首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 176 毫秒
1.
Inhibition of poly(ADP-ribose) polymerase (PARP) is a promising therapeutic strategy for BRCA1 deficient cancers, however, the development of drug resistance limits clinical efficacy. Previously we found that the BRCA1-AKT1 pathway contributes to tumorigenesis and that the AKT1/mTOR is a novel therapeutic target for BRCA1-deficient cancers. Here, we report that phosphorylation of ribosomal protein S6, a mTOR downstream effector, is greatly increased in BRCA1 deficient cells resistant to PARP inhibition. Phosphorylation of S6 is associated with DNA damage and repair signaling during PARP inhibitor treatment. In BRCA1 deficient cells, expression of S6 lacking all five phosphorylatable sites renders the cells sensitive to PARP inhibitor and increases DNA damage signals. In addition, the S6 mutations reduce tumor formation induced by Brca1-deficiency in mice. Inhibition of S6 phosphorylation by rapamycin restores PARP sensitivity to resistant cells. Combined treatment with rapamycin and PARP inhibitor effectively suppresses BRCA1-deficient tumor growth in mice. These results provide evidence for a novel mechanism by which BRCA1 deficient cancers acquire drug resistance and suggest a new therapeutic strategy to circumvent resistance.  相似文献   

2.
Brca2 is an important tumor suppressor associated with susceptibility to breast cancer. Although increasing evidence indicates that the primary function of Brca2 is to facilitate the repair of DNA damage via the homologous recombination pathway, how Brca2 prevents breast cancer is largely unknown. To study the role of Brca2 specifically in mammary epithelium development, we crossed mice bearing the conditionally deficient allele Brca2(flox9-10) to mouse mammary tumor virus- or whey acidic protein-Cre transgenic lines. Analysis of these animals showed that Brca2 is not required for epithelial expansion in mammary glands of pregnant mice. In addition, examination of mammary gland involution revealed normal kinetics of mammary alveolar cell apoptosis after weaning of litters. Nevertheless, Brca2-deficient mice developed mammary adenocarcinomas after a long latency (average, 1.6 years). Detailed histopathological analysis of four of these tumors demonstrated that three of them showed abnormal p53 protein expression. A mutation in the p53 gene was detected in one case. Moreover, homozygosity versus heterozygosity for the Brca2 mutation heavily skewed the tumor spectrum toward mammary adenocarcinoma development in p53(+/-) mice. Our data indicate that Brca2 is not essential for mammary epithelium development but that Brca2 deficiency and down-regulated p53 expression can work jointly to promote mammary tumorigenesis.  相似文献   

3.
The breast cancer-associated gene 1 (BRCA1) is the most frequently mutated tumor suppressor gene in familial breast cancers. Mutations in BRCA1 also predispose to other types of cancers, pointing to a fundamental role of this pathway in tumor suppression and emphasizing the need for effective chemoprevention in these high-risk patients. Because the methyl ester of the synthetic triterpenoid 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid (CDDO-Me) is a potent chemopreventive agent, we tested its efficacy in a highly relevant mouse model of BRCA1-mutated breast cancer. Beginning at 12 weeks of age, Brca1(Co/Co); MMTV-Cre;p53(+/-) mice were fed powdered control diet or diet containing CDDO-Me (50 mg/kg diet). CDDO-Me significantly (P < 0.05) delayed tumor development in the Brca1-mutated mice by an average of 5.2 weeks. We also observed that levels of ErbB2, p-ErbB2, and cyclin D1 increased in a time-dependent manner in the mammary glands in Brca1-deficient mice, and CDDO-Me inhibited the constitutive phosphorylation of ErbB2 in tumor tissues from these mice. In BRCA1-deficient cell lines, the triterpenoids directly interacted with ErbB2, decreased constitutive phosphorylation of ErbB2, inhibited proliferation, and induced G(0)-G(1) arrest. These results suggest that CDDO-Me has the potential to prevent BRCA1-mutated breast cancer.  相似文献   

4.
Creighton CJ 《Oncogene》2007,26(32):4648-4655
The Akt pathway is commonly deregulated in many cancers. Clinical trials are currently underway to test the effectiveness of breast cancer treatment by inhibition of various Akt pathway intermediates. A set of genes induced by Akt in a transgenic mouse model, a subset of which were sensitive to mammalian target of rapamycin (mTOR) inhibitor RAD001, was examined in five public gene expression profile data sets of clinical breast tumor specimens (representing >1000 different samples in all). In each of the clinical data sets, the Akt mouse model genes as a group were significantly overexpressed in human tumors having high levels of AKT1 mRNA. The subset of genes both upregulated by Akt and dependent on mTOR activity were associated with estrogen receptor-negative status, higher grade, increasing tumor size and poor prognosis in multiple patient cohorts; these associations were either not present or not as strong for the Akt-induced, mTOR-independent genes or for AKT1 expression alone. The genes shown here to be relevant to Akt-mTOR both experimentally and pathologically have the potential for use in a molecular diagnostic to determine which patients should receive mTOR antagonist treatment.  相似文献   

