首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Stromal cell-derived factor (SDF)-1α has been reported to play a crucial role in stem cell homing and recruitment to injured sites. However, no information is available about its role in periodontal tissues. The aim of this in vitro study was to investigate the effects of basic fibroblast growth factor (FGF-2) and transforming growth factor (TGF)-β1 on SDF-1α expression in immortalized periodontal ligament (PDL) cells derived from deciduous teeth (SH9 cells). Real-time PCR and western blot analyses showed that SDF-1α mRNA expression in SH9 cells was markedly inhibited by FGF-2 treatment for 48 h. SU5402, which directly interacts with the catalytic domain of the FGF receptor 1 (FGFR1) and suppresses its phosphorylation, inhibited the FGF-2-related decrease in SDF-1α expression. These results suggest that FGF-2 signaling via the FGFR1 pathway inhibits SDF-1α expression. Conversely, SDF-1α expression in SH9 cells was increased by TGF-β1 treatment for 12 h. Western blot analysis showed that this treatment induced Smad2/3 phosphorylation. A time-course experiment showed that SDF-1α expression levels reached a maximum 12 h after the TGF-β1 treatment and returned to basal levels by 48 h. Real-time PCR analysis showed that Smad7 mRNA expression peaked by 6 h after TGF-β1 treatment. Since Smad7 siRNA downregulated Smad7 expression by approximately 2.5-fold compared with the negative control siRNA, the induction of SDF-1α expression was prolonged. Furthermore, treatment of SH9 cells with TGF-β1 for 12 h induced transwell migration of UE7T-13 cells, which are mesenchymal stem cells derived from human bone marrow. Therefore, SDF-1α may play an important role in stem and progenitor cell recruitment and homing to injured sites in the periodontal ligament, and regulation of SDF-1α expression may be a useful tool in cell-based therapy for periodontal tissue regeneration.  相似文献   

2.
3.
Hematopoietic stem cells (HSCs) are currently utilized in the treatment of blood diseases, but widespread application of HSC therapeutics has been hindered by the limited availability of HSCs. With a better understanding of the HSC microenvironment and the ability to precisely recapitulate its components, we may be able to gain control of HSC behavior. In this work we developed a novel, biomimetic PEG hydrogel material as a substrate for this purpose and tested its potential with an anchorage-independent hematopoietic cell line, 32D clone 3 cells. We immobilized a fibronectin-derived adhesive peptide sequence, RGDS; a cytokine critical in HSC self-renewal, stem cell factor (SCF); and a chemokine important in HSC homing and lodging, stromal derived factor 1α (SDF1α), onto the surfaces of poly(ethylene glycol) (PEG) hydrogels. To evaluate the system’s capabilities, we observed the effects of the biomolecules on 32D cell adhesion and morphology. We demonstrated that the incorporation of RGDS onto the surfaces promotes 32D cell adhesion in a dose-dependent fashion. We also observed an additive response in adhesion on surfaces with RGDS in combination with either SCF or SDF1α. In addition, the average cell area increased and circularity decreased on gel surfaces containing immobilized SCF or SDF1α, indicating enhanced cell spreading. By recapitulating aspects of the HSC microenvironment using a PEG hydrogel scaffold, we have shown the ability to control the adhesion and spreading of the 32D cells and demonstrated the potential of the system for the culture of primary hematopoietic cell populations.  相似文献   

4.

Objective and design  

The aim of this study was to investigate the effect of heat shock protein 70 (HSP70) on the mRNA expression of tumor necrosis factor-alpha (TNF-α) and receptor activator of nuclear factor-kappa B ligand (RANKL) induced by compressive forces (CF) in human periodontal ligament (hPDL) cells.  相似文献   

5.
Metastatic prostate cancer is one of the leading causes of cancer-related death in men. The primary site of metastasis from prostate cancers is the bone. During the last decade, multiple studies have pointed to the role of the stromal cell-derived factor 1 alpha (SDF1α)/CXCR4 axis in the metastatic spread of the disease, but the mechanisms that underlie this effect are still incompletely understood. In this review, we summarize the current understanding of the role of the SDF1α/CXCR4 pathway in bone metastatic prostate cancer. We also discuss the therapeutic potential of disrupting the interaction between prostate tumor cells and bone environment with focus on the SDF1α pathway.  相似文献   

6.
Platelet-derived growth factor (PDGF) and its receptors (PDGFRs) are strongly involved in the normal development of several organs, tumour angiogenesis and malignant progression and metastasis. Few studies concerning their expression, distribution and role in normal and pathological human thymus are available in the literature. The aim of this study has been to analyse the immunohistochemical expression of PDGF and PDGFR-α in prenatal and postnatal normal human thymus and thymomal biopsy specimens. The results demonstrated immunoreactivity to both PDGF and PDGFR-α in all specimens, but the intensity, distribution and number of positive cells were different in normal thymus and thymomas, and also among different tumour types. PDGF and PDGFR-α were weakly expressed in foetal and postnatal humans with a different distribution between cortex and medulla in both blood vessels and epithelial cells, whereas they were overexpressed in thymoma, especially in type B2 and B3, in the tumour epithelial cells. Overall, these data suggest that PDGF and PDGFR-α may be involved in the pathophysiology of the human thymus.  相似文献   

