable means for performing identification and antibiotic susceptibility tests with medically relevant gram-positive cocci.  相似文献   

4.
The VITEK 2 card for gram-negative bacteria (bioMérieux,Marcy-l'Etoile, France) has been redesigned to improve the identification of fermenting and nonfermenting bacilli. Forty-seven biochemical tests, including 19 enzymatic tests, are present in the new card and interpreted in a kinetic mode. Final identification results are available within 10 h. The database allows the identification of 159 different taxa. Six hundred fifty-five gram-negative rods (GNR; 511 fermenters and 144 nonfermenters), representing 54 taxa, were tested. Strains were taken from fresh routine primary isolation plates (n = 157), from stored routine plates (n = 301), and from stock cultures (n = 197). Six hundred thirty-seven strains (97.3%) were correctly identified to the species level, 14 strains (2.1%) gave low discrimination results requiring additional tests, and 4 strains (0.6%) gave discordant results; not a single strain remained unidentified. Nearly 92% of all isolates were correctly identified within 7 h of incubation. The robustness of the system was demonstrated by the fact that strains were grown on four different agar media before testing. The system may also have the potential to be applied directly to primary isolation plates, since in this instance 96.2% of 157 GNR were correctly identified and 3.8% gave low discrimination results. The new VITEK 2 card for gram-negative bacteria seems to be a promising new tool for routine, rapid identification of GNR.  相似文献   

5.
Coagulase-negative staphylococci (CNS) play a predominant role in nosocomial infections. Rapid, reliable identification of these organisms is essential for accurate diagnosis and prompt effective treatment of these infections. Quite recently, the VITEK 2 g-positive (gram-positive [GP]) identification card (bioMérieux) has been redesigned for greater accuracy in the identification of gram-positive cocci. We compared the BD Phoenix (Becton Dickinson) and VITEK 2 (bioMérieux) automated microbiology systems, using their respective update version cards, and the API ID32 STAPH test. The glyceraldehyde-3-phosphate dehydrogenase (gap) gene-based T-RFLP (terminal restriction fragment length polymorphism) method was used for verifying the results. In total, 86 clinical isolates of CNS and 27 reference strains were analyzed. The results show that for identification of CNS, the automated identification methods using the newest VITEK 2 and BD Phoenix identification cards are comparable. However, API ID32 STAPH revealed more correct results compared to both automated microbiology systems. Despite the increased performance of the phenotypic automated identification systems compared to the former versions, molecular methods, e.g., the gap-based T-RFLP method, still show superior accuracy in identifying Staphylococcus species other than Staphylococcus aureus.  相似文献   

6.
 The performance of the Vitek 2 (bioMérieux, France), a new fully automated system allowing rapid identification of microorganisms and susceptibility testing, and the Vitek 2 ID-GNB card (bioMérieux) was evaluated using 502 clinical isolates and stock collection strains of gram-negative rods belonging to 70 taxa. The number of isolates correctly identified to species and genus levels was 430 (85.7%) and 485 (96.6%), respectively. Clinical isolates of both Enterobacteriaceae and non-Enterobacteriaceae were better identified at the species level (95.3% and 74%, respectively) than stock collection strains (86.4% and 52.2%, respectively). The Vitek 2 ID-GNB card provides after 3 h a highly acceptable level of accuracy for identification of Enterobacteriaceae and non-Enterobacteriaceae, including most atypical strains encountered in clinical situations.  相似文献   

7.
We evaluated the new automated VITEK 2 system (bioMérieux) for the identification and antimicrobial susceptibility testing of enterococci. The results obtained with the VITEK 2 system were compared to those obtained by reference methods: standard identification by the scheme of Facklam and Sahm [R. R. Facklam and D. F. Sahm, p. 308-314, in P. R. Murray et al., ed., Manual of Clinical Microbiology, 6th ed., 1995] and with the API 20 STREP system and, for antimicrobial susceptibility testing, broth microdilution and agar dilution methods by the procedures of the National Committee for Clinical Laboratory Standards. The presence of vanA and vanB genes was determined by PCR. A total of 150 clinical isolates were studied, corresponding to 60 Enterococcus faecalis, 55 Enterococcus faecium, 26 Enterococcus gallinarum, 5 Enterococcus avium, 2 Enterococcus durans, and 2 Enterococcus raffinosus isolates. Among those isolates, 131 (87%) were correctly identified to the species level with the VITEK 2 system. Approximately half of the misidentifications were for E. faecium with low-level resistance to vancomycin, identified as E. gallinarum or E. casseliflavus; however, a motility test solved the discrepancies and increased the agreement to 94%. Among the strains studied, 66% were vancomycin resistant (57 VanA, 16 VanB, and 26 VanC strains), 23% were ampicillin resistant (MICs, >/=16 microgram/ml), 31% were high-level gentamicin resistant, and 45% were high-level streptomycin resistant. Percentages of agreement for susceptibility and resistance to ampicillin, vancomycin, and teicoplanin and for high-level gentamicin resistance and high-level streptomycin resistance were 93, 95, 97, 97, and 96%, respectively. The accuracy of identification and antimicrobial susceptibility testing of enterococci with the VITEK 2 system, together with the significant reduction in handling time, will have a positive impact on the work flow of the clinical microbiology laboratory.  相似文献   