5.
6.
The Akt/mammalian target of rapamycin (mTOR)/4E-BP1 pathway is considered to be a central regulator of protein synthesis, involving the regulation of cell proliferation, differentiation, and survival. The inhibitors of mTOR as anticancer reagents are undergoing active evaluation in various malignancies including breast cancer. However, the activation status of the Akt/mTOR/4E-BP1 pathway and its potential roles in breast cancers remain unknown. Thus, we examined 165 invasive breast cancers with specific antibodies for the phosphorylation of Akt, mTOR, and 4E-BP1 by immunohistochemistry and compared them with normal breast epithelium, fibroadenoma, intraductal hyperplasia, and ductal carcinoma in situ. We discovered that the phosphorylation of Akt, mTOR, and 4E-BP1 increased progressively from normal breast epithelium to hyperplasia and abnormal hyperplasia to tumor invasion. Phosphorylated Akt, mTOR, and 4E-BP1 were positively associated with ErbB2 overexpression. Survival analysis showed that phosphorylation of each of these three markers was associated with poor disease-free survival independently. In vitro, we further confirmed the causal relationship between ErbB2 overexpression and mTOR activation, which was associated with enhanced invasive ability and sensitivity to a mTOR inhibitor, rapamycin. Our results, for the first time, demonstrate the following: (a) high levels of phosphorylation of Akt, mTOR, and 4E-BP1 in breast cancers, indicating activation of the Akt/mTOR/4E-BP1 pathway in breast cancer development and progression; (b) a link between ErbB2 and the Akt/mTOR/4E-BP1 pathway in breast cancers in vitro and in vivo, indicating the possible role of Akt/mTOR activation in ErbB2-mediated breast cancer progression; and (c) a potential role for this pathway in predicting the prognosis of patients with breast cancer, especially those treated with mTOR inhibitors.  相似文献   

7.
This research aimed to explore the influence of Src homology-2 containing protein tyrosine phosphatase (SHP- 2) on the functions of tyrosine kinase receptors with immunoglobulin and EGF homology domains 2 (Tie2)-expressing monocyte/macrophages (TEMs) and the influence of the angiopoietin(Ang)/Tie2-phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) (Ang/Tie2-PI3K/Akt/mTOR) signaling pathway on the tumor microvascular remodeling in an immunosuppressive microenvironment. In vivo, SHP-2- deficient mice were used to construct colorectal cancer (CRC) liver metastasis models. SHP-2-deficient mice had significantly more metastatic cancer and inhibited nodules on the liver surface than wild-type mice, and the high-level expression of p-Tie2 was found in the liver tissue of the macrophages’ specific SHP-2-deficient mice (SHP-2MACKO) + planted tumor mice. Compared with the SHP-2 wild type mice (SHP-2WT) + planted tumor group, the SHP-2MAC-KO + planted tumor group experienced increased expression of p-Tie2, p-PI3K, p-Akt, p-mTOR, vascular endothelial growth factor (VEGF), cyclooxygenase-2 (COX-2), matrix metalloproteinase 2 (MMP2), and MMP9 in the liver tissue. TEMs selected by in vitro experiments were co-cultured with remodeling endothelial cells and tumor cells as carriers. It was found that when Angpt1/2 was used for stimulation, the SHP-2MAC-KO + Angpt1/2 group displayed evident increases in the expression of the Ang/Tie2-PI3K/Akt/mTOR pathway. The number of cells passing through the lower chamber and the basement membrane and the number of blood vessels formed by cells compared with the SHP-2WT + Angpt1/2 group, while these indexes were subjected to no changes under the simultaneous stimulation of Angpt1/2 + Neamine. To sum up, the conditional knockout of SHP-2 can activate the Ang/Tie2-PI3K/Akt/mTOR pathway in TEMs, thereby strengthening tumor micro angiogenesis in the microenvironment and facilitating CRC liver metastasis.  相似文献   

