首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to investigate the cooperative effects of simvastatin (SIM) and stromal cell-derived factor-1α (SDF-1α) on the osteogenic and migration capabilities of mesenchymal stem cells (MSCs), and construct a cell-free bone tissue engineering system comprising SIM, SDF-1α and scaffold. We found that 0.2 μm SIM significantly increased alkaline phosphatase activity (P < 0.05) of mouse bone marrow MSCs with no inhibition of cell proliferation, and enhanced the chemotactic capability of SDF-1α (P < 0.05). Next, we constructed a novel cell-free bone tissue engineering system using PLGA loaded with SIM and SDF-1α, and applied it in critical-sized calvarial defects in mice. New bone formation in the defect was evaluated by micro-CT, HE staining and immunohistochemistry. The results showed that PLGA loaded with SIM and SDF-1α promoted bone regeneration significantly more than controls. We investigated possible mechanisms, and showed that SDF-1α combined with SIM increased MSC migration and homing in vivo, promoted angiogenesis and enhanced the expression of BMP-2 in newly-formed bone tissue. In conclusion, SIM enhanced the chemotactic capability of SDF-1α and the cell-free bone tissue engineering system composed of SIM, SDF-1α and scaffold promoted bone regeneration in mouse critical-sized calvarial defects.  相似文献   

2.
目的 研究循环轴向压缩应力(CACS)对基质依赖型组织工程骨(M-TEB)骨再生能力的影响。方法 首先,在构建静态M-TEB过程中加载CACS,得到动态M-TEB;然后,对各组M-TEB进行表征,并构建动物模型来评价其骨再生能力;最后,通过转录组测序探究CACS对骨髓间充质干细胞(BMSCs)基因表达的影响,并研究M-TEB来源条件培养基对内皮祖细胞(EPCs)迁移、增殖和对BMSCs成骨分化的影响。结果 ①动态M-TEB组在骨缺损区有更多新骨生成,且骨体积分数和骨密度均显著优于假手术组和静态M-TEB组(P均<0.01);②前30个有显著差异(q<0.01)的基因本体论(GO)术语主要涉及MAPK通路、细胞凋亡和血管生成等,且差异基因VEGFA在这些GO术语中出现频次最高(28次);③相比静态M-TEB来源条件培养基,动态M-TEB来源条件培养基具有更强的促进EPCs迁移、增殖和BMSCs成骨分化的作用(P均<0.05), 阻断实验证实VEGFA在其中发挥重要功能。结论 CACS促进BMSCs表达和分泌VEGFA,提高动态M-TEB中VEGFA浓度,最终增强其在大鼠股骨缺损模型中的骨再生能力。  相似文献   

3.
Zou D  Zhang Z  He J  Zhu S  Wang S  Zhang W  Zhou J  Xu Y  Huang Y  Wang Y  Han W  Zhou Y  Wang S  You S  Jiang X  Huang Y 《Biomaterials》2011,32(36):9707-9718
Tissue engineering combined with gene therapy represents a promising approach for bone regeneration. The Hypoxia-inducible factor-1α (HIF-1α) gene is a pivotal regulator of vascular reactivity and angiogenesis. Our recent study has showed that HIF-1α could promote osteogenesis of bone mesenchymal stem cells (BMSCs) using a gene point mutant technique. To optimize the function of HIF-1α on inducing stem cells, another constitutively active form of HIF-1α (CA5) was constructed with truncation mutant method and its therapeutic potential on critical-sized bone defects was evaluated with calcium-magnesium phosphate cement (CMPC) scaffold in a rat model. BMSCs were treated with Lenti (lentivirus) -CA5, Lenti-WT (wild-type HIF-1α), and Lenti-LacZ. These genetically modified BMSCs were then combined with CMPC scaffolds to repair critical-sized calvarial defects in rats. The results showed that the overexpression of HIF-1α obviously enhanced the mRNA and protein expression of osteogenic markers in?vitro and robust new bone formation with the higher local bone mineral density (BMD) was found in?vivo in the CA5 and WT groups. Furthermore, CA5 showed significantly greater stability and osteogenic activity in BMSCs compared with WT. These data suggest that BMSCs transduced with truncation mutanted HIF-1α gene can promote the overexpression of osteogenic markers. CMPC could serve as a potential substrate for HIF-1α gene modified tissue engineered bone to repair critical sized bony defects.  相似文献   