8.
The aim of this study was to compare CLSI and EUCAST MIC and disk diffusion carbapenem breakpoints for the detection of carbapenemase‐producing Klebsiella pneumoniae. K. pneumoniae strains with known KPC (n = 31) or VIM (n = 20) carbapenemases were characterized by disk diffusion (Oxoid) and Etest (bioMérieux) vs. imipenem, meropenem and ertapenem, and with VITEK2 (bioMérieux, five different cards). Extended‐spectrum β‐lactamase (ESBL) testing was performed with VITEK2 (bioMérieux), ESBL combination disks (Becton Dickinson) and the ESBL Etest (bioMérieux). With CLSI and EUCAST MIC breakpoints, respectively, 11 and seven of the strains were susceptible to imipenem, 12 and eight to meropenem, and seven and none to ertapenem. The EUCAST epidemiological cut‐off (ECOFF) values for meropenem and ertapenem identified all carbapenemase producers, whereas the imipenem ECOFF failed in five strains. All carbapenemase producers were detected with EUCAST disk diffusion breakpoints for ertapenem and meropenem, and four strains were susceptible to imipenem. CLSI disk diffusion breakpoints characterized 18 (imipenem), 14 (meropenem) and three (ertapenem) isolates as susceptible. When cards with a single carbapenem were used, detection failures with VITEK2 were four for imipenem, none for meropenem and one for ertapenem. Cards containing all three carbapenems had one to two failures. With ESBL combination disks, 21/31 KPC producers and 2/20 VIM producers were positive. With VITEK2, no VIM producers and between none and seven KPC producers were ESBL‐positive. All carbapenemase producers were detected with the meropenem MIC ECOFF, or the clinical EUCAST breakpoint for ertapenem. EUCAST disk diffusion breakpoints for meropenem and ertapenem detected all carbapenemase producers. VITEK2 had between none and four failures in detecting carbapenemase producers, depending on the antibiotic card.  相似文献   

9.
We evaluated a new protocol for the BacT/ALERT MB susceptibility test (bioMérieux Inc., Durham, NC) using 80 Mycobacterium tuberculosis WHO challenge panel strains. The drug susceptibility profiles of these strains are well characterized, and consensus drug resistance results have been established after tests were performed at around 20 international reference laboratories using recommended reference drug susceptibility techniques. Strains were tested according to the bioMérieux protocol using the following critical concentrations: rifampin (RIF), 0.9 mg/liter; isoniazid (INH), 0.4 and 0.09 mg/liter; and ethambutol (EMB), 1.8 mg/liter. The BacT/ALERT system detected 36/37 RIF-resistant strains. For INH (low concentration), 59/59 resistant strains were detected, and for EMB, 34/34 resistant strains were detected. Thus, the sensitivities were 97%, 100%, and 100% for RIF, INH, and EMB, respectively. The corresponding specificities were 100%, 95%, and 98%, respectively, for the same drugs. As soon as the BacT/ALERT MP seed bottle flagged positive, the median time to obtain a susceptibility results was 7.8 days. The results show good concordance with the consensus results of the international reference laboratories and demonstrate that BacT/ALERT 3D should be considered as an alternative method for rapid and automated drug susceptibility testing of M. tuberculosis.  相似文献   

