首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Lin GJ  Deng MC  Chen ZW  Liu TY  Wu CW  Cheng CY  Chien MS  Huang C 《Vaccine》2012,30(13):2336-2341
Classical swine fever (CSF) caused by the classical swine fever virus (CSFV) is a highly contagious swine disease resulting in large economical losses worldwide. The viral envelope glycoprotein E(rns) and E2 are major targets for eliciting antibodies against CSFV in infected animals. A Pichia pastoris yeast expressed E2 protein (yE2) has been shown to induce a protective immune response against CSFV challenge. The purpose of this study is to determine the optimal dose of yE2 and its efficacy on the prevention of virus horizontal transmission. A yeast-expressed E(rns) (yE(rns)) protein was also included to evaluate its immunogenicity. The yE(rns) vaccinated pigs seroconverted to CSFV-E(rns)-specific antibody but no neutralizing antibody was detected and none survived after challenge infection, suggesting yE(rns) and yE2 retain correct immunogenicity but only the yE2 is able to induce a protective immune response. All three doses of yE2 (200, 300, and 400μg) could elicit high titers of neutralizing antibodies and protective responses after challenge. The yE2/200 group demonstrated a mild fever response but recovered soon, and none of the yE2/300 and yE2/400 pigs became febrile. The optimal dose of yE2 was recommended to be 300μg of the total amount of secreted proteins. In addition, the yE2 vaccine could cross-protect from all three genotypes of viruses. Further, the yE2 vaccine efficacy in preventing virus horizontal transmission was evaluated by cohabitation of unimmunized sentinels 3 days after challenge infection. All the sentinel pigs were alive and had no clinical symptoms confirming yE2 vaccine could confer a protective immune response and prevent horizontal transmission of CSFV.  相似文献   

2.
Li N  Qiu HJ  Zhao JJ  Li Y  Wang MJ  Lu BW  Han CG  Hou Q  Wang ZH  Gao H  Peng WP  Li GX  Zhu QH  Tong GZ 《Vaccine》2007,25(15):2907-2912
Classical swine fever virus (CSFV) causes significant losses in pig industry in many countries in Asia and Europe. The E2 glycoprotein of CSFV is the main target for neutralizing antibodies. Recently, the replicon of alphaviruses, such as Semliki Forest virus (SFV), has been developed as replicative expression vectors for gene delivery. In this study, we constructed a plasmid DNA based on SFV replicon encoding the E2 glycoprotein of CSFV and evaluated its efficacy in rabbits and pigs. The results showed that the animals immunized with the DNA vaccine developed CSFV-specific neutralizing antibodies and were protected from virulent or lethal challenge. This demonstrates that the SFV replicon-derived DNA vaccine can be a potential marker vaccine against CSFV infections.  相似文献   

3.
4.
Rift Valley fever virus (RVFV) is an emerging mosquito-borne virus causing significant morbidity and mortality in livestock and humans. Rift Valley fever is endemic in Africa, but also outside this continent outbreaks have been reported. Here we report the evaluation of two vaccine candidates based on the viral Gn and Gc envelope glycoproteins, both produced in a Drosophila insect cell expression system. Virus-like particles (VLPs) were generated by merely expressing the Gn and Gc glycoproteins. In addition, a soluble form of the Gn ectodomain was expressed and affinity-purified from the insect cell culture supernatant. Both vaccine candidates fully protected mice from a lethal challenge with RVFV. Importantly, absence of the nucleocapsid protein in either vaccine candidate facilitates the differentiation between infected and vaccinated animals using a commercial recombinant nucleocapsid protein-based indirect ELISA.  相似文献   

