首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The central organization of the vagus nerve innervating the stomach of the rat   总被引:14,自引:0,他引:14  
We employed the neural tracers cholera toxin-horseradish peroxidase and wheat germ agglutinin-horseradish peroxidase to examine the organization of the afferent and efferent connections of the stomach within the medulla oblongata of the rat. The major finding of this study is that gastric motoneurons of the dorsal motor nucleus (DMN) possess numerous dendrites penetrating discrete regions of the overlying nucleus of the solitary tract (NTS). In particular, dendritic labelling was present in areas of NTS which also received terminals of gastric vagal afferent fibers such as the subnucleus gelatinosus, nucleus commissuralis, and medial nucleus of NTS. This codistribution of afferent and efferent elements of the gastric vagus may provide loci for monosynaptic vagovagal interactions. A small number of dendrites of DMN neurons penetrated the ependyma of the fourth ventricle and a few others entered the ventral aspect of the area postrema, thus making possible the direct contact of preganglionic neurons with humoral input from the cerebrospinal fluid and/or the peripheral plasma. Nucleus ambiguus neurons projecting to the stomach predominantly innervate the forestomach. The dendrites of these cells, when labelled, were generally short, and extended beyond the compact cluster of ambiguus neurons in a ventrolateral direction, parallel to the fascicles of vagal efferent fibers traversing the medulla.  相似文献   

2.
Systemic administration of the alpha(2)-adrenoceptor antagonist yohimbine (YO) activates the HPA stress axis and promotes anxiety in humans and experimental animals. We propose that visceral malaise contributes to the stressful and anxiogenic effects of systemic YO and that YO recruits brainstem noradrenergic (NA) and peptidergic neurons that relay viscerosensory signals to the hypothalamus and limbic forebrain. To begin testing these hypotheses, the present study explored dose-related effects of YO on food intake, conditioned flavor avoidance (CFA), and Fos immunolabeling in rats. Systemic YO (5.0 mg/kg BW, i.p.) inhibited food intake, supported CFA, and increased Fos immunolabeling in identified NA neurons in the ventrolateral medulla, nucleus of the solitary tract, and locus coeruleus. YO also increased Fos in the majority of corticotropin releasing hormone-positive neurons in the paraventricular nucleus of the hypothalamus. YO administered at 1.0 mg/kg BW did not inhibit food intake, did not support CFA, and did not increase Fos immunolabeling. Retrograde neural tracing demonstrated that neurons activated by YO at 5.0 mg/kg BW included medullary and pontine neurons that project to the central nucleus of the amygdala and to the lateral bed nucleus of the stria terminalis, the latter region receiving comparatively greater input by Fos-positive neurons. We conclude that YO produces anorexigenic and aversive effects that correlate with activation of brainstem viscerosensory inputs to the limbic forebrain. These findings invite continued investigation of how central viscerosensory signaling pathways interact with hypothalamic and limbic regions to influence interrelated physiological and behavioral components of anxiety, stress, and visceral malaise.  相似文献   

3.
The central distribution of the afferent and efferent components of the superior laryngeal nerve (SLN), which in the rat is ramified into the three branches of the rostral branch (R.Br), middle branch (M.Br), and caudal branch (C.Br), was examined after application of horseradish peroxidase conjugated with wheat germ agglutinin (HRP-WGA) to the proximal cut end of each branch. In addition, the afferent and efferent neural activities of each branch were recorded to investigate the functional properties. The present study provided several new findings as to the distribution of each branch and the functional properties of the SLN. The following conclusions were drawn: 1) the R.Br, containing only afferent fibers projecting to the ipsilateral lateral region of the nucleus of the solitary tract (NST), extends between slightly below the obex and the region approximately 0.6 mm rostral from the obex, and it corresponds to the interstitial subnucleus of the NST; 2) the M.Br, innervating the cricothyroid muscle, contains only efferent fibers originating ipsilaterally from the motoneurons localized within the ambiguus nucleus (Amb) and in the area ventrolateral to the Amb; and 3) the C.Br, which innervates the inferior pharyngeal constrictor muscle, contains both efferent and afferent fibers. HRP-WGA-labeled cells are distributed within both the Amb and the dorsal motor nucleus of the vagus nerve, ipsilateral to the injection site. Afferent proprioceptive fibers project to the ipsilateral interstitial subnucleus of the NST. The present results provide evidence that each branch of the SLN has distinctive functional properties and contributes to the laryngeal functions. © 1996 Wiley-Liss, Inc.  相似文献   

