首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: The dihydropyridine-induced vasorelaxation is partly dependent on the endothelium, which does not express L-type calcium channels. Because nitric oxide (NO) is one of the most important endothelium-derived vasorelaxing factors, we investigated how the calcium antagonist nifedipine and the calcium agonist Bay K 8644 modulate intracellular calcium and NO formation in porcine endothelial cells. METHODS AND RESULTS: NO formation of porcine aortic endothelial cell cultures and of native endothelium of intact porcine coronary arteries was measured with an electrochemical electrode, and the intracellular concentration of Ca(2+) [Ca(2+)](i) was evaluated using the Fura-2 technique. Nifedipine induced a concentration-dependent [0,01-1 μmol/L] increase in [Ca(2+)](i) and NO formation in cultured porcine aortic endothelial cells, and moreover a dose-dependent NO formation in native endothelial cells from intact porcine coronary arteires, which was higher than in cultured cells. This effect was inhibited by N-nitro-l-arginine, a specific NO synthase inhibitor. Bay K 8644 caused a [Ca(2+)](i) increase and NO release in cultured cells, too, although to a lesser extent. Nifedipine-induced and Bay K 8644-induced [Ca(2+)](i) rise could be blocked by removal of extracellular calcium, indicating that a calcium influx may be involved. CONCLUSIONS: The calcium antagonist nifedipine as well as the calcium agonist Bay K 8644 cause an increase of [Ca(2+)](i) and NO in porcine endothelium. Therefore, these effects seem to be related to the dihydropyridines as a substance class, which may explain the endothelial component in dihydropyridine-induced vasorelaxation.  相似文献   

2.
BACKGROUND: 8-(N,N'-diethylamino)-n-octyl-3,4,5-trimethoxybenzoate (TMB-8) is a potent Ca(2+)-antagonist that can prevent/treat ischemic stroke and inhibit the contractility of smooth, skeletal, and cardiac muscles. Further studies are warranted to elucidate the efficacy of TMB-8 on rabbit basilar artery preparation and its action mechanisms on vascular smooth muscle cell cultures. METHODS AND RESULTS: Effects of TMB-8 on the contractility of rabbit's basilar artery in vitro and those on intracellular free Ca(2+) concentrations, [Ca(2+)](i), were studies with isolated organ bath and Fura-2 methods. Histamine-induced concentration-response curves were shifted by TMB-8 in a mixed manner whereas those of norepinephrine and KCl were shifted in a non-competitive manner. In the presence of nifedipine or in a Ca(2+)-free medium, 2,5-di(tert-butyl)-1,4-benzohydroquinone (BHQ) (10 μM) induced an immediate transient contraction in rabbit basilar artery, whereas ryanodine showed a slow, weak, sustained contraction, followed by a weak, sustained relaxation. TMB-8 (30 μM) significantly inhibited these contractions of BHQ and ryanodine. Further, aminophylline enhanced the inhibitory action of TMB-8 on vasocontractions, suggesting that TMB-8's inhibitory actions may be related to the increase of cAMP level. The muscle contraction induced by BHQ was enhanced by pretreatment of the artery ring with TMB-8 for 15 minutes and then TMB-8 was rinsed out. These results indicate that TMB-8 pretreatment can increase Ca(2+) sequestration into sarcoplasmic reticulum, which leads to a larger subsequent Ca(2+) release by BHQ. KCl-induced increase of [Ca(2+)](i) in vascular smooth muscle cells was reduced when the cells were bathed in the medium containing nifedipine. TMB-8 made further reduction on KCl-induced [Ca(2+)](i) increase in nifedipine-containing solution, which had already blocked the voltage-operated Ca(2+) entry. CONCLUSION: These results indicate that (a) TMB-8 can enhance Ca(2+) sequestration into sarcoplasmic reticulum, which leads to a larger amount of Ca(2+) that can be released by BHQ; (b) TMB-8 can inhibit KCl-induced muscle contraction caused by the reduction of [Ca(2+)](i) through saturation of Ca(2+) inside the sarcoplasmic reticulum rather than a direct blockade of Ca(2+)-influx at cell membrane site; and (c) TMB-8 increases cAMP, which enhances Ca(2+) uptake into the sarcoplasmic reticulum.  相似文献   

3.
Sigma receptors are putative targets for neuroprotection following ischemia; however, little is known on their mechanism of action. One of the key components in the demise of neurons following ischemic injury is the disruption of intracellular calcium homeostasis. Fluorometric calcium imaging was used to examine the effects of sigma receptor activation on changes in intracellular calcium concentrations ([Ca(2+)](i)) evoked by in vitro ischemia in cultured cortical neurons from embryonic rats. The sigma receptor agonist, 1,3-di-o-tolyl-guanidine (DTG), was shown to depress [Ca(2+)](i) elevations observed in response to ischemia induced by sodium azide and glucose deprivation. Two sigma receptor antagonists, metaphit [1-(1-(3-isothiocyanatophenyl)-cyclohexyl)-piperidine] and BD-1047 (N-[2-3,4-dichlorophenyl)-ethyl]-N-methyl-2-(dimethylamino)ethylamine), were shown to blunt the ability of DTG to inhibit ischemia-evoked increases in [Ca(2+)](i), revealing that the effects are mediated by activation of sigma receptors and not via the actions of DTG on nonspecific targets such as N-methyl-d-aspartate receptors. DTG inhibition of ischemia-induced increases in [Ca(2+)](i) was mimicked by the sigma-1 receptor-selective agonists, carbetapentane, (+)-pentazocine and PRE-084 [2-(4-morpholinethyl) 1-phenylcyclohexanecarboxylate hydrochloride], but not by the sigma-2-selective agonist, ibogaine, showing that activation of sigma-1 receptors is responsible for the effects. In contrast, DTG, carbetapentane, and ibogaine blocked spontaneous, synchronous calcium transients observed in our preparation at concentrations consistent with sigma receptor-mediated effects, indicating that both sigma-1 and sigma-2 receptors regulate events that affect [Ca(2+)](i) in cortical neurons. Our studies show that activation of sigma receptors can ameliorate [Ca(2+)](i) dysregulation associated with ischemia in cortical neurons and, thus, identify one of the mechanisms by which these receptors may exert their neuroprotective properties.  相似文献   

4.
N,N,N',N'-Tetrakis(2-