首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Missing observations are common in cluster randomised trials. The problem is exacerbated when modelling bivariate outcomes jointly, as the proportion of complete cases is often considerably smaller than the proportion having either of the outcomes fully observed. Approaches taken to handling such missing data include the following: complete case analysis, single‐level multiple imputation that ignores the clustering, multiple imputation with a fixed effect for each cluster and multilevel multiple imputation. We contrasted the alternative approaches to handling missing data in a cost‐effectiveness analysis that uses data from a cluster randomised trial to evaluate an exercise intervention for care home residents. We then conducted a simulation study to assess the performance of these approaches on bivariate continuous outcomes, in terms of confidence interval coverage and empirical bias in the estimated treatment effects. Missing‐at‐random clustered data scenarios were simulated following a full‐factorial design. Across all the missing data mechanisms considered, the multiple imputation methods provided estimators with negligible bias, while complete case analysis resulted in biased treatment effect estimates in scenarios where the randomised treatment arm was associated with missingness. Confidence interval coverage was generally in excess of nominal levels (up to 99.8%) following fixed‐effects multiple imputation and too low following single‐level multiple imputation. Multilevel multiple imputation led to coverage levels of approximately 95% throughout. © 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.  相似文献   

2.
Cost‐effectiveness analyses (CEA) conducted alongside randomised trials provide key evidence for informing healthcare decision making, but missing data pose substantive challenges. Recently, there have been a number of developments in methods and guidelines addressing missing data in trials. However, it is unclear whether these developments have permeated CEA practice. This paper critically reviews the extent of and methods used to address missing data in recently published trial‐based CEA. Issues of the Health Technology Assessment journal from 2013 to 2015 were searched. Fifty‐two eligible studies were identified. Missing data were very common; the median proportion of trial participants with complete cost‐effectiveness data was 63% (interquartile range: 47%–81%). The most common approach for the primary analysis was to restrict analysis to those with complete data (43%), followed by multiple imputation (30%). Half of the studies conducted some sort of sensitivity analyses, but only 2 (4%) considered possible departures from the missing‐at‐random assumption. Further improvements are needed to address missing data in cost‐effectiveness analyses conducted alongside randomised trials. These should focus on limiting the extent of missing data, choosing an appropriate method for the primary analysis that is valid under contextually plausible assumptions, and conducting sensitivity analyses to departures from the missing‐at‐random assumption.  相似文献   

3.
Cluster randomized trials (CRTs) are increasingly used to evaluate the effectiveness of health‐care interventions. A key feature of CRTs is that the observations on individuals within clusters are correlated as a result of between‐cluster variability. Sample size formulae exist which account for such correlations, but they make different assumptions regarding the between‐cluster variability in the intervention arm of a trial, resulting in different sample size estimates. We explore the relationship for binary outcome data between two common measures of between‐cluster variability: k, the coefficient of variation and ρ, the intracluster correlation coefficient. We then assess how the assumptions of constant k or ρ across treatment arms correspond to different assumptions about intervention effects. We assess implications for sample size estimation and present a simple solution to the problems outlined. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
We extend the pattern‐mixture approach to handle missing continuous outcome data in longitudinal cluster randomized trials, which randomize groups of individuals to treatment arms, rather than the individuals themselves. Individuals who drop out at the same time point are grouped into the same dropout pattern. We approach extrapolation of the pattern‐mixture model by applying multilevel multiple imputation, which imputes missing values while appropriately accounting for the hierarchical data structure found in cluster randomized trials. To assess parameters of interest under various missing data assumptions, imputed values are multiplied by a sensitivity parameter, k, which increases or decreases imputed values. Using simulated data, we show that estimates of parameters of interest can vary widely under differing missing data assumptions. We conduct a sensitivity analysis using real data from a cluster randomized trial by increasing k until the treatment effect inference changes. By performing a sensitivity analysis for missing data, researchers can assess whether certain missing data assumptions are reasonable for their cluster randomized trial.  相似文献   