4.
The distribution of D1/D5, D2/D3, D2/D3/D4, and individually, putative D2-D4 receptors across the dorsal vagal complex of the human medulla was assessed with quantitative receptor autoradiography. D1/D5 receptors were found in very low levels. D2 receptors were concentrated in the intermediate and medial subnuclei of the nucleus of the solitary tract (NTS), and in the dorsal motor nucleus of the vagus (DMN), while D3 receptors were more homogenous across the entire NTS, area postrema (AP), and DMN. In contrast, D4 receptors were found almost exclusively in the intermediate and medial subnuclei of the NTS, and in the DMN. These findings suggest that the “D2 family” of receptors is an important component of brain stem mechanisms regulating visceral function, including gastrointestinal systems, such as emesis, along with cardiovascular and pulmonary systems. Compounds with individual selectivity for D2, D3, or D4 receptors may be useful in the manipulation of neural networks regulating these visceral systems. © 1996 Wiley-Liss, Inc.
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    5.
    Nitric oxide (NO) in the brainstem is implicated in the control of swallowing and oesophageal peristalsis. This study examines the role of brainstem NO in the maintenance of lower oesophageal sphincter (LOS) tone, relaxation and contraction. In urethane-anaesthetized cats, oesophageal peristalsis and sphincter pressures were continuously monitored. Drugs were administered into the fourth ventricle. Oesophageal peristalsis and sphincter relaxation and contraction were induced by superior laryngeal nerve stimulation or intra-oesophageal balloon distention. Basal sphincter pressure was significantly reduced after the i.c.v. administration of the nitric oxide synthase (NOS) inhibitor, l-Ng-monomethyl arginine. The inhibitor's d-isomer had no significant effect on basal sphincter pressure, while l-arginine partially reversed the effect. The NOS inhibitor had no effect on sphincter relaxation, whereas the contraction of the sphincter following relaxation was significantly inhibited. Central nitric oxide synthase inhibition reduces basal LOS tone and contraction amplitude but has no effect on swallow or balloon distention induced sphincter relaxation. Therefore, central release of NO acts in the pathway to stimulate dorsal motor nucleus of the vagus neurones projecting to excitatory neurones in the sphincter. Inhibition of nitric oxide synthase in the CNS does not prevent relaxation of the LOS, suggesting that other pathways that do not utilize NO are important in the induction of LOS relaxation.  相似文献   

    6.
    To characterize the lesion produced in the medulla oblongata by gold thioglucose (GTG), the present experiment quantified the medullary damage in C57B1 mice that had become obese after treatment with 800 mg/kg of GTG at 30 days of age. At the rostrocaudal level of the area postrema, the neurotoxin destroyed up to 75% of the neurons in the medial cell column of the dorsal motor nucleus of the vagus (DMX), while sparing the lateral pole of the nucleus. GTG also produced significant tissue loss in the central and commissural subnuclei of the nucleus of the solitary tract (NST). In contrast, the GTG lesion did not affect cell number in the hypoglossal nucleus or reduce the volume of the area postrema. Additional observations indicated that at 48-72 h after GTG administration the affected regions of the medulla already show advanced necrosis including cell loss and gliosis; and when the relative contributions of hypothalamic, DMX, and NST damage to the obesity that develops are evaluated statistically with partial correlational analysis, it appears the the obesity primarily correlates with the hypothalamic lesion produced by GTG.  相似文献   