4.
5.
Zou D  Zhang Z  He J  Zhang K  Ye D  Han W  Zhou J  Wang Y  Li Q  Liu X  Zhang X  Wang S  Hu J  Zhu C  Zhang W  zhou Y  Fu H  Huang Y  Jiang X 《Biomaterials》2012,33(7):2097-2108
The successful clinical outcome of the implanted tissue-engineered bone is dependent on the establishment of a functional vascular network. A gene-enhanced tissue engineering represents a promising approach for vascularization. Our previous study indicated that hypoxia-inducible factor-1α (HIF-1α) can up-regulate the expression of vascular endothelial growth factor (VEGF) and stromal-derived factor 1 (SDF-1) in bone mesenchymal stem cells (BMSCs). The angiogenesis is a co-ordinated process that requires the participation of multiple angiogenic factors. To further explore the angiogenic effect of HIF-1α mediated stem cells, in this study, we systematically evaluated the function of HIF-1α in enhancing BMSCs angiogenesis in vitro and in vivo. A constitutively active form of HIF-1α (CA5) was inserted into a lentivirus vector and transduced into BMSCs, and its effect on vascularization and vascular remodeling was further evaluated in a rat critical-sized calvarial defects model with a gelatin sponge (GS) scaffold. The expression of the key angiogenic factors including VEGF, SDF-1, basic fibroblast growth factor (bFGF), placental growth factor (PLGF), angiopoietin 1 (ANGPT1), and stem cell factor (SCF) at both mRNAs and proteins levels in BMSCs were significantly enhanced by HIF-1α overexpression compared to the in vitro control group. In addition, HIF-1α-over expressing BMSCs showed dramatically improved blood vessel formation in the tissue-engineered bone as analyzed by photography of specimen, micro-CT, and histology. These data confirm the important role of HIF-1α in angiogenesis in tissue-engineered bone. Improved understanding of the mechanisms of angiogenesis may offer exciting therapeutic opportunities for vascularization, vascular remodeling, and bone defect repair using tissue engineering strategies in the future.  相似文献   

6.
Zou D  Zhang Z  Ye D  Tang A  Deng L  Han W  Zhao J  Wang S  Zhang W  Zhu C  Zhou J  He J  Wang Y  Xu F  Huang Y  Jiang X 《Stem cells (Dayton, Ohio)》2011,29(9):1380-1390
The processes of angiogenesis and bone formation are coupled both temporally and spatially during bone repair. Bone marrow-derived mesenchymal stem cells (BMSCs) have been effectively used to heal critical-size bone defects. Enhancing their ability to undergo angiogenic and osteogenic differentiation will enhance their potential use in bone regeneration. Hypoxia-inducible factor-1α (HIF-1α) has recently been identified as a major regulator of angiogenic-osteogenic coupling. In this study, we tested the hypothesis that HIF-1α gene therapy could be used to promote the repair of critical-sized bone defects. Using lentivirus-mediated delivery of wild-type (HIF) or constitutively active HIF-1α (cHIF), we found that in cultured BMSCs in vitro, HIF and cHIF significantly enhanced osteogenic and angiogenic mRNA and protein expression when compared with the LacZ group. We found that HIF-1α-overexpressing BMSCs dramatically improved the repair of critical-sized calvarial defects, including increased bone volume, bone mineral density, blood vessel number, and blood vessel area in vivo. These data confirm the essential role of HIF-1α modified BMSCs in angiogenesis and osteogenesis in vitro and in vivo.  相似文献   

7.
Polygonatum sibiricum polysaccharide (PSP) is a traditional Chinese medicine and is widely used to treat many diseases for hundreds of years conventionally. This study was to access the effects of PSP on the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) in the mice. Cells collected from BALB/C mice in the bone marrow were isolated and cultured with osteogenic medium (OM) with different concentrations of PSP. The proliferation and morphological changes of BMSCs were observed using an inverted microscope. Flow cytometric analysis was used to identify the BMSCs. MTT test was performed to analyze the proliferation and viability of the cells. ELISA was used to determine the expression levels of alkaline phosphatase (ALP), osteocalcin (OC), N-terminal propeptide of type I procollagen (PINP) and bone morphogenetic protein-2 (BMP-2). Immunocytochemistry and western blot were respectively used to determine the expressions of bone sialoprotein (BSP) and SPARC/osteonectin (OSN). The growth curves of the proliferation and differentiation of the Control, OM, 17β-E2 and PSP groups were increased. Compared to the Control and OM groups, the expression levels of ALP, OC, PINP and BMP-2 were significantly increased in the PSP induced group (P<0.05). Immunocytochemistry and western blot showed that BSP and SPARC were increased after induction of PSP compared to the OM group (P<0.05). The study demonstrates that PSP promotes the proliferation and enhances the viability of BMSCs during osteogenic differentiation. Therefore, PSP may be a potential treatment of osteoporosis in the clinic.  相似文献   