5.
Statistical methods have been developed for cost-effectiveness analyses of cluster randomised trials (CRTs) where baseline covariates are balanced. However, CRTs may show systematic differences in individual and cluster-level covariates between the treatment groups. This paper presents three methods to adjust for imbalances in observed covariates: seemingly unrelated regression with a robust standard error, a 'two-stage' bootstrap approach combined with seemingly unrelated regression and multilevel models. We consider the methods in a cost-effectiveness analysis of a CRT with covariate imbalance, unequal cluster sizes and a prognostic relationship that varied by treatment group. The cost-effectiveness results differed according to the approach for covariate adjustment. A simulation study then assessed the relative performance of methods for addressing systematic imbalance in baseline covariates. The simulations extended the case study and considered scenarios with different levels of confounding, cluster size variation and few clusters. Performance was reported as bias, root mean squared error and CI coverage of the incremental net benefit. Even with low levels of confounding, unadjusted methods were biased, but all adjusted methods were unbiased. Multilevel models performed well across all settings, and unlike the other methods, reported CI coverage close to nominal levels even with few clusters of unequal sizes.  相似文献   

6.
Analysis of covariance models, which adjust for a baseline covariate, are often used to compare treatment groups in a controlled trial in which individuals are randomized. Such analysis adjusts for any baseline imbalance and usually increases the precision of the treatment effect estimate. We assess the value of such adjustments in the context of a cluster randomized trial with repeated cross-sectional design and a binary outcome. In such a design, a new sample of individuals is taken from the clusters at each measurement occasion, so that baseline adjustment has to be at the cluster level. Logistic regression models are used to analyse the data, with cluster level random effects to allow for different outcome probabilities in each cluster. We compare the estimated treatment effect and its precision in models that incorporate a covariate measuring the cluster level probabilities at baseline and those that do not. In two data sets, taken from a cluster randomized trial in the treatment of menorrhagia, the value of baseline adjustment is only evident when the number of subjects per cluster is large. We assess the generalizability of these findings by undertaking a simulation study, and find that increased precision of the treatment effect requires both large cluster sizes and substantial heterogeneity between clusters at baseline, but baseline imbalance arising by chance in a randomized study can always be effectively adjusted for.  相似文献   

7.
We evaluate two‐phase designs to follow‐up findings from genome‐wide association study (GWAS) when the cost of regional sequencing in the entire cohort is prohibitive. We develop novel expectation‐maximization‐based inference under a semiparametric maximum likelihood formulation tailored for post‐GWAS inference. A GWAS‐SNP (where SNP is single nucleotide polymorphism) serves as a surrogate covariate in inferring association between a sequence variant and a normally distributed quantitative trait (QT). We assess test validity and quantify efficiency and power of joint QT‐SNP‐dependent sampling and analysis under alternative sample allocations by simulations. Joint allocation balanced on SNP genotype and extreme‐QT strata yields significant power improvements compared to marginal QT‐ or SNP‐based allocations. We illustrate the proposed method and evaluate the sensitivity of sample allocation to sampling variation using data from a sequencing study of systolic blood pressure.  相似文献   