5.
Two live recombinant vaccines (Flc9 and Flc11) against classical swine fever (CSF) were evaluated for their capacity to reduce transmission of virulent CSF virus (CSFV) among vaccinated pigs. In Flc9 the 5' terminal half of the E2 gene of the C-strain, a CSFV vaccine strain, was exchanged with the homologous gene of the bovine viral diarrhoea virus (BVDV) strain 5250, the E(rns) gene was exchanged likewise in the chimeric Flc11 virus. Both recombinant vaccines induce an antibody response in pigs that can be distinguished from that induced after a wild-type CSFV infection. Four experiments were performed to estimate the reproduction ratio R after different vaccination-challenge intervals. Each group consisted of ten pigs [specified pathogen free (SPF) pigs or conventional pigs] that were vaccinated once, intramuscularly, either with Flc9 or Flc11 virus or that were not vaccinated. Vaccinated and susceptible pigs were challenged intranasally with the virulent CSFV strain Brescia or Behring, 1, 2 or 4 weeks after vaccination. Whether contact-pigs became infected was determined using a CSFV specific E2 (Flc9) or E(rns) (FLc11) antibody ELISA. In the unvaccinated control groups, virus secretion started from day 2 to 4 after inoculation and all contact pigs became infected. Contact pigs became infected in the group of pigs (SPF or conventional) vaccinated once with Flc9 virus and challenged 1-, 2- or 4-weeks later. The estimates of the R in the groups challenged at 1-, 2- and 4-weeks after vaccination were 0.38, 0 and 0.75, respectively. Contact infected pigs were not detected (R=0) in any of the groups of pigs, vaccinated with Flc11, only SPF pigs were used. In order to achieve a statistical significance of R within the vaccinated groups each of the experiments has to be repeated at least once. The R of pigs vaccinated with Flc11 virus and challenged at 1- or 2-weeks after vaccination was however significantly lower that the reproduction ratio of the unvaccinated groups (P=0.013). The R of pigs vaccinated with Flc9 virus and challenged at 1 (conventional pigs) or 2 weeks (SPF pigs) after vaccination was significantly lower that the reproduction ratio of the unvaccinated groups (P=0.013). In conclusion, both chimeric viruses Flc9 and Flc11 provided good clinical protection against a challenge with virulent CSFV at 1 or 2 weeks after vaccination. Further experiments should be carried out to study more aspects of the efficacy of these recombinant viruses before they can be used as a marker vaccine under field circumstances.  相似文献   

6.
《Vaccine》2015,33(30):3542-3548
Classical swine fever (CSF) is a highly contagious and economically important viral disease that affects the pig industry worldwide. The glycoprotein E2 of CSFV can induce neutralizing antibodies and protective immunity, and is widely used for novel vaccine development. The objective of this study was to explore whether a tetraspanin molecule CD81 could improve the immune responses of an E2-based DNA vaccine. Plasmids pVAX-CD81, pVAX-E2 and pVAX-CD81-E2 were constructed and the expression of target proteins was confirmed in BHK-21 cells by indirect immunofluorescence assay. BALB/c mice were divided into 5 groups and immunized with different plasmids (pVAX-E2, pVAX-CD81-E2, pVAX-E2 + pVAX-CD81, pVAX-CD81 and PBS) three times with two weeks interval. The results showed that the introduction of CD81 promoted higher humoral and cellular immune responses than E2 expression alone (P < 0.05). In addition, immunization with pVAX-CD81-E2 induced stronger immune responses than pVAX-E2 + pVAX-CD81. Furthermore, four groups of pigs were immunized with pVAX-E2, pVAX-CD81-E2, pVAX-CD81 and PBS, respectively. Humoral and cellular immune responses detection showed similar results with those in mice. Compared to pVAX-E2, pVAX-CD81-E2 induced higher titers of neutralizing antibodies after viral challenge and conferred stronger protection. These results confirmed the capacity of swine CD81 enhancing the humoral and cellular responses with an adjuvant effect on CSFV DNA vaccine. This is the first report demonstrating the adjuvant effect of CD81 to enhance the DNA vaccination for swine pathogen.  相似文献   

7.
Three chimeric classical swine fever virus (CSFV)/bovine viral diarrhoea virus (BVDV) full-length DNA copies were constructed, based on the infectious DNA copy of the CSFV vaccine strain C. The antigenic region of E2 and/or the complete E(RNS) gene were replaced by the analogous sequence of BVDV II strain 5250. Viable chimeric virus Flc11, in which E(RNS) was replaced, was directly recovered from supernatant of SK6.T7 cells transfected with full-length DNA. Viable chimeric virus Flc9, in which E2 was replaced, resulted in recovery of virus only when SK6.T7 transfected cells were maintained for several passages. However, no virus could be recovered after replacement of both E(RNS) and E2, even after 10 cell passages. Both Flc9 and Flc11 grow in swine kidney cells (SK6), stably maintain their heterologous BVDV sequences and, as assessed by monoclonal antibody typing and radio-immunoprecipitation assays, express their heterologous proteins. Flc9 showed a slower growth rate on SK6 cells than Flc11 and wild-type Flc2 virus. Replacement of E(RNS) or E2 of C-strain-based chimeric viruses did not alter cell tropism compared to wild-type C-strain virus for SK6 and FBE cells. Both Flc9 and Flc11 induced E2 or E(RNS) antibodies, which could be discriminated from those induced after wild-type virus infection, even after repeated vaccination. Furthermore, pigs were completely protected against a lethal CSFV challenge. These results indicate the feasibility of introduction of marker antigens in a live-attenuated marker C-strain vaccine for CSFV.  相似文献   