7.
8.
9.
10.
Objective: Now there are more and more evidences that Cyclooxygenase-2 (COX-2) plays an important role in angiogenesis of endometriosis (EMs). Vascular endothelial growth factor (VEGF) has a potent angiogenic activity. However, it is worth studying about the regulating mechanism of COX-2/COX-1 and VEGF in the development of human endometriosis in vitro. The current study was designed to investigate the effect of 4 cytokines on COX-2/COX-1 expression and the effect of IL-1β on VEGF release in human endometriosis stromal cells (ESC), and to explore the related signaling pathways involved in vitro. Methods: Isolation, culture and identification of ESC. Cells were treated with 4 cytokines, and the inhibitor mitogen-activated protein-Erk (MEK) and the inhibitor p38 mitogen-activated protein kinase (MAPK) prior to adding cytokine IL-1β. COX-2 protein expression was measured by western blot and VEGF secretion was determined by ELISA. Results: Among four kinds of cytokines, IL-1β treatment increased COX-2 protein expression and VEGF release in three ESC, and TNF-α had the same effect on COX-2 protein level as IL-1β only in ectopic and eutopic ESC, and MCSF had only slight effect on ectopic ESC. In contrast, cytokines had no effect on COX-1 expression. We also demonstrated that MAPK reduced the synthesis of COX-2 by IL-1β induced. COX-2 inhibitor reduced VEGF release by IL-1β induced. Conclusions: i) In human ESC in vitro, IL-1β up-regulated the COX-2 expression through the activation of p38 MAPK pathway, and not to COX-1. ii) Up-regulation of VEGF level by IL-1β treatment was found in human endometriosis stromal cell and COX-2 inhibitor was involved in this process.  相似文献   

11.
12.
BACKGROUND: Anti-Müllerian hormone (AMH) inhibits the initiation of the development and early growth of mouse ovarian follicles. Furthermore, the ovarian follicle pool diminishes prematurely in AMH-knockout mice. In this study, we examined whether AMH plays a similar role in humans, controlling ovarian follicle growth. METHODS: Human ovarian cortical tissue biopsy specimens were cut into small pieces and cultured for 7 days in medium containing rat recombinant AMH at 0, 10, 30 or 100 ng/ml. The developmental stages and viability of the follicles were evaluated from histological sections. RESULTS: Similar to previous studies, significant initiation of follicle growth was observed in almost all culture media, as demonstrated by a significantly smaller proportion of primordial follicles (14-26%) compared with non-cultured control tissue (56%). The exception was tissue in medium supplemented with AMH at 100 ng/ml. Here, the proportion of primordial follicles was not significantly different from that in non-cultured tissue; furthermore, it was significantly greater than that in vehicle control cultures and cultures containing AMH at 10 ng/ml, indicating the inhibition of growth initiation. Viability was unaffected by the presence of AMH when compared with tissues in control media. CONCLUSIONS: Recombinant AMH at a concentration of 100 ng/ml has an inhibitory effect on early human ovarian follicular development in vitro, suppressing the initiation of primordial follicle growth.  相似文献   

13.
Platelet derived growth factor receptor (PDGFR) is a membrane tyrosine-kinase receptor required for fibroblast activation in stromal proliferations. In order to assess the role of PDGFR in myelofibrosis (MF) we determined in 60 bone marrow biopsies the occurrence and distribution of its α and β subunits in normal and fibrotic bone marrow stroma using immunohistochemistry, and compared this with the grade of MF determined by Gömöri’s silver impregnation. PDGF receptor subunits were found to be differentially expressed in the marrow parenchyma. PDGFRα expression identified megakaryocytes, endosteal and endothelial cells while PDGFRβ was virtually absent from inter-trabecular spaces in normal marrow. Activated fibroblasts characteristic for MF intensely expressed PDGFRβ but only a moderate increase in PDGFRα expression was seen. Semi-quantitative PDGFRβ immunoreactivity scores correlated well with the grade of MF in the vast majority of the MF cases (Spearman r= 0.83). Altogether, 21/60 (35.0%) cases showed a relative increase of PDGFRβ expression, compared to the MF grade, suggesting that increased stromal PDGFRβ expression occurs early and precedes reticulin and collagen fiber production during fibroblast activation. In conclusion, bone marrow PDGFRβ expression closely correlates with the grade of MF. Increased immunoreactivity for PDGFRβ occurs already in the prefibrotic stage of the disease and might allow a functional classification of the bone marrow stromal reaction.  相似文献   