8.
Intention‐to‐treat (ITT) analysis is commonly used in randomized clinical trials. However, the use of ITT analysis presents a challenge: how to deal with subjects who drop out. Here we focus on randomized trials where the primary outcome is a binary endpoint. Several approaches are available for including the dropout subject in the ITT analysis, mainly chosen prior to unblinding the study. These approaches reduce the potential bias due to breaking the randomization code. However, the validity of the results will highly depend on untestable assumptions about the dropout mechanism. Thus, it is important to evaluate the sensitivity of the results across different missing‐data mechanisms. We propose here a Bayesian pattern‐mixture model for ITT analysis of binary outcomes with dropouts that applies over different types of missing‐data mechanisms. We introduce a new parameterization to identify the model, which is then used for sensitivity analysis. The parameterization is defined as the odds ratio of having an endpoint between the subjects who dropped out and those who completed the study. Such parameterization is intuitive and easy to use in sensitivity analysis; it also incorporates most of the available methods as special cases. The model is applied to TRial Of Preventing HYpertension. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
When missing data occur in one or more covariates in a regression model, multiple imputation (MI) is widely advocated as an improvement over complete‐case analysis (CC). We use theoretical arguments and simulation studies to compare these methods with MI implemented under a missing at random assumption. When data are missing completely at random, both methods have negligible bias, and MI is more efficient than CC across a wide range of scenarios. For other missing data mechanisms, bias arises in one or both methods. In our simulation setting, CC is biased towards the null when data are missing at random. However, when missingness is independent of the outcome given the covariates, CC has negligible bias and MI is biased away from the null. With more general missing data mechanisms, bias tends to be smaller for MI than for CC. Since MI is not always better than CC for missing covariate problems, the choice of method should take into account what is known about the missing data mechanism in a particular substantive application. Importantly, the choice of method should not be based on comparison of standard errors. We propose new ways to understand empirical differences between MI and CC, which may provide insights into the appropriateness of the assumptions underlying each method, and we propose a new index for assessing the likely gain in precision from MI: the fraction of incomplete cases among the observed values of a covariate (FICO). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
Missing data are a common issue in cost‐effectiveness analysis (CEA) alongside randomised trials and are often addressed assuming the data are ‘missing at random’. However, this assumption is often questionable, and sensitivity analyses are required to assess the implications of departures from missing at random. Reference‐based multiple imputation provides an attractive approach for conducting such sensitivity analyses, because missing data assumptions are framed in an intuitive way by making reference to other trial arms. For example, a plausible not at random mechanism in a placebo‐controlled trial would be to assume that participants in the experimental arm who dropped out stop taking their treatment and have similar outcomes to those in the placebo arm. Drawing on the increasing use of this approach in other areas, this paper aims to extend and illustrate the reference‐based multiple imputation approach in CEA. It introduces the principles of reference‐based imputation and proposes an extension to the CEA context. The method is illustrated in the CEA of the CoBalT trial evaluating cognitive behavioural therapy for treatment‐resistant depression. Stata code is provided. We find that reference‐based multiple imputation provides a relevant and accessible framework for assessing the robustness of CEA conclusions to different missing data assumptions.  相似文献   

11.
Two‐period two‐treatment (2×2) crossover designs are commonly used in clinical trials. For continuous endpoints, it has been shown that baseline (pretreatment) measurements collected before the start of each treatment period can be useful in improving the power of the analysis. Methods to achieve a corresponding gain for censored time‐to‐event endpoints have not been adequately studied. We propose a method in which censored values are treated as missing data and multiply imputed using prespecified parametric event time models. The event times in each imputed data set are then log‐transformed and analyzed using a linear model suitable for a 2×2 crossover design with continuous endpoints, with the difference in period‐specific baselines included as a covariate. Results obtained from the imputed data sets are synthesized for point and confidence interval estimation of the treatment ratio of geometric mean event times using model averaging in conjunction with Rubin's combination rule. We use simulations to illustrate the favorable operating characteristics of our method relative to two other methods for crossover trials with censored time‐to‐event data, ie, a hierarchical rank test that ignores the baselines and a stratified Cox model that uses each study subject as a stratum and includes period‐specific baselines as a covariate. Application to a real data example is provided.  相似文献   