8.
The osteogenic potential for bone grafts is based on numbers and activities of cells that survive transplantation. In this study, we compared the bioactivity of osteocytes in 300–500 μm fine particulate bone powder grafts to 2 mm larger bone grafts in a rat radial defect model. Expression levels of bone morphogenetic protein-2 (BMP-2), transforming growth factor-beta 1 (TGF-β1), alkaline phosphatase (ALP), and collagen I were semi-quantified by both immunohistochemistry and RT-PCR at days 1 and 4, as well as weeks 1, 2, 4, 6 and 10 post-transplantation. Within two weeks post-transplantation, more cells stained positively for BMP-2, TGF-β1, ALP, and collagen I within the bone grafts and in the surrounding tissues in the group transplanted with the fine particulate bone powder grafts than in those with larger bone grafts (P < 0.05). The mRNA levels of all four markers in the group transplanted with fine particulate bone powder graft peaked earlier and were expressed more highly than in the larger bone graft group, suggesting that fine particulate bone powder grafts provide more viable and active osteocytes to accelerate bone defect healing than larger bone grafts.  相似文献   

9.
An ideal bone tissue engineering graft should have both excellent pro-osteogenesis and pro-angiogenesis to rapidly realize the bone regeneration in vivo. To meet this goal, 2-N,6-O-sulfated chitosan (26SCS) based nanoparticle (S-NP) was successfully developed and showed a dose-dependent enhancement on angiogenesis in vitro. For the repair of a critical sized defect in rabbit radius, we developed BMP-2 loaded S-NP (BMP-2/S-NP) with protein loading efficiency of 1.4 ± 0.2% and fabricated a gelatin sponge (G) based implant loaded with BMP-2/S-NP (BMP-2/S-NP/G). This implant exerted a delivery of BMP-2 with an initial burst release of 15.3 ± 4.1% in first 24 h and a gradual release for 21 days to 77.8 ± 3.6%. The in vitro ALP assay revealed that the activity of released BMP-2 from BMP-2/S-NP/G was maintained after 3-d and 7-d delivery and further enhanced after 14-d delivery compared with the original BMP-2. Furthermore, the in vivo effects of BMP-2/S-NP/G on the bone regeneration and vessel formation in the critical sized defect (18 mm) of rabbit radius were investigated by synchrotron radiation-based micro-computed tomography (SRμCT) imaging, three dimensional micro-computed tomographic (μCT) imaging, histological analysis, immunohistochemistry and biomechanical measurement. Based on the results, both peripheral vessel and new vessel formation were significantly increased by the BMP-2/S-NP/G treatment, along with the bridged defects at as early as 2 weeks, the healed defects at 8 weeks and the reunion of bone marrow cavity at 12 weeks. The results indicated that both controlled release of active BMP-2 and favorable vascularization at the defect site contributed by BMP-2/S-NP/G played a crucial role in accelerating and promoting bone augmentation. This study suggests that BMP-2/S-NP/G demonstrates promise for vascularization and bone regeneration in clinical case of large defect.  相似文献   

10.
11.
Experimental use of statins as stimulators of bone formation suggests they may have widespread applicability in the field of orthopaedics. With their combined effects on osteoblasts and osteoclasts, statins have the potential to enhance resorption of synthetic materials and improve bone ingrowth. In this study, the effect of oral and local administration of simvastatin to a beta tricalcium phosphate (betaTCP)-filled defect around an implant was compared with recombinant human bone morphogenetic protein 2 (rhBMP2). On hundred and sixty-two Sprague-Dawley rats were assigned to treatment groups: local application of 0.1, 0.9 or 1.7 mg of simvastatin, oral simvastatin at 5, 10 or 50 mg kg(-1) day(-1) for 20 days, local delivery of 1 or 10 microg of rhBMP2, or control. At 6 weeks rhBMP2 increased serum tartrate-resistant acid phosphatase 5b levels and reduced betaTCP area fraction, particle size and number compared with control, suggesting increased osteoclast activity. There was reduced stiffness and increased mechanical strength with this treatment. Local simvastatin resulted in a decreased mineral apposition rate at 6 weeks and increased fibrous area fraction, betaTCP area fraction, particle size and number at 26 weeks. Oral simvastatin had no effect compared with control. Local application of rhBMP2 increased resorption and improved mechanical strength whereas simvastatin was detrimental to healing. Oral simvastatin was ineffective at promoting either ceramic resorption or bone formation. The effect of statins on the repair of bone defects with graft substitute materials is influenced by its bioavailability. Thus, further studies on the optimal delivery system are needed.  相似文献   