8.
A recombinant porcine adenovirus (rPAV) with the gp55 (E2) gene from the classical swine fever virus (CSFV) 'Weybridge' strain inserted into the right hand end of the PAV serotype 3 (PAV3) genome was constructed. Expression of gp55 was directed by the major late promoter and tri-partite leader sequences located and cloned from PAV3. No compensatory deletions of PAV DNA sequences were made. Vaccination of outbred pigs with a single dose of the recombinant virus (rPAV-gp55) resulted in complete protection from lethal challenge with CSFV. No adverse clinical signs were observed in vaccinated animals following administration of rPAV-gp55 and following challenge, no clinical signs of CSF were observed prior to, or at, post mortem. The insert made into the rPAV increased the genome length to 106.8% of wild type and therefore exceeded the expected maximum insert size for a stable recombinant by almost 2%. Thus rPAV-gp55 contains the largest stable insertion made into a non-deleted Mastadeno virus recombinant so far reported.  相似文献   

9.
Replicon particles derived from a vaccine strain of Venezuelan equine encephalitis (VEE) virus were used as vectors for expression in vivo of the major envelope proteins (G(L) and M) of equine arteritis virus (EAV), both individually and in heterodimer form (G(L)/M). The immunogenicity of the different replicons was evaluated in horses, as was their ability to protectively immunize horses against intranasal and intrauterine challenge with a virulent strain of EAV (EAV KY84). Horses immunized with replicons that express both the G(L) and M proteins in heterodimer form developed neutralizing antibodies to EAV, shed little or no virus, and developed only mild or inapparent signs of equine viral arteritis (EVA) after challenge with EAV KY84. In contrast, unvaccinated horses and those immunized with replicons expressing individual EAV envelope proteins (M or G(L)) shed virus for 6-10 days in their nasal secretions and developed severe signs of EVA after challenge. These data confirm that replicons that co-express the G(L) and M envelope proteins effectively, induce EAV neutralizing antibodies and protective immunity in horses.  相似文献   

10.
Due to the vast economic consequences of classical swine fever (CSF) outbreaks, emergency vaccination plans are under discussion in European Union Member States. However, animals vaccinated with the conventional C-strain vaccine are subject to trade restrictions. To ease these restrictions, potent marker vaccines are required. One promising candidate is the chimeric pestivirus CP7_E2alf. For emergency vaccination in a CSF outbreak scenario, early onset of immunity is required. Here, the studies performed with a CP7_E2alf virus stock produced under good manufacturing conditions (GMP) are reported. In challenge experiments, CP7_E2alf induced full clinical protection 1 week after intramuscular vaccination, and 2 weeks after oral immunization. Furthermore, even after application of diluted vaccine preparations complete protection could be achieved if challenge infection was carried out 4 weeks after vaccination. In conclusion, GMP-produced CP7_E2alf proved to be a suitable marker vaccine candidate – also for emergency vaccination – both after intramuscular and oral application.  相似文献   

11.
Dong XN  Chen YH 《Vaccine》2006,24(19):4029-4034
Our previous study proved that the N-terminal (aa693-711) of glycoprotein E2 contained sequential neutralizing epitopes. In this study, four candidate epitope-vaccines (EVs) were separately prepared and evaluated. Among them, epitope-vaccine EV-BC1a (BC1a: aa693-699) induced high level of epitope-specific neutralizing antibodies and exhibited similar protective capability with that induced by Chinese vaccine strain (C-strain). These results confirmed CKEDYRY (aa693-699) as a principal sequential neutralizing epitope on E2 N-terminal. Moreover, these findings also indicate that epitope-vaccine is a potent candidate strategy for marker vaccine against classical swine fever virus (CSFV).  相似文献   