12.
Meta‐analysis of individual participant data (IPD) is increasingly utilised to improve the estimation of treatment effects, particularly among different participant subgroups. An important concern in IPD meta‐analysis relates to partially or completely missing outcomes for some studies, a problem exacerbated when interest is on multiple discrete and continuous outcomes. When leveraging information from incomplete correlated outcomes across studies, the fully observed outcomes may provide important information about the incompleteness of the other outcomes. In this paper, we compare two models for handling incomplete continuous and binary outcomes in IPD meta‐analysis: a joint hierarchical model and a sequence of full conditional mixed models. We illustrate how these approaches incorporate the correlation across the multiple outcomes and the between‐study heterogeneity when addressing the missing data. Simulations characterise the performance of the methods across a range of scenarios which differ according to the proportion and type of missingness, strength of correlation between outcomes and the number of studies. The joint model provided confidence interval coverage consistently closer to nominal levels and lower mean squared error compared with the fully conditional approach across the scenarios considered. Methods are illustrated in a meta‐analysis of randomised controlled trials comparing the effectiveness of implantable cardioverter‐defibrillator devices alone to implantable cardioverter‐defibrillator combined with cardiac resynchronisation therapy for treating patients with chronic heart failure. © 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.  相似文献   

13.
A multiple‐objective allocation strategy was recently proposed for constructing response‐adaptive repeated measurement designs for continuous responses. We extend the allocation strategy to constructing response‐adaptive repeated measurement designs for binary responses. The approach with binary responses is quite different from the continuous case, as the information matrix is a function of responses, and it involves nonlinear modeling. To deal with these problems, we first build the design on the basis of success probabilities. Then we illustrate how various models can accommodate carryover effects on the basis of logits of response profiles as well as any correlation structure. Through computer simulations, we find that the allocation strategy developed for continuous responses also works well for binary responses. As expected, design efficiency in terms of mean squared error drops sharply, as more emphasis is placed on increasing treatment benefit than estimation precision. However, we find that it can successfully allocate more patients to better treatment sequences without sacrificing much estimation precision. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
Adjustments of sample size formulas are given for varying cluster sizes in cluster randomized trials with a binary outcome when testing the treatment effect with mixed effects logistic regression using second‐order penalized quasi‐likelihood estimation (PQL). Starting from first‐order marginal quasi‐likelihood (MQL) estimation of the treatment effect, the asymptotic relative efficiency of unequal versus equal cluster sizes is derived. A Monte Carlo simulation study shows this asymptotic relative efficiency to be rather accurate for realistic sample sizes, when employing second‐order PQL. An approximate, simpler formula is presented to estimate the efficiency loss due to varying cluster sizes when planning a trial. In many cases sampling 14 per cent more clusters is sufficient to repair the efficiency loss due to varying cluster sizes. Since current closed‐form formulas for sample size calculation are based on first‐order MQL, planning a trial also requires a conversion factor to obtain the variance of the second‐order PQL estimator. In a second Monte Carlo study, this conversion factor turned out to be 1.25 at most. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Although recent guidelines for dealing with missing data emphasize the need for sensitivity analyses, and such analyses have a long history in statistics, universal recommendations for conducting and displaying these analyses are scarce. We propose graphical displays that help formalize and visualize the results of sensitivity analyses, building upon the idea of ‘tipping‐point’ analysis for randomized experiments with a binary outcome and a dichotomous treatment. The resulting ‘enhanced tipping‐point displays’ are convenient summaries of conclusions obtained from making different modeling assumptions about missingness mechanisms. The primary goal of the displays is to make formal sensitivity analysesmore comprehensible to practitioners, thereby helping them assess the robustness of the experiment's conclusions to plausible missingness mechanisms. We also present a recent example of these enhanced displays in amedical device clinical trial that helped lead to FDA approval. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
Patient‐reported outcome measures (PROMs) are now routinely collected in the English National Health Service and used to compare and reward hospital performance within a high‐powered pay‐for‐performance scheme. However, PROMs are prone to missing data. For example, hospitals often fail to administer the pre‐operative questionnaire at hospital admission, or patients may refuse to participate or fail to return their post‐operative questionnaire. A key concern with missing PROMs is that the individuals with complete information tend to be an unrepresentative sample of patients within each provider and inferences based on the complete cases will be misleading. This study proposes a strategy for addressing missing data in the English PROM survey using multiple imputation techniques and investigates its impact on assessing provider performance. We find that inferences about relative provider performance are sensitive to the assumptions made about the reasons for the missing data. © 2015 The Authors. Health Economics Published by John Wiley & Sons Ltd.  相似文献   