14.
Bone metastases are a common complication in prostate and breast cancer patients. It leads to extensive morbidity and eventually mortality. Matrix metalloproteinases (MMPs) are known to be involved in the metastatic process. MMP activity can be down-regulated by transforming growth factor 1 (TGF-1), a growth-modulating factor, found in high concentrations in the bone. TGF-1 acts through the TGF-1 inhibitory element (TIE) element, a cis-acting element found in the promoter region of most MMP genes, with the exception of MMP-2. We used three human cell lines relevant for bone metastases, namely prostate adenocarcinoma PC-3, breast adenocarcinoma MDA-MB-231, and adenocarcinoma cells of unknown origin, Hs696, and one human osteosarcoma cell line, SAOS-2, and showed that in these cell lines TGF-1 partially lost its repressing action on MMP expression. TGF-1 was able to induce MMP-9 activity and protein expression in all three bone-metastatic tumour cell types, whereas MMP-9 protein levels were repressed in SAOS-2 cells. In PC-3 cells, TGF-1 repressed MMP-1 expression, whereas in MDA-MB-231 and SAOS-2 cells, an increase in the expression of MMP-1 protein was detected. Additionally, an increase in MMP-3 expression was observed in Hs696 cells. Expression and activity of the tissue inhibitors of matrix metalloproteinases, TIMP-1 and TIMP-2, were found increased in both PC-3 and MDA-MB-231 cells. With respect to cell proliferation, TGF-1 was able to induce a dose-dependent growth inhibition of up to 50% in primary human mammary epithelial cells. However, in none of the tumour cell lines was TGF-1 able to suppress growth substantially. Data presented in this paper support the hypothesis that TGF-1 can potentially disrupt the balance existing between osteoclast- and osteoblast-derived MMP activity by inducing altered expression of matrix metalloproteinases and their tissue inhibitors derived from bone-metastasizing cancer cells. This could eventually lead to skeletal destruction in patients with advanced metastatic disease.  相似文献   

15.
Although valve interstitial cell (VIC) growth is an essential feature of injured and diseased valves, the regulation of VIC growth is poorly understood. Transforming growth factor (TGF)-β promotes VIC proliferation in early-stage wound repair; thus, herein, we tested the hypothesis that TGF-β regulates VIC proliferation under normal nonwound conditions using low-density porcine VIC monolayers. Cell numbers were counted during a 10-day period, whereas proliferation and apoptosis were quantified by bromodeoxyuridine staining and TUNEL, respectively. The extent of retinoblastoma protein phosphorylation and expression of cyclin D1, CDK 4, and p27 were compared using Western blot analysis. Adhesion was quantified using a trypsin adhesion assay, and morphological change was demonstrated by immunofluorescence localization of α-smooth muscle actin and vinculin. TGF-β-treated VICs were rhomboid; significantly decreased in number, proliferation, and retinoblastoma protein phosphorylation; and concomitantly had decreased expression of cyclin D1/CDK4 and increased expression of p27. TGF-β-treated VICs adhered better to substratum and had more vinculin plaques and α-smooth muscle actin stress fibers than did controls. Thus, the regulation of VIC growth by TGF-β is context dependent. TGF-β prevents excessive heart valve growth under normal physiological conditions while it promotes cell proliferation in the early stages of repair, when increased VICs are required.  相似文献   

16.
The defective insulin production is associated with severely reduced islet cell mass leading to diabetes. Growth factors preconditioned stem cells have arisen as an effective therapy to treat many diseases including diabetes. The current study was designed to assess the effect of pretreatment of ASCs derived IPCs with combination of stromal cell derived factor 1 alpha (SDF1α) and basic fibroblast growth factor (bFGF) in improving glucose tolerance in streptozotocin induced diabetic rats. The results showed maximally significant reduction in hyperglycaemia and fibrosis, while up-regulation of survival and pancreas-specific genes, insulin levels and homing of transplanted cells in SDF-1α?+?bFGF IPCs transplanted rats as compared with other groups. Moreover, increased expression of insulin, glucagon and Glut-2 in pancreas of the SDF-1α?+?bFGF IPCs transplanted group indicated more regeneration of pancreas. Hence, the use of IPCs preconditioned with SDF-1α?+?bFGF would be more effective for treating diabetes.  相似文献   

17.
18.
19.
Nerve growth factor (NGF), a survival factor for neurons enforces pain by sensitizing nociceptors. Also in the pancreas, NGF was associated with pain and it can stimulate the proliferation of pancreatic cancer cells. Hepatic stellate cells (HSC) respond to NGF with apoptosis.

Transforming growth factor (TGF)-β, one of the strongest pro-fibrogenic activators of pancreatic stellate cells (PSC) induced NGF and its two receptors in an immortalized human cell line (ihPSC) and primary rat PSC (prPSC) as determined by RT-PCR, western blot, and immunofluorescence. In contrast to HSC, PSC expressed both NGF receptors, although p75NTR expression was weak in prPSC. In contrast to ihPSC TGF-β activated both Smad signaling cascades in prPSC. NGF secretion was diminished by the activin-like kinase (ALK)-5 inhibitor SB431542, indicating the predominant role of ALK5 in activating the NGF system in PSC. While NGF did not affect proliferation or survival of PSC it induced expression of Inhibitor of Differentiation-1.

We conclude that under conditions of upregulated TGF-β, like fibrosis, NGF levels will also increase in PSC which might contribute to pancreatic wound healing responses.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号