12.
Three mutants with deletions in the E2 gene of the infectious DNA copy of the classical swine fever virus (CSFV) strain-C were constructed: one missing the B/C domain of CSFV-E2 between amino acids (aa) 693 and 746, one missing the A domain between aa 800 and 864, and one missing the complete E2 between aa 689 and 1062. All three CSFV-E2 deletion mutants were unable to generate viable virus, indicating that each of the antigenic domains of E2 is essential for viability of CSFV. To rescue the CSFV-E2 deletion mutants SK6 cell lines constitutively expressing glycoprotein E2 of CSFV were generated. The rescued viruses infected and replicated in SK6 cells as demonstrated by expression of viral proteins, but this primary infection did not result in reproduction of infectious virus. Thus, these E2 complemented viruses are considered non-transmissible. In previous experiments, we showed that simultaneous injection of E(rns) complemented virus (Flc23) via intradermal (ID), intramuscular (IM) or intranasal (IN) routes conferred protection to pigs against a lethal challenge with CSFV [J. Virol. 74 (2000) 2973]. Here, we evaluate different routes of application (ID, IM or IN) with E(rns) complemented virus Flc23 in order to find the best route for complemented CSFVs. Intradermal injection with Flc23 protected pigs against a lethal CSFV challenge, whereas intramuscular injection induced partial protection, and intranasal injection did not mediate a protective immune response in pigs at all. We used the intradermal route of vaccination to test the E2 complemented viruses. Vaccination of pigs via the intradermal route with the E2 complemented CSFVs also resulted in the induction of antibodies and in (partial) protection against CSFV challenge. Pigs vaccinated with E2 complemented virus Flc4 (deletion B/C domain) survived a lethal CSFV challenge, whereas partial protection was induced in pigs vaccinated with Flc47 (deletion E2) or Flc48 (deletion A domain) E2 complemented viruses. Serological data demonstrate that these E2 complemented mutant viruses are, in combination with well known diagnostic tests based on E2, potential marker vaccines for CSF.  相似文献   

13.
《Vaccine》2017,35(34):4437-4443
Classical swine fever is an economically important, highly contagious disease of swine worldwide. Subunit vaccines are a suitable alternative for the control of classical swine fever. However, such vaccines have as the main drawback the relatively long period of time required to induce a protective response, which hampers their use under outbreak conditions. In this work, a lentivirus-based gene delivery system is used to obtain a stable recombinant HEK 293 cell line for the expression of E2-CSFV antigen fused to porcine CD154 as immunostimulant molecule. The E2-CD154 chimeric protein was secreted into the medium by HEK293 cells in a concentration around 50 mg/L in suspension culture conditions using spinner bottles. The E2-CD154 immunized animals were able to overcome the challenge with a high virulent CSF virus strain performed 7 days after a unique dose of the vaccine without clinical manifestations of the disease. Specific anti-CSFV neutralizing antibodies and IFN-γ were induced 8 days after challenge equivalent to 14 days post-vaccination. The present work constitutes the first report of a subunit vaccine able to confer complete protection by the end of the first week after a single vaccination. These results suggest that the E2-CD154 antigen could be potentially used under outbreak conditions to stop CSFV spread and for eradication programs in CSF enzootic areas.  相似文献   

14.
E2 is the major envelope glycoprotein present on the outer surface of the classical swine fever virus (CSFV). It is exposed as a homodimer originated by disulfide linkage and represents an important target for the induction of neutralizing immune responses against the viral infection. The E2his glycoprotein nucleotide sequence used in this work contains the CSFV E2 extracellular domain preceded by the tissue plasminogen signal peptide and a hexa-histidine tag in the 3' terminus. The recombinant antigen was produced at a range of 120-150 microg/mL in the culture media of epithelial kidney pig cells, transduced with a replication defective adenoviral vector (Ad-E2his) generated by means of cloning the E2his sequence in the vector genome. The glycoprotein was obtained from clarified culture media as a homodimer of 110 kDa with purity over 95% after a single affinity chromatography step in Ni-NTA Agarose column. The E2his characterization by lectin-specific binding assay showed the presence of N-linked oligosaccharides of both hybrid and complex types. The protective capacity of E2his was demonstrated in two immunization and challenge experiments in pigs using doses of 15 or 30 microg of the glycoprotein, emulsified in Freund's adjuvant. The intramuscular immunization followed by a unique boost three weeks later, elicited high titers of neutralizing antibodies between the second and the fourth week after the primary vaccination. The immunized animals were fully protected from the viral infection after challenge with 10(5) PLD(50) of homologous CSFV "Margarita" strain administered by intramuscular injection. Consequently, no clinical signs of the disease or viral isolation from lymphocytes were detected in the vaccinated pigs. These results suggest that the E2his antigen produced in mammalian cells may be a feasible vaccine candidate for CSF prevention.  相似文献   