8.
BRCA1 is implicated in cellular responses to DNA damage, thereby substantially contributing to maintenance of the genome integrity. Mutations in the BRCA1 gene occur in breast and ovarian cancer and mutations that disable p53 are frequently found in human cancers, often accompanied by mutations in additional genes, contributing to tumor progression or high-grade malignancy. Therefore, the role of BRCA1 in the sensitivity to anticancer agents in p53-deficient cells was investigated using p53-deficient mouse knockout cell lines either deficient or proficient in Brca1 function. We report that Brca1-deficiency in p53-null cells was associated with increased sensitivity to the topoisomerase I poisons camptothecin and topotecan, the topoisomerase II poisons doxorubicin, mitoxantrone and etoposide, and to the platinum compounds carboplatin and oxaliplatin, but not to the antimetabolites 5-fluorouracil and gemcitabine and the taxanes docetaxel and paclitaxel. The increased growth inhibition to doxorubicin after loss of Brca1 correlated with increased cell killing caused by increased apoptosis. The data presented here indicate that Brca1 modulates p53-independent DNA damage response pathways and they support the case of a role of Brca1 to protect cells from apoptosis-mediated cell death in p53-deficient cells. These results suggest a higher chemotherapy susceptibility of cells disabled in both functions and they foster the concept that functional inhibition of BRCA1 may be a valuable adjunct to anticancer agents to increase the efficacy of chemotherapy in the treatment of p53-mutated cancers.  相似文献   

9.
Xing Liu  Weijia Liao  Qing Yuan  Ying Ou  Jian Huang 《Oncotarget》2015,6(33):34309-34320
Hepatocellular carcinoma (HCC) is one of the most malignant cancers with poor clinical outcome. The protein kinase human monopolar spindle 1 (hMps1/TTK) gene expression is significantly increased in HCCs. However, its contributions to hepatocarcinogenesis remain unclear. In this study, we found that TTK was overexpressed in 77.63% (118/152) HCC specimens. Elevated TTK expression positively correlated with large tumor size and presence of the portal vein tumor thrombus (PVTT). Demethylation in its promoter increased TTK expression in HCC. In vitro assays revealed that TTK not only promoted cell proliferation and anchorage-independent growth, but also cell migration. Subsequent investigations revealed that TTK activated Akt/mTOR pathway in a p53 dependent manner. We also found that TTK specific kinase inhibitor AZ3146 could decrease HCC cell growth. In conclusion, TTK contributes to HCC tumorigenesis via promoting cell proliferation and migration. It may serve as a novel biomarker and a potential target in HCC cancer therapy.  相似文献   

10.
11.
Emerging evidence indicates that common bean (Phaseolus vulgaris L.) is associated with reduced cancer risk in human populations and rodent carcinogenesis models. This study sought to identify cancer-associated molecular targets that mediate the effects of bean on cancer burden in a chemically induced rat model for breast cancer. Initial experiments were conducted using a high dietary concentration of bean (60% wt/wt) where carcinoma burden in bean-fed rats was reduced 62.2% (P < 0.001) and histological and western blot analyses revealed that the dominant cellular process associated with reduced burden was induction of apoptosis. Further analysis of mammary carcinomas revealed changes in the phosphorylation states of mammalian target of rapamycin (mTOR) substrates (4E-binding protein 1 and p70S6 kinase) and mTOR regulators adenosine monophosphate-activated protein kinase and protein kinase B (Akt) (P < 0.001). Effects on mTOR signaling in carcinomas were also found at lower dietary concentrations of bean (7.5-30% wt/wt). Liquid chromatography-time of flight-mass spectrometry analysis of plasma provided evidence of altered lipid metabolism consistent with reduced mTOR network activity in the liver (P < 0.001). Plasma concentrations of insulin and insulin-like growth factor-1 were reduced by 36.3 and 38.9%, respectively, (P < 0.001), identifying a link to Akt regulation. Plasma C-reactive protein, a prognostic marker for long-term survival in breast cancer patients, was reduced by 23% (P < 0.001) in bean-fed rats. Identification of a role for the mTOR signaling network in the reduction of cancer burden by dietary bean is highly relevant given that this pathway is deregulated in the majority of human breast cancers.  相似文献   