    7.
    Background Oxytocin (OXT) has been implicated in reproduction and social interactions and in the control of digestion and blood pressure. OXT‐immunoreactive axons occur in the dorsal vagal complex (DVC; nucleus tractus solitarius, NTS, dorsal motor nucleus of the vagus, DMV, and area postrema, AP), which contains neurons that regulate autonomic homeostasis. The aim of the present work is to provide a systematic investigation of the OXT‐immunoreactive innervation of dorsal motor nucleus of the vagus (DMV) neurons involved in the control of gastrointestinal (GI) function. Methods We studied DMV neurons identified by (i) prior injection of retrograde tracers in the stomach, ileum, or cervical vagus or (ii) induction of c‐fos expression by glucoprivation with 2‐deoxyglucose. Another subgroup of DMV neurons was identified electrophysiologically by stimulation of the cervical vagus and then juxtacellularly labeled with biotinamide. We used two‐ or three‐color immunoperoxidase labeling for studies at the light microscopic level. Key Results Close appositions from OXT‐immunoreactive varicosities were found on the cell bodies, dendrites, and axons of DMV neurons that projected to the GI tract and that responded to 2‐deoxyglucose and juxtacellularly labeled DMV neurons. Double staining for OXT and choline acetyltransferase revealed that OXT innervation was heavier in the caudal and lateral DMV than in other regions. OXT‐immunoreactive varicosities also closely apposed a small subset of tyrosine hydroxylase‐immunoreactive NTS and DMV neurons. Conclusions & Inferences Our results provide the first anatomical evidence for direct OXT‐immunoreactive innervation of GI‐related neurons in the DMV.  相似文献   

    8.
    The specificity and topographic organization of afferent projections to the intermediolateral column (IML) were examined using retrograde transport of fluorescent tracers injected into pairs of thoracic spinal segments. Neurons within the hypothalamus (parvocellular paraventricular nucleus, dorsomedial nucleus and lateral hypothalamus), pons (Kolliker-Fuse and A5 nuclei) and medulla (ventrolateral nucleus of the solitary tract and rostral ventrolateral medulla) each appeared to innervate only a single spinal segment. Neurons in each cell group projecting to different spinal segments were intermixed and showed no evidence of topographic organization. These results provide a potential anatomical substrate for organ-specific autonomic responses to physiological and psychological stimuli.  相似文献   

    9.
    To further the understanding of gastrointestinal function in this species, and in particular to advance our own work concerning central emetic pathways, the cytoarchitecture and the distribution of eight neurochemicals were studied in the ferret dorsal vagal complex (DVC; area postrema, nucleus of the solitary tract [nTS] and dorsal motor nucleus of the vagus). The cytoarchitectural features of this region in the ferret were similar to those seen in other species; however, the ferret possesses a particularly large and distinct subnucleus gelatinosus of the nTS. Dense calcitonin gene-related peptide-immunoreactivity was found in the gelatinous, interstitial and commissural subnuclei of the nTS, with lesser amounts in other regions of the DVC. Enkephalin-immunoreactivity of varying densities was found throughout the DVC. Moderate to dense galanin-immunoreactivity was observed throughout the DVC, with the exception of the subnucleus gelatinosus of the nTS, from which it was virtually absent. Dense neuropeptide Y-immunoreactivity was observed in the subnucleus gelatinosus and interstitial subnucleus, with moderate staining in other regions of the DVC. Neurotensin immunoreactivity was very sparse or absent. Immunoreactivity for serotonin was sparsely distributed throughout the DVC. Moderate somatostatin-immunoreactivity was observed over a large portion of the DVC, but was virtually absent from the gelatinosus and interstitial subnuclei. Substance P immunoreactivity was observed throughout the DVC and was particularly dense in the dorsal/dorsolateral subnucleus and the dorsal aspects of the medial and commissural subnuclei. In terms of its cytoarchitecture the DVC of the ferret is more similar to the cat than the rat, especially with regard to the area postrema and the subnucleus gelatinosus of the nTS. The distribution of neuroactive substances was largely similar to other species; however, differences were present particularly in patterns of immunoreactivity for enkephalin, serotonin, neuropeptide Y and somatostatin.  相似文献   