10.
Staphylococci are an increasing cause of bloodstream infections. Rapid reliable identification of these organisms is essential for accurate diagnosis and prompt effective treatment. We evaluated the ability of the VITEK 2 system (bioMérieux, Inc, Hazelwood, Mo.) to identify these organisms rapidly and accurately. A total of 405 clinically relevant nonduplicate staphylococcal isolates (Staphylococcus aureus, n = 130; coagulase-negative staphylococci, n = 275) collected from blood cultures were tested. VITEK 2 results were considered correct when they were identical to those furnished by the comparison method based on the ID 32 STAPH system (bioMérieux, Marcy l'Etoile, France) plus supplementary manual testing. When discrepancies occurred, isolate identity was verified by molecular typing. The VITEK 2 correctly identified 387 (95.6%) isolates at the species level: 379 (including all but one [99.2%] of 130 S. aureus isolates and 249 of 275 [90.5%] coagulase-negative isolates) were identified by the automated reading; for the other eight, supplemental tests suggested by the manufacturer had to be used. Only one strain (0.2%) was misidentified (Staphylococcus hominis as Staphylococcus epidermidis), and four (1%), all S. epidermidis, were not identified. For the remaining 13 strains (including 10 S. hominis), the VITEK 2 system was unable to discriminate among two species, and no supplemental tests were suggested for conclusive identification. Over 90% of results were obtained within 4 h. These results suggest that the VITEK 2 system can provide rapid, accurate, and reliable species-level identification of staphylococci responsible for bloodstream infections, although there is room for improvement in the identification of certain coagulase-negative species, especially S. hominis.  相似文献   

11.
A challenge panel of enterococci (n = 50) and staphylococci (n = 50), including 17 and 15 isolates that were nonsusceptible to linezolid, respectively, were tested with the Clinical and Laboratory Standards Institute broth microdilution and disk diffusion reference methods. In addition, all 100 isolates were tested in parallel by Etest (AB Biodisk, Solna, Sweden), MicroScan WalkAway (Dade, West Sacramento, CA), BD Phoenix (BD Diagnostic Systems, Sparks, MD), VITEK (bioMérieux, Durham, NC), and VITEK 2 (bioMérieux) by using the manufacturers' protocols. Compared to the results of the broth microdilution method for detecting linezolid-nonsusceptible staphylococci and enterococci, MicroScan results showed the highest category agreement (96.0%). The overall categorical agreement levels for VITEK 2, Etest, Phoenix, disk diffusion, and VITEK were 93.0%, 90.0%, 89.6%, 88.0%, and 85.9%, respectively. The essential agreement levels (results within +/-1 doubling dilution of the MIC determined by the reference method) for MicroScan, Phoenix, VITEK 2, Etest, and VITEK were 99.0%, 95.8%, 92.0%, 92.0%, and 85.9%, respectively. The very major error rates for staphylococci were the highest for VITEK (35.7%), Etest (40.0%), and disk diffusion (53.3%), although the total number of resistant isolates tested was small. The very major error rate for enterococci with VITEK was 20.0%. Three systems (MicroScan, VITEK, and VITEK 2) provided no interpretations of nonsusceptible results for staphylococci. These data, from a challenge panel of isolates, illustrate that the recent emergence of linezolid-nonsusceptible staphylococci and enterococci is providing a challenge for many susceptibility testing systems.  相似文献   

12.
The VITEK 2 (bioMérieux, Marcy L'Etoile, France) and the Phoenix systems (BD Diagnostic Systems, Sparks, Md.) are automated instruments for rapid organism identification and susceptibility testing. We evaluated the workflow, the time to result, and the performance of identification and susceptibility testing of both instruments. A total of 307 fresh clinical isolates were tested: 141 Enterobacteriaceae, 22 nonfermenters, 93 Staphylococcus spp., and 51 Enterococcus spp. Manipulation time was measured in batches, each with seven isolates, for a total of 39 batches. The mean (+/- standard deviation [SD]) manipulation time per batch was 20.9 +/- 1.8 min for Phoenix and 10.6 +/- 1.0 min for VITEK 2 (P < 0.001). Mean (+/-SD) time to result for all bacterial groups was 727 +/- 162 min for Phoenix and 506 +/- 120 min for VITEK 2 (P < 0.001). Concerning identification, Phoenix and VITEK 2 yielded the same results for nonfermenters (100%), staphylococci (97%), and enterococci (100%). For 140 Enterobacteriaceae strains evaluated, 135 (96%) were correctly identified by Phoenix and 137 (98%) by VITEK 2 (P = 0.72). The overall category agreement for all isolates was 97.0% for both instruments. The minor error rate, major error rate, and very major error rate for all bacterial isolates tested were 3.0, 0.3, and 0.6 and 2.8, 0.2, and 1.7 for Phoenix and VITEK 2, respectively (P values of 0.76, 0.75, and 0.09). The VITEK 2 system required less manual manipulation time and less time than the Phoenix system to yield results.  相似文献   