12.
Injured articular cartilage has a poor capacity for spontaneous healing. So far, a satisfactory solution to repair the injured cartilage has not been found, but transgenic therapy might be a promising treatment. This study aims to evaluate the potential of transfecting bone morphogenetic protein-7 (BMP-7), a secretory protein, into bone marrow-derived mesenchymal stem cells (BMSCs), in inducing the differentiation of bone marrow stromal cells into chondrocytes in vitro. The phenotypes of the cells were observed by alcian blue staining and H&E staining with an inverted microscope. The glycosaminoglycan (GAG) content of BMSCs transfected with pcDNA3.1-BMP7 or induced by inducing medium was examined after 7, 14, or 21 days of incubation. A standard curve as reference for BMSCs’ GAG content was plotted using galacturonic acid. The content of type II collagen in culture medium was detected by ELISA. Our results demonstrated that BMP7-transfected BMSCs or BMSCs incubated with inducing medium possess the ability to differentiate into chondrocytes. BMP7-induced BMSCs secrete type II collagen and GAG. There was no significant difference between BMP7-induced BMSCs in their secreted protein content when compared with the positive control group (TGF-β1 and dexamethasone) (P > 0.05), but there was significant difference in the secreted protein profile when compared with the negative control group (P < 0.05).  相似文献   

13.
Silicosis is an occupational lung disease caused by exposure to small particles of crystalline silica, which ultimately results in diffuse pulmonary fibrosis. Evidence indicates an anti-fibrotic role of bone morphogenetic protein-7 (BMP-7) and bone marrow mesenchymal stem cells (BMSCs) in lung diseases. Therefore, strategies incorporating genetic engineering and stem cell biology might have a tremendous potential to treat critical injuries and diseases. Therefore, we modified BMSCs to overexpress the BMP-7 gene (BMP-7-BMSCs) by lentivirus transduction, and then evaluated whether fibrotic processes were inhibited by these cells in vivo. Wistar rats were divided into four groups: control, silica, BMSCs, and BMP-7-BMSCs. The control group received saline, the silica group received silica and saline, the BMSCs group received silica and BMSCs, and the BMP-7-BMSCs group received silica and BMP-7-BMSCs. Rats were sacrificed on days 15 or 30 after silica instillation. Hematoxylin and eosin, and Masson's trichrome staining were performed for histological examination. The severity of fibrosis was evaluated by the levels of hydroxyproline, fibronectin (FN), and transforming growth factor (TGF)-β1. Restoration of the alveolar epithelium was detected by the epithelial marker surfactant protein (SP)-C and aquaporin (AQP)-5. Histopathological results showed that BMP-7-BMSCs could remarkably block the progression of silica-induced fibrosis. Hydroxyproline, FN, and TGF-β1 contents in the BMP-7-BMSCs-treated group were significantly lower than those in the BMSCs group (P < 0.05). Furthermore, the expression of SP-C and AQP-5 in the BMP-7-BMSCs-treated group was significantly higher than those in the BMSCs group (P < 0.05). In conclusion, the pulmonary fibrosis induced by silica in rats was significantly reduced by treatment with BMP-7-BMSCs and BMSCs. The anti-fibrotic effect of BMSCs can be strengthened by BMP-7. Treatment with BMP-7-BMSCs might be a potential therapeutic intervention for silicosis.  相似文献   