    10.
    Motor fibers of the accessory celiac and celiac vagal branches are derived from the lateral columns of the dorsal motor nucleus of the vagus nerve. These branches also contain sensory fibers that terminate within the nucleus of the tractus solitarii. This study traces the innervation of the intestines by using the tracer cholera toxin-horseradish peroxidase. In 53 rats, the tracer was injected into either the stomach, duodenum, jejunum, terminal ileum, cecum, or ascending colon. With all cecal injections, prominent retrograde labeling of cell bodies occurred bilaterally in the lateral columns of the dorsal motor nucleus of the vagus nerve above, at, and below the level of the area postrema. Dendrites of laterally positioned neurons projected medially and rostrocaudally within the dorsal motor nucleus of the vagus nerve and dorsomedially into both the medial subnucleus and parts of the commissural subnucleus of the nucleus of the tractus solitarii. Sensory terminal labeling occurred in the dorsolateral commissural subnucleus at the level of the rostral area postrema and the medial commissural subnucleus caudal to the area postrema. Additionally, there was sensory terminal labeling within a small confined area of the dorsomedial zone of the nucleus of the tractus solitarii immediately adjacent to the fourth ventricle at a level just anterior to the area postrema. Stomach injections labeled motoneurons of the medial column of the entire rostrocaudal extent of the dorsal motor nucleus of the vagus nerve and a sensory terminal field primarily in the subnucleus gelatinosus, with less intense labeling extending caudally into the medial and ventral commissural subnuclei. Dendrites of gastric motoneurons project rostrocaudally and mediolaterally within the dorsal motor nucleus of the vagus nerve and dorsolaterally within the nucleus of the tractus solitarii. They are most pronounced at the level of the rostral area postrema where many dendrites course dorsolaterally terminating primarily within the subnucleus gelatinosus. Injections of the duodenum labeled a small number of the cells within the medial aspects of the dorsal motor nucleus of the vagus nerve. Jejunal, ileal, and ascending colon injections labeled cells sparsely within the lateral aspects of the dorsal motor nucleus of the vagus nerve bilaterally. No afferent terminal labeling was evident after injection of these areas of the bowel.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

    11.
    The motor innervation for palatal, pharyngeal, laryngeal, and esophageal muscles originates within the nucleus ambiguus. Although the viscerotopic organization of the upper alimentary tract in the nucleus ambiguus has been extensively studied, little information concerning the dendritic arborization of nucleus ambiguus motoneurons is available. The neural tracer cholera toxin-horseradish peroxidase, which is particularly effective at revealing dendrites of retrogradely labeled neurons, was used to determine the dendritic architecture and organization of nucleus ambiguus motoneurons. In 72 rats, cholera toxin-horseradish peroxidase in volumes of 1.0-18 microliters was directly applied under pressure to the musculature of various sites along the upper alimentary tract. Motoneurons innervating the soft palate, pharynx, cricothyroid muscle, and cervical esophagus were all found to have extensive dendrites that extended into the adjacent reticular formation with a distinct pattern for each muscle group. In contrast, the dendrites of motoneurons innervating the thoracic and subdiaphragmatic esophagus were confined to the compact formation of the nucleus ambiguus. Dendritic bundling within the confines of the nucleus ambiguus was prominent following injection of tracer into the soft palate, pharynx, and esophagus. The bundles were primarily oriented in a rostrocaudal direction. These data suggest that the extensive extranuclear dendritic arborization of motoneurons innervating the soft palate, pharynx, larynx, and cervical esophagus provide a wide ranging target for multiple central afferents that may be involved in the differential control of muscles that participate in multiple complex motor functions. The lack of extensive extranuclear dendrites of motoneurons innervating the distal esophagus suggest that they receive focused central afferents. The prominent bundling of dendrites within the nucleus ambiguus may provide for synchronization of motoneurons innervating a specific muscle and perhaps for synchronization of motoneurons innervating different muscles acting in sequence.  相似文献   

    12.
    13.
    The paratrigeminal nucleus (PTN) receives primary visceral afferent projections through cranial nerves IX and X and somatic afferent projections through cranial nerve V and dorsal roots as far caudally as C7. Pressure injections of the anterograde tracer tetramethylrhodamine dextran into the PTN in the rat resulted in bilateral labeling in the nucleus of the tractus solitarius, dorsal motor nucleus of the vagus nerve, and parabrachial nucleus. Anterograde labeling in the parabrachial nucleus was strongest in the external medial, external lateral, and ventral lateral subnuclei. Anterograde labeling was also found in the contralateral paratrigeminal nucleus, lamina I of the spinal trigeminal nucleus subnucleus caudalis, and ventroposteromedial nucleus of the thalamus. The collateral organization of PTN neurons was demonstrated by injecting different fluorescent retrograde tracers into the terminal fields of PTN projections as determined by the anterograde tracing experiments. Double-labeled neurons were found in the paratrigeminal nucleus following all combinations of injection sites. The most prominent PTN efferent projections and the most highly collateralized were to the nucleus of the tractus solitarius and parabrachial nucleus. The efferent and collateral connections of the paratrigeminal nucleus may provide a neuroanatomical substrate for integrating convergent visceral and somatic afferent information used to modulate autonomic function and behavior related to thermoregulation, nociception, and gustation. J. Comp. Neurol. 402:93–110, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