17.
Cluster randomized trials (CRTs) involve the random assignment of intact social units rather than independent subjects to intervention groups. Time‐to‐event outcomes often are endpoints in CRTs. Analyses of such data need to account for the correlation among cluster members. The intracluster correlation coefficient (ICC) is used to assess the similarity among binary and continuous outcomes that belong to the same cluster. However, estimating the ICC in CRTs with time‐to‐event outcomes is a challenge because of the presence of censored observations. The literature suggests that the ICC may be estimated using either censoring indicators or observed event times. A simulation study explores the effect of administrative censoring on estimating the ICC. Results show that ICC estimators derived from censoring indicators or observed event times are negatively biased. Analytic work further supports these results. Observed event times are preferred to estimate the ICC under minimum frequency of administrative censoring. To our knowledge, the existing literature provides no practical guidance on the estimation of ICC when substantial amount of administrative censoring is present. The results from this study corroborate the need for further methodological research on estimating the ICC for correlated time‐to‐event outcomes. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
We propose a propensity score-based multiple imputation (MI) method to tackle incomplete missing data resulting from drop-outs and/or intermittent skipped visits in longitudinal clinical trials with binary responses. The estimation and inferential properties of the proposed method are contrasted via simulation with those of the commonly used complete-case (CC) and generalized estimating equations (GEE) methods. Three key results are noted. First, if data are missing completely at random, MI can be notably more efficient than the CC and GEE methods. Second, with small samples, GEE often fails due to 'convergence problems', but MI is free of that problem. Finally, if the data are missing at random, while the CC and GEE methods yield results with moderate to large bias, MI generally yields results with negligible bias. A numerical example with real data is provided for illustration.  相似文献   

19.
Stepped‐wedge cluster randomised trials (SW‐CRTs) are being used with increasing frequency in health service evaluation. Conventionally, these studies are cross‐sectional in design with equally spaced steps, with an equal number of clusters randomised at each step and data collected at each and every step. Here we introduce several variations on this design and consider implications for power. One modification we consider is the incomplete cross‐sectional SW‐CRT, where the number of clusters varies at each step or where at some steps, for example, implementation or transition periods, data are not collected. We show that the parallel CRT with staggered but balanced randomisation can be considered a special case of the incomplete SW‐CRT. As too can the parallel CRT with baseline measures. And we extend these designs to allow for multiple layers of clustering, for example, wards within a hospital. Building on results for complete designs, power and detectable difference are derived using a Wald test and obtaining the variance–covariance matrix of the treatment effect assuming a generalised linear mixed model. These variations are illustrated by several real examples. We recommend that whilst the impact of transition periods on power is likely to be small, where they are a feature of the design they should be incorporated. We also show examples in which the power of a SW‐CRT increases as the intra‐cluster correlation (ICC) increases and demonstrate that the impact of the ICC is likely to be smaller in a SW‐CRT compared with a parallel CRT, especially where there are multiple levels of clustering. Finally, through this unified framework, the efficiency of the SW‐CRT and the parallel CRT can be compared. © 2014 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.  相似文献   

20.
Despite randomization, selection bias may occur in cluster randomized trials. Classical multivariable regression usually allows for adjusting treatment effect estimates with unbalanced covariates. However, for binary outcomes with low incidence, such a method may fail because of separation problems. This simulation study focused on the performance of propensity score (PS)‐based methods to estimate relative risks from cluster randomized trials with binary outcomes with low incidence. The results suggested that among the different approaches used (multivariable regression, direct adjustment on PS, inverse weighting on PS, and stratification on PS), only direct adjustment on the PS fully corrected the bias and moreover had the best statistical properties. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号