12.
Hay T  Patrick T  Winton D  Sansom OJ  Clarke AR 《Oncogene》2005,24(23):3842-3846
The gene encoding the human BRCA2 tumour suppressor is mutated in a number of different tumour types, most notably inherited breast cancers. The primary role of BRCA2 is thought to lie in the maintenance of genomic stability via its role in the homologous recombination pathway. We generated mice in which Brca2 was deleted from virtually all cells within the adult small intestine, using a CYP1A1-driven Cre-Lox approach. We noted a significant p53-dependent increase in the levels of spontaneous apoptosis which persisted for several months after removal of the gene and ultimately we observed the spontaneous deletion of Brca2-deficient stem cells. Brca2 deficiency did not lead to gross changes in intestinal physiology but did enhance sensitivity to a variety of DNA crosslinking agents. Taken together, our results indicate that Brca2 plays an important role in the response to DNA damage in the small intestine. Furthermore, we show that Brca2 deficiency results in the spontaneous deletion of stem cells, thereby protecting the small intestine against tumorigenesis.  相似文献   

13.
Activation of the phosphoinositide 3 kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway is common in breast cancer. There is preclinical data to support inhibition of the pathway, and phase I to III trials involving inhibitors of the pathway have been or are being conducted in solid tumors and breast cancer. Everolimus, an mTOR inhibitor, is currently approved for the treatment of hormone receptor (HR)-positive, human epidermal growth factor receptor 2 (HER2)-negative breast cancer. In this review, we summarise the efficacy and toxicity findings from the randomised clinical trials, with simplified guidelines on the management of potential adverse effects. Education of healthcare professionals and patients is critical for safety and compliance. While there is some clinical evidence of activity of mTOR inhibition in HR-positive and HER2-positive breast cancers, the benefits may be more pronounced in selected subsets rather than in the overall population. Further development of predictive biomarkers will be useful in the selection of patients who will benefit from inhibition of the PI3K/Akt/mTOR (PAM) pathway.KEYWORDS : Breast cancer, phosphoinositide 3 kinase (PI3K)/Akt/ mammalian target of rapamycin (mTOR), everolimus  相似文献   

14.
Xing D  Orsulic S 《Cancer research》2006,66(18):8949-8953
Little is known about the mechanisms that underlie Brca1-associated ovarian tumorigenesis, mainly due to the lack of an appropriate experimental model. We developed genetically defined primary mouse ovarian surface epithelial (OSE) cell lines in which the loss of functional Brca1 and p53 recapitulates the events that are thought to occur in early ovarian cancer development in patients with Brca1 mutations. This system allows for the introduction of additional oncogenes that are thought to cooperate with the loss of Brca1 and p53 to induce tumorigenesis. We showed that Myc is sufficient to induce transformation of ovarian cells that are deficient for both Brca1 and p53 but not sufficient for the transformation of cells that are deficient for either Brca1 or p53. The transformed Brca1-deficient OSE cells display an increased number of centrosomes, acquire complex chromosome aberrations, and lack Rad51 nuclear foci in the presence of DNA-damaging agents, such as mitomycin C and cisplatin. Immunocompetent mice injected with transformed OSE cells develop tumors that resemble human metastatic serous ovarian carcinoma, the most common type of ovarian cancer in women. Consistent with the reported platinum chemosensitivity in patients with Brca1-associated ovarian cancer, the Brca1-deficient OSE cells have increased sensitivity to the DNA-damaging agent cisplatin, whereas sensitivity to the microtubule poison paclitaxel is similar between Brca1 wild-type and Brca1-deficient cells. The Brca1 wild-type and Brca1-deficient mouse ovarian tumors and cell lines provide a new experimental system for the evaluation of therapies that target the Brca1 pathway.  相似文献   

15.
Germline mutations of human breast cancer-associated gene 1 (BRCA1) predispose women to breast and ovarian cancers. In mice, over 20 distinct mutations, including null, hypomorphic, isoform, conditional, and point mutations, have been created to study functions of Brca1 in mammary development and tumorigenesis. Analyses using these mutant mice have yielded an enormous amount of information that greatly facilitates our understanding of the gender- and tissue-specific tumor suppressor functions of BRCA1, as well as enriches our insights into applying these preclinical models of disease to breast cancer research. Here, we review features of these mutant mice and their applications to cancer prevention and therapeutic treatment.  相似文献   