    14.
    In the rockling, Ciliata mustela (Teleostei), a portion of the dorsal fin is a specialized chemosensory organ possessing solitary chemoreceptor cells innervated by a recurrent branch of the facial nerve. Previous studies have demonstrated that the specialized solitary chemoreceptor cell system is represented in the dorsal segment of the medullary facial lobe (DFL), whereas the taste buds in the remainder of the facial-nerve-innervated skin are represented in the ventral division of the lobe (VFL). The carbocyanine dye DiI was used to investigate the secondary and higher order brain connections of these two distinct subdivisions of the facial lobe. Both segments of the facial lobe sent fibers into the contralateral DFL via a dorsocaudal facial commissure and to the contralateral vagal lobes and VFL via fibers arching ventrally through the reticular formation. Ascending fibers from both facial lobe segments were traced into the secondary gustatory nucleus and into the lateral superficial facial nucleus, a small area in the dorsolateral brainstem laterally adjacent to the nucleus medialis of the octavolateral complex. Additionally, the VFL had reciprocal connections with a newly described nucleus adjacent to the incoming facial nerve root. Both DFL and VFL had descending fibers reaching two portions of the funicular nuclear complex, although the VFL contribution to this area is far more extensive than the DFL input. Thus, substantial overlap exists in the connections of the two facial subsystems; i.e., the solitary chemoreceptor information is not processed in nuclei distinct from those making up the usual gustatory lemniscus. © 1996 Wiley-Liss, Inc.  相似文献   

    15.
    The projection from the parabrachial nucleus (PB) to the cerbral cortex in the rat was studied in detail using the autoradiographic method for tracing anterograde axonal transport and the wheat germ agglutinin-horseradish peroxidase (WGA-HRP) method for both anterograde and retrograde tracing. PB innervates layers I, V and VI of a continuous sheet of cortex extending from the posterior insular cortex caudally, through the dorsal agranular and the granular anterior insular cortex and on rostrally into the lateral prefrontal cortex. Within the prefrontal area, PB fibers innervate primarily layer V of the ventrolateral cortex caudally, but more rostrally the innervated region includes progressively more dorsal portions of the prefrontal area, until by the frontal pole the entire lateral half of the hemisphere is innervated. This projection originates for the most part in a cluster of neurons in the caudal ventral part of the medial PB subdivision, although a few neurons in the adjacent parts of the PB, the Kolliker-Fuse nucleus and the subcoeruleus region also participate.After injection of WGA-HRP into the PB region, retrogradely labeled neurons were found in layer V of the same cortical areas which receive PB inputs. The importance of this monosynaptic reciprocal brainstem-cortical projection as a possible anatomical substrate for the regulation of cortical arousal is discussed.  相似文献   

    16.
    Immunoreactivity for the substance P receptor (NK1 receptor) has been investigated by light and electron microscopy in the dorsal vagal complexes of adult rats and cats. The general pattern of NK1 immunoreactivity was similar for both rat and cat. Numerous NK1-immunoreactive neurons were present in the area postrema, the nucleus of the solitary tract, and the dorsal motor nucleus of the vagus nerve. The density of labelled neurons differed between the subnuclei of the nucleus of the solitary tract. Overall, the efferent neurons of the dorsal motor nucleus of the vagus nerve highly expressed NK1 when compared to neurons in the nucleus of the solitary tract. The results are discussed with reference to the viscerotopic organisation of the dorsal vagal complex. Ultrastructural analysis demonstrated that NK1 immunoreactivity was present only at the membrane surface of somatic and dendritic profiles of neurons. No labelling was found in axon terminals, axons, or glial processes. NK1 immunoreactivity, as revealed by a preembedding immunogold technique in serial ultrathin sections, was preferentially located at nonsynaptic sites. A semiquantitative study suggested that the density of NK1 receptors is statistically higher at membrane sites free of any contact (synaptic or not) with axon terminals. The subcellular localisation of NK1 immunoreactivity was similar for neurons of both rat and cat. These results suggest that in the dorsal vagal complex, substance P might act on NK1 receptors through a process of volume transmission. J. Comp. Neurol. 402:181–196, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