13.
In this study, the performances of two matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) systems, MALDI Biotyper (Bruker Daltonics) and VITEK MS (bioMérieux), were evaluated in the identification of viridans group streptococci. Two collections of isolates were tested with both methods. From a panel of type collection strains (n?=?54), MALDI Biotyper gave correct species-level identification for 51/54 (94 %) strains and 37/54 (69 %) strains for the VITEK MS in vitro diagnostic (IVD) method. Additionally, a collection of blood cultures isolates which had been characterized earlier with partial sequencing of 16S rRNA (n?=?97) was analyzed. MALDI Biotyper classified 89 % and VITEK MS 93 % of these correctly to the group level. Comparison of species-level identification from the blood culture collection was possible for 36 strains. MALDI Biotyper identified 75 % and VITEK MS 97 % of these strains consistently. Among the clinical isolates, MALDI Biotyper misidentified 36 strains as Streptococcus pneumoniae. Nevertheless, our results suggest that the current MALDI-TOF methods are a good alternative for the identification of viridans streptococci and do perform as well as or better than commercial phenotypical methods.  相似文献   

14.
A fully automated commercial antifungal susceptibility test system (VITEK 2; bioMérieux, Inc., Hazelwood, MO) was compared in three different laboratories with the Clinical and Laboratory Standards Institute (formerly the NCCLS) reference broth microdilution method (BMD) by testing 2 quality control strains, 10 reproducibility strains, and 426 isolates of Candida spp. against amphotericin B, flucytosine, and voriconazole. Reference BMD MIC endpoints were established after 24 and 48 h of incubation. VITEK 2 system MIC endpoints were determined spectrophotometrically after 9.1 to 27.1 h of incubation (mean, 12 to 14 h). Excellent essential agreement (within 2 dilutions) between the VITEK 2 system and the 24- and 48-h BMD MICs was observed for all three antifungal agents: amphotericin B, 99.1% and 97%, respectively; flucytosine, 99.1% and 98.8%, respectively; and voriconazole, 96.7% and 96%, respectively. Both intra- and interlaboratory agreements were >98% for all three drugs. The overall categorical agreements between the VITEK 2 system and BMD for flucytosine and voriconazole were 98.1 to 98.6% at the 24-h BMD time point and 96.9 to 97.4% at the 48-h BMD time point. The VITEK 2 system reliably detected flucytosine and voriconazole resistance among Candida spp. and demonstrated excellent quantitative and qualitative agreement with the reference BMD method.  相似文献   

15.
The usefulness of Candida ID 2 (CAID2) reformulated medium (bioMérieux, France) has been compared with that of the former Candida ID (CAID; bioMérieux), Albicans ID 2 (ALB2; bioMérieux), and CHROMagar Candida (CAC; Chromagar, France) chromogenic media for the isolation and presumptive identification of clinically relevant yeasts. Three hundred forty-five stock strains from culture collections, and 103 fresh isolates from different clinical specimens were evaluated. CAID2 permitted differentiation based on colony color between Candida albicans (cobalt blue; sensitivity, 91.7%; specificity, 97.2%) and Candida dubliniensis (turquoise blue; sensitivity, 97.9%; specificity, 96.6%). Candida tropicalis gave distinguishable pink-bluish colonies in 97.4% of the strains in CAID2 (sensitivity, 97.4%; specificity, 100%); the same proportion was reached in CAC, where colonies were blue-gray (sensitivity, 97.4%; specificity, 98.7%). CAC and CAID2 showed 100% sensitivity values for the identification of Candida krusei. However, with CAID2, experience is required to differentiate the downy aspect of the white colonies of C. krusei from other white-colony-forming species. The new CAID2 medium is a good candidate to replace CAID and ALB2, and it compares well to CAC for culture and presumptive identification of clinically relevant Candida species. CAID2 showed better results than CAC in some aspects, such as quicker growth and color development of colonies from clinical specimens, detection of mixed cultures, and presumptive differentiation between C. albicans and C. dubliniensis.  相似文献   

16.
The accuracy of the Thermo Scientific? Sensititre? Anaerobe MIC plate was assessed against the ATB ANA® test (bioMérieux) on 56 clinically relevant anaerobic strains collected at Geneva University Hospitals. The overall categorical agreement between both methods reached 95%. The Sensititre? Anaerobe MIC plate had excellent accuracy for most antibiotics tested. When the Sensititre? Anaerobe MIC plate disagreed with ATB ANA® test, the gradient strip method resolved the antimicrobial susceptibility categories of all the antibiotics tested, except for piperacillin, piperacillin-tazobactam, and penicillin, in favor of the Sensititre? Anaerobe MIC plate (58% [21 out of 36]). Several very major errors were observed for piperacillin (12.5% [7 out of 56]), piperacillin-tazobactam (12.5% [7 out of 56]), and penicillin (2% [1 out of 56]). The gradient strip method revealed that the categorical differences for piperacillin, piperacillin-tazobactam, and penicillin were at least partly explained by heterogeneity in resistance expression. The Sensititre? Anaerobe MIC plate offers therefore a useful alternative to the ATB ANA® test for the routine antimicrobial susceptibility testing of anaerobes in clinical microbiology laboratories.  相似文献   