15.
Classical swine fever (CSF) caused by CSF virus (CSFV) is a highly contagious and devastating disease that affects the pig industry worldwide. The glycoprotein E2 of CSFV is the principal immunogenic protein that induces neutralizing antibodies and protective immunity. Several CSFV genotypes, including 1.1, 2.1, 2.2, and 2.3, have been identified in Mainland China. The glycoprotein E2 of genotypes 1.1 and 2.1 was expressed by using a baculovirus system and tested for its protective immunity in rabbits to develop novel CSF vaccines that elicit a broad immune response. Twenty CSFV seronegative rabbits were randomly divided into five groups. Each rabbit was intramuscularly immunized with E2 of genotypes 1.1 (CSFV-1.1E2), 2.1 (CSFV-2.1E2), or their combination (CSFV-1.1 + 2.1E2). A commercial CSF vaccine (C-strain) and phosphate-buffered saline (PBS) were used as positive or negative controls, respectively. All animals were challenged with CSFV C-strain at 4 weeks and then boosted with the same dose. All rabbits inoculated with CSFV-1.1E2, CSFV-2.1E2, and CSFV-1.1 + 2.1E2 elicited high levels of ELISA antibody, neutralizing antibody, and lymphocyte proliferative responses to CSFV. The rabbits inoculated with CSFV-1.1E2 and CSFV-1.1 + 2.1E2 received complete protection against CSFV C-strain. Two of the four rabbits vaccinated with CSFV-2.1E2 were completely protected. These results demonstrate that CSFV-1.1E2 and CSFV-1.1 + 2.1E2 not only elicit humoral and cell-mediated immune responses but also confer complete protection against CSFV C-strain in rabbits. Therefore, CSFV-1.1E2 and CSFV-1.1 + 2.1E2 are promising candidate subunit vaccines against CSF.  相似文献   

16.
Fischer L  Barzu S  Andreoni C  Buisson N  Brun A  Audonnet JC 《Vaccine》2003,21(15):1732-1741
DNA vaccination represents a unique opportunity to overcome the limitations of conventional vaccine strategy in early life in the face of maternal-derived immunity. We used the model of pseudorabies virus (PRV) infection in pigs to further explore the potential of DNA vaccination in piglets born to sows repeatedly vaccinated with a PRV inactivated vaccine. A single immunisation of 8-week-old piglets with a DNA vaccine expressing secreted forms of PRV gB, gC, and gD, triggered an active serological response, confirming that DNA vaccination can over-ride significant residual maternal-derived immunity. A clear anamnestic response was evidenced when a secondary DNA vaccination was performed at 11 weeks of age, suggesting that DNA vaccination, performed in the face of passive immunity, elicited a strong humoral memory. We subsequently explored the potential of DNA vaccination in neonate piglets (5-6 days of age) in the face of very high titres of maternal antibodies and demonstrated that very high titres of passive antibodies selectively inhibited serological responses but not the establishment of potent memory responses. Finally, we demonstrated that DNA vaccination provided protection against an infectious PRV challenge at the end of the fattening period (i.e. at approximately 5 months of age). Collectively, our results pave the way for a new flexible vaccination program, which could ensure uninterrupted protection of fattening pigs over their entire economical life under field conditions.  相似文献   

17.
Outbreaks of classical swine fever (CSF) have caused serious economic consequences in China. Phylogenetic analysis based on full-length E2 gene sequences showed that five classical swine fever virus (CSFV) isolates collected from Hunan province in 2011 and 2012, together with seven other isolates from neighboring provinces, Guangdong (5) and Guangxi (2), could be classified as a new subgenotype 2.1c, which may have been endemic in the south of China for at least fourteen years. Subgenotype 2.1c isolates share 90.2–94.9% and 89.9–93.8% nucleotide sequence similarity separately with those of subgenotype 2.1a and 2.1b in E2 gene, which are lower than the nucleotide identities between subgenotype 2.1a and 2.1b (91.1–95.7%). Further analysis based on a partial E2 gene sequence (216 nt) indicated that subgenotype 2.1c isolates are also circulating in Thailand. Alignment of E2 amino acid sequences showed that subgenotype 2.1c isolates exhibit a SPA  TPV substitution at positions 777 and 779 compared with subgenotypes 2.1a and 2.1b.  相似文献   