    17.
    18.
    Experiments were done in urethane anesthetized rats to identify single units in the region of the parabrachial nucleus (PBN) projecting directly to ‘cardiovascular’ responsive sites in either the paraventricular nucleus of the hypothalamus (PVH) or the supraoptic commissure and nucleus (SOC-SON) region. Fifty-five single units were antidromically activated in the ipsilateral PBN by electrical stimulation of either the PVH (n = 27) or SOC-SON region (n = 28) with latencies corresponding to conduction velocities of 0.3–5.1 m/s. The axons of PBN units projecting to the PVH conducted at significantly slower velocities (0.5 ± 0.04m/s) than those projecting to the SOC-SON region (1.6 ± 0.25m/s). These data suggest that aacending fibers from the PBN to the PVH are unmyelinated, whereas those to the SOC-SON region are primarily a little myelinated. In addition, since the PBN is known to receive cardiovascular and visceral afferent inputs, it is suggested that these neurons likely function in relaying this afferent information to hypothalamic areas involved in autonomic regulation.  相似文献   

    19.
    The projections from the central nucleus of the amygdala to the dorsal vagal complex were examined in the rat by means of anterograde and retrograde axonal transport of wheat germ agglutinin-horseradish peroxidase and anterograde degeneration. Light microscopic findings confirmed that the amygdala projects to the dorsal motor nucleus (DMV) and the nucleus of the solitary tract. Electron microscopic experiments demonstrated degenerating axosomatic and axodendritic terminals in the DMV following electrolytic lesions in the central nucleus of the amygdala.  相似文献   

    20.
    Central distribution of subdiaphragmatic vagal branches in the rat   总被引:8,自引:0,他引:8  
    In the rat, the subdiaphragmatic vagus nerves (SDX) have five major branches--the right gastric, the left gastric, the coeliac, the accessory coeliac, and the hepatic. Although these branches innervate more than the organs after which they are named, some mediate specific behavioral functions. In addition to the SDX trunk, the central stump of each of these branches was incubated in horseradish peroxidase (HRP) for 6 hours in anesthetized rats. After processing the vagal ganglia, pons, medulla, and upper cervical spinal cord of each preparation, the sections were examined for both retrogradely and anterogradely transported HRP reaction product. When only one nerve had been incubated, retrogradely labeled neurons were confined primarily to the ipsilateral ganglion, medulla, and spinal cord. Within the brain, a few labeled neurons occurred within the nucleus ambiguus (NA) and the reticular formation caudal to the NA, but the vast majority appeared in the dorsal motor nucleus of the vagus (DMX). The axons of most labeled neurons in the NA distributed in the gastric branches; those from cells caudal to the NA, probably distributed in the coeliac branch. Most labeled DMX cells also distributed with the gastric branches. Those on the lateral tip of the right DMX, however, had axons in the coeliac branch; those on the left DMX tip, in the accessory coeliac. After incubation of the SDX trunk, anterograde HRP reaction product occurred in the caudomedial nucleus of the solitary tract (NST) just rostral and subjacent to the area postrema (AP). Unlike the retrograde label, anterograde reaction product was bilateral, but always weaker contralaterally. Within the SDX distribution, the afferent axons from the gastric branches exhibited one pattern of termination; those from the coeliac, accessory coeliac, and hepatic branches, another. The gastric branch distributions began dorsolaterally in the SDX termination zone and continued caudally beneath the AP. Immediately subjacent to the AP, gastric branch terminals were never dense and the entire distribution faded at the level of the obex. The coeliac and accessory coeliac distributions began dorsomedially within the SDX termination zone and intensified caudally in a thin band immediately subjacent to the AP. The densest label was associated with the caudal half of the AP, but the distribution thinned rapidly caudal to the obex. The hepatic distribution was similar to that of the coeliac branches but never achieved similar density. Physiological and behavioral data correlate with the anatomical picture in that the efferent functions appear to be more densely localized than the afferent functions.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号