17.
This multicenter study evaluated the accuracy of matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry identifications from the VITEK MS system (bioMérieux, Marcy l’Etoile, France) for Enterobacteriaceae typically encountered in the clinical laboratory. Enterobacteriaceae isolates (n?=?965) representing 17 genera and 40 species were analyzed on the VITEK MS system (database v2.0), in accordance with the manufacturer’s instructions. Colony growth (≤72 h) was applied directly to the target slide. Matrix solution (α-cyano-4-hydroxycinnamic acid) was added and allowed to dry before mass spectrometry analysis. On the basis of the confidence level, the VITEK MS system provided a species, genus only, or no identification for each isolate. The accuracy of the mass spectrometric identification was compared to 16S rRNA gene sequencing performed at MIDI Labs (Newark, DE). Supplemental phenotypic testing was performed at bioMérieux when necessary. The VITEK MS result agreed with the reference method identification for 96.7 % of the 965 isolates tested, with 83.8 % correct to the species level and 12.8 % limited to a genus-level identification. There was no identification for 1.7 % of the isolates. The VITEK MS system misidentified 7 isolates (0.7 %) as different genera. Three Pantoea agglomerans isolates were misidentified as Enterobacter spp. and single isolates of Enterobacter cancerogenus, Escherichia hermannii, Hafnia alvei, and Raoultella ornithinolytica were misidentified as Klebsiella oxytoca, Citrobacter koseri, Obesumbacterium proteus, and Enterobacter aerogenes, respectively. Eight isolates (0.8 %) were misidentified as a different species in the correct genus. The VITEK MS system provides reliable mass spectrometric identifications for Enterobacteriaceae.  相似文献   

18.
Background: Raoultella is a Gram-negative bacteria, which commonly occur in the natural environment such as water, soil and on plants. In recent years, Raoultella spp. gained more interest. There is also an increasing number of publications describing mainly clinical cases involving these bacteria. Identification of Raoultella spp. is difficult due to a phylogenetic relationship with Klebsiella spp. Purpose: Available biochemical tests do not always allow for their identification to species. Thus, the aim of this study was to evaluate selected methods of identification of Raoultella spp. and their differentiation from genus Klebsiella. Materials and Methods: In this evaluation three methods were used such as manual test ID32E (bioMérieux), automatic test VITEK2 Compact (bioMérieux) and matrix-assisted laser desorption ionisation-time of flight mass spectrometry (MALDI-TOF MS) method (Bruker). Results: Good identification of the species was obtained for 81.4% of the strains in the ID32E test, 93.3% in VITEK2 Compact test, and 97.4% in MALDI-TOF MS method, respectively. Conclusion: It was established that MALDI-TOF MS method is reliable in identifying genus Raoultella.  相似文献   

19.
A total of 34 isolates (28 Enterobacter sakazakii and 6 Enterobacteriaceae) from infant formulae, milk powder, and the production environment of milk powder factories were identified using ID 32E and VITEK 2 compact GN systems (bioMérieux, France). The ID 32E version 3.0 and VITEK 2 compact GN version 01.01b correctly identified 100% (28) of the Enterobacter sakazakii isolates tested, whereas the previous software version 2.0 for ID 32E showed only 71.4% correct results. None of the non-E. sakazakii isolates tested were misidentified as E. sakazakii with either of the identification systems used.  相似文献   

20.
The genus Staphylococcus is made up of 36 validated species which contain strains that are pathogenic, saprophytic, or used as starter cultures for the food industry. An oligonucleotide array targeting the manganese-dependent superoxide dismutase (sodA) gene was developed to overcome the drawbacks of the conventional methods of identification. Divergences of the sodA gene were used to design oligonucleotide probes, and we showed that each of the 36 species had a characteristic pattern of hybridization. To evaluate the array, we analyzed 38 clinical and 38 food or food plant Staphylococcus isolates identified by the phenotype-based system VITEK 2 (bioMérieux). This commercial kit failed to identify 8 (21%) of the clinical isolates and 32 (84%) of the food and food plant isolates. In contrast, the oligonucleotide array we designed provided an accurate and rapid method for the identification of staphylococcal strains, isolated from clinical, environmental, or food samples, at species level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号