18.
An increasing demand in livestock animal husbandry for intervention or emergency vaccination strategies requires a rapid onset of protection linked to prevention of infectious agent spread. Using the new recombinant parapoxvirus (PPV) Orf virus (ORFV) as a vaccine expressing the CSFV E2 glycoprotein we demonstrate that a single intra-muscular application confers solid protection. In the prime only concept, multi-site application of the vector vaccine turned out to be superior to single-site application as no pyrexia occurred after virulent CSFV challenge and CSFV neutralizing serum antibodies regularly were detectable before challenge. Vector virus vaccinated swine were able to cope with the lymphocyte and in particular B-cell depression in peripheral blood after challenge showing no clinical signs and no viremia. Early after challenge CSFV-specific IFN gamma production (IFN-gamma) and high neutralizing serum antibody titers clearly differentiated na?ve from vaccinated and protected animals. After CSFV challenge neutralizing serum antibodies titers in vector vaccinated swine were significantly higher than those in sera from live attenuated vaccine primed animals. Horizontal challenge virus transmission was prevented under strict sentinel isolation before mingling but not in next-door stables separated by a wooden barrier at the day of challenge. The presence of CSFV-specific pre-challenge serum antibodies although in low titers is a good prognostic parameter for solid protection after ORFV vector vaccination even when a significant CSFV-specific IFN-gamma production was not detectable before challenge. A heterologous prime-boost regimen as a combination of prime with baculovirus-expressed glycoprotein E2 followed by boost with the parapoxvirus vector turned out to be a better immune stimulant than a homologous prime/boost with the modified live CSFV vaccine. A similar beneficial effect became evident when the challenge infection mimicked the booster vaccination after a single PPV vector prime.  相似文献   

19.
《Vaccine》2020,38(29):4574-4583
Classical swine fever (CSF) remains one of the most important highly contagious and fatal viral disease of swine with high morbidity and mortality. CSF is caused by classical swine fever virus (CSFV), a small, enveloped RNA virus of the genus Pestivirus. The aim of this study was to construct the a novel CSFV Fc-fusion recombinant protein and evaluate the efficacy as a vaccine against CSFV. Here, we obtained a novel subunit vaccine expressing CSFV E2 recombinant fusion protein in CHO-S cells. Functional analysis revealed that CSFV Fc-fusion recombinant protein (CSFV-E2-Fc) could bind to FcγRI on antigen-presenting cells (APCs) and significantly increase IgA levels in serum and feces, inducing stronger mucosal immune response in swine. Additionally, CSFV-E2-Fc immunization enhanced CSFV-specific T cell immune response with a Th1-like pattern of cytokine secretion, remarkably stimulated the Th1-biased cellular immune response and humoral immune response. Further, the protective effects of CSFV-E2-Fc subunit vaccines were confirmed. The data suggest that CSFV E2-Fc recombinant fusion protein may be a promising candidate subunit vaccine to elicit immune response and protect against CSFV.  相似文献   

20.
An experimental infection with classical swine fever (CSF) virus in E2 sub-unit marker vaccine vaccinated gilts was conducted in order to evaluate the effect of vaccination on virus transmission and course of the disease. Therefore, clinical signs as well as horizontal and vertical virus transmission were monitored in two inoculated, non-vaccinated and 10 vaccinated conventional gilts, housed in individual sow boxes. Within 10 days post-inoculation, all vaccinated gilts became infected. Depending on the definition of the infectious period, two different estimates of R0 were calculated (R0=14.8 and 3.3), both significantly larger than 1 (P<0.01). In three out of the eight vaccinated pregnant gilts vertical virus transmission occurred, resulting in infected offspring. Based on the results of this experiment, it can be concluded that double vaccination with an E2 sub-unit marker vaccine only protects pregnant gilts from the clinical course of the disease but does not prevent horizontal nor vertical spread of the CSF virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号