14.
Successful bone tissue engineering generally requires an osteoconductive scaffold that consists of extracellular matrix (ECM) to mimic the natural environment. In this study, we developed a PLGA/PLA-based mesh scaffold coated with cell-derived extracellular matrix (CDM) for the delivery of bone morphogenic protein (BMP-2), and assessed the capacity of this system to provide an osteogenic microenvironment. Decellularized ECM from human lung fibroblasts (hFDM) was coated onto the surface of the polymer mesh scaffolds, upon which heparin was then conjugated onto hFDM via EDC chemistry. BMP-2 was subsequently immobilized onto the mesh scaffolds via heparin, and released at a controlled rate. Human placenta-derived mesenchymal stem cells (hPMSCs) were cultured in such scaffolds and subjected to osteogenic differentiation for 28 days in vitro. The results showed that alkaline phosphatase (ALP) activity, mineralization, and osteogenic marker expression were significantly improved with hPMSCs cultured in the hFDM-coated mesh scaffolds compared to the control and fibronectin-coated ones. In addition, a mouse ectopic and rat calvarial bone defect model was used to examine the feasibility of current platform to induce osteogenesis as well as bone regeneration. All hFDM-coated mesh groups exhibited a significant increase of newly formed bone and in particular, hFDM-coated mesh scaffold loaded with a high dose of BMP-2 exhibited a nearly complete bone defect healing as confirmed via micro-CT and histological observation. This work proposes a great potency of using hFDM (biophysical) coupled with BMP-2 (biochemical) as a promising osteogenic microenvironment for bone tissue engineering applications.  相似文献   

15.
Repair of large calvarial bony defect remains a challenge for orthopedic surgeons. Since microRNAs (miRNAs) modulate the osteogenesis of osteoprogenitor cells, we aimed to engineer human adipose-derived stem cells (hASCs), a promising cell source for bone engineering, with miRNA-expressing baculovirus vectors. We constructed 4 baculoviruses each expressing 1 human miRNA (miR-26a, miR-29b, miR-148b, miR-196a) and verified that the miRNA-expressing baculovirus vectors augmented hASCs osteogenesis. Among these 4 miRNAs, miR-148b and miR-196a exerted more potent osteoinductive effects than miR-26a and miR-29b. Furthermore, we unveiled that co-transduction of hASCs with miR-148b-expressing and bone morphogenetic protein 2 (BMP-2)-expressing baculovirus vectors enhanced and prolonged BMP-2 expression, and synergistically promoted the in vitro osteogenic differentiation of hASCs. Implantation of the hASCs co-expressing BMP-2/miR-148b into critical-size (4 mm in diameter) calvarial bone defects in nude mice accelerated and potentiated the bone healing and remodeling, filling ≈94% of defect area and ≈89% of defect volume with native calvaria-like flat bone in 12 weeks, as judged from micro computed tomography, histology and immunohistochemical staining. Altogether, this study confirmed the feasibility of combining miRNA and growth factor expression for synergistic stimulation of in vitro osteogenesis and in vivo calvarial bone healing.  相似文献   

16.
17.
Bone regeneration is a coordinated cascade of events regulated by several cytokines and growth factors. Angiogenic growth factors are predominantly expressed during the early phases for re-establishment of the vascularity, whereas osteogenic growth factors are continuously expressed during bone formation and remodeling. Since vascular endothelial growth factor (VEGF) and bone morphogenetic proteins (BMPs) are key regulators of angiogenesis and osteogenesis during bone regeneration, the aim of this study was to investigate if their sequential release could enhance BMP-2-induced bone formation. A composite consisting of poly(lactic-co-glycolic acid) microspheres loaded with BMP-2 embedded in a poly(propylene) scaffold surrounded by a gelatin hydrogel loaded with VEGF was used for the sequential release of the growth factors. Empty composites or composites loaded with VEGF and/or BMP-2 were implanted ectopically and orthotopically in Sprague–Dawley rats (n = 9). Following implantation, the local release profiles were determined by measuring the activity of 125I-labeled growth factors using scintillation probes. After 8 weeks blood vessel and bone formation were analyzed using microangiography, μCT and histology. The scaffolds exhibited a large initial burst release of VEGF within the first 3 days and a sustained release of BMP-2 over the full 56-day implantation period. Although VEGF did not induce bone formation, it did increase the formation of the supportive vascular network (p = 0.03) in ectopic implants. In combination with local sustained BMP-2 release, VEGF significantly enhanced ectopic bone formation compared to BMP-2 alone (p = 0.008). In the orthotopic defects, no effect of VEGF on vascularisation was found, nor was bone formation higher by the combination of growth factors, compared to BMP-2 alone. This study demonstrates that a sequential angiogenic and osteogenic growth factor release may be beneficial for the enhancement of bone regeneration.  相似文献   