16.
17.
Our previous study has shown that ampelopsin (AMP), a flavonol mainly found in Ampelopsis grossedentata, could induce cell death in human breast cancer cells via reactive oxygen species generation and endoplasmic reticulum (ER) stress pathway. Here, we examined whether autophagy is activated in AMP‐treated breast cancer cells and, if so, sought to find the exact role and underlying molecular profile of autophagy in AMP‐induced cell death. Our results showed that AMP treatment activated autophagy in MDA‐MB‐231 and MCF‐7 breast cancer cells, as evidenced by the accumulation of autophagosomes, an increase of microtubule‐associated protein 1 light chain 3 beta‐2 (LC3B‐II) and the conversion of LC3B‐I to LC3B‐II, the degradation of the selective autophagic target p62/SQSTM1, and the formation of green fluorescent protein (GFP)‐LC3 puncta. Blockage of autophagy augmented AMP‐induced cell death, suggesting that autophagy has cytoprotective effects. Meanwhile, AMP treatment suppressed Akt‐mammalian target of rapamycin (mTOR) pathway as evidenced by dose‐ and time‐dependent decrease of the phosphorylation of Akt, mTOR and ribosomal protein S6 kinase (p70S6K), whereas Akt activator insulin‐like growth factor‐1 (IGF‐1) pretreatment partially restored Akt‐mTOR pathway inhibited by AMP and decreased AMP‐inuduced autophagy, signifying that AMP activated autophagy via inhibition of the Akt‐mTOR pathway. Additionally, blocking ER stress not only reduced autophagy induction, but also alleviated inhibition of the Akt‐mTOR pathway induced by AMP, suggesting that activation of ER stress was involved in induction of autophagy and inhibition of the Akt‐mTOR pathway. Taken together, these findings indicate that AMP induces protective autophagy in human breast cancer cells through Akt‐mTOR pathway via ER stress.  相似文献   

18.
Hay N 《Cancer cell》2005,8(3):179-183
The downstream effector of PI3K, Akt, is frequently hyperactivated in human cancers. A critical downstream effector of Akt, which contributes to tumorigenesis, is mTOR. In the PI3K/Akt/mTOR pathway, Akt is flanked by two tumor suppressors: PTEN, acting as a brake upstream of Akt, and TSC1/TSC2 heterodimer, acting as a brake downstream of Akt and upstream of mTOR. In the absence of the TSC1/TSC2 brake, mTOR activity is unleashed to inhibit Akt via an inhibitory feedback mechanism. Two recent studies used mouse genetics to assess the roles of PTEN and TSC2 in cancer, underscoring the importance of Akt-mTOR interplay for cancer progression and therapy.  相似文献   

19.
Inherited mutations of the human BRCA2 gene confer increased risks for developing breast, ovarian, and several other cancers. Unlike previously described Brca2 knockout mice that display predominantly embryonic lethal phenotypes, we developed mice with a homozygous germ-line deletion of Brca2 exon 27 that exhibit a moderate decrease in perinatal viability and are fertile. We deleted this Brca2 COOH-terminal domain because it interacts directly with the Rad51 protein, contains a nuclear localization signal, and is required to maintain genomic stability in response to various types of DNA damage. These homozygous Brca2-mutant mice have a significantly increased overall tumor incidence and decreased survival compared with their heterozygous littermates. Virgin female mice homozygous for this Brca2 mutation also display an inhibition of ductal side branching in the mammary gland at 6 months of age. Given their substantial viability and cancer predisposition, these mutant mice will be useful to further define the role of the COOH-terminal Brca2 domain in tumorigenesis both in vivo and in vitro.  相似文献   

20.
The prevalence of obesity, an established risk and progression factor for postmenopausal breast cancer, remains high in US women. Activation of Akt/mammalian target of rapamycin (mTOR) signaling plays a key role in the obesity–breast cancer link. However, the impact of weight normalization in obese postmenopausal women on breast tumorigenesis and/or Akt/mTOR activation is poorly characterized. To model this, ovariectomized female C57BL/6 mice were fed a control diet (n = 20), a calorie restriction (CR) regimen (n = 20), or a diet‐induced obesity (DIO) diet (n = 30). At week 17, DIO mice were switched to control diet, resulting in formerly obese (FOb) mice with weights identical to the controls by week 20. MMTV‐Wnt‐1 mammary tumor cells were injected at 20 wk into each mouse. Two weeks post‐injection, vehicle or the mTOR inhibitor RAD001 at 10 or 15 mg/kg body weight (n = 10/diet group) was administered by gavage twice/week until termination. Relative to controls, CR mice had decreased (and DIO mice had increased) serum insulin‐like growth factor‐1 (IGF‐1) and phosphorylation of Akt/mTOR pathway components. RAD001 decreased tumor growth in the CR, control, and FOb mice. Wnt‐1 tumor cells treated in vitro with serum from mice from each group established that diet‐dependent circulating factors contribute to tumor growth and invasiveness. These findings suggest weight normalization in obese mice does not immediately reverse tumor progression or Akt/mTOR activation. Treatment with RAD001 blocked mammary tumor development and mTOR activation observed in the FOb mice, suggesting combination of lifestyle and pharmacologic strategies may be effective for breaking the obesity–breast cancer link. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号