18.
Non-healing bone defects present tremendous socioeconomic costs. Although successful in some clinical settings, bone morphogenetic protein (BMP) therapies require supraphysiological dose delivery for bone repair, raising treatment costs and risks of complications. We engineered a protease-degradable poly(ethylene glycol) (PEG) synthetic hydrogel functionalized with a triple helical, α2β1 integrin-specific peptide (GFOGER) as a BMP-2 delivery vehicle. GFOGER-functionalized hydrogels lacking BMP-2 directed human stem cell differentiation and produced significant enhancements in bone repair within a critical-sized bone defect compared to RGD hydrogels or empty defects. GFOGER functionalization was crucial to the BMP-2-dependent healing response. Importantly, these engineered hydrogels outperformed the current clinical carrier in repairing non-healing bone defects at low BMP-2 doses. GFOGER hydrogels provided sustained in vivo release of encapsulated BMP-2, increased osteoprogenitor localization in the defect site, enhanced bone formation and induced defect bridging and mechanically robust healing at low BMP-2 doses which stimulated almost no bone regeneration when delivered from collagen sponges. These findings demonstrate that GFOGER hydrogels promote bone regeneration in challenging defects with low delivered BMP-2 doses and represent an effective delivery vehicle for protein therapeutics with translational potential.  相似文献   

19.
Bone morphogenetic proteins (BMPs) have been widely investigated for their clinical use in bone repair and it is known that a suitable carrier matrix to deliver them is essential for optimal bone regeneration within a specific defect site. Fused deposited modeling (FDM) allows for the fabrication of medical grade poly ?-caprolactone/tricalcium phosphate (mPCL–TCP) scaffolds with high reproducibility and tailor designed dimensions. Here we loaded FDM fabricated mPCL–TCP/collagen scaffolds with 5 μg recombinant human (rh)BMP-2 and evaluated bone healing within a rat calvarial critical-sized defect. Using a comprehensive approach, this study assessed the newly regenerated bone employing micro-computed tomography (μCT), histology/histomorphometry, and mechanical assessments. By 15 weeks, mPCL–TCP/collagen/rhBMP-2 defects exhibited complete healing of the calvarium whereas the non-BMP-2-loaded scaffolds showed significant less bone ingrowth, as confirmed by μCT. Histomorphometry revealed significantly increased bone healing amongst the rhBMP-2 groups compared to non-treated scaffolds at 4 and 15 weeks, although the % BV/TV did not indicate complete mineralisation of the entire defect site. Hence, our study confirms that it is important to combine microCt and histomorphometry to be able to study bone regeneration comprehensively in 3D. A significant up-regulation of the osteogenic proteins, type I collagen and osteocalcin, was evident at both time points in rhBMP-2 groups. Although mineral apposition rates at 15 weeks were statistically equivalent amongst treatment groups, micro-compression and push-out strengths indicated superior bone quality at 15 weeks for defects treated with mPCL–TCP/collagen/rhBMP-2. Consistently over all modalities, the progression of healing was from empty defect < mPCL–TCP/collagen < mPCL–TCP/collagen/rhBMP-2, providing substantiating data to support the hypothesis that the release of rhBMP-2 from FDM-created mPCL–TCP/collagen scaffolds is a clinically relevant approach to repair and regenerate critically-sized craniofacial bone defects.  相似文献   

20.
The mechanisms driving bone marrow stem cell mobilization are poorly understood. A recent murine study found that circulating bone marrow-derived osteoprogenitor cells (MOPCs) were recruited to the site of recombinant human bone morphogenetic protein-2 (BMP-2)-induced bone formation. Stromal cell-derived factor-1α (SDF-1α) and its cellular receptor CXCR4 have been shown to mediate the homing of stem cells to injured tissues. We hypothesized that chemokines, such as SDF-1, are also involved with mobilization of bone marrow cells. The CD45(-) fraction is a major source of MOPCs. In this report we determined that the addition of BMP-2 or SDF-1 to collagen implants increased the number of MOPCs in the peripheral blood. BMP-2-induced mobilization was blocked by CXCR4 antibody, confirming the role of SDF-1 in mobilization. We determined for the first time that addition of SDF-1 to implants containing BMP-2 enhances mobilization, homing of MOPCs to the implant, and ectopic bone formation induced by suboptimal BMP-2 doses. These results suggest that SDF-1 increases the number of osteoprogenitor cells that are mobilized from the bone marrow and then home to the implant. Thus, addition of SDF-1 to BMP-2 may improve the efficiency of BMPs in vivo, making their routine use for orthopaedic applications more affordable and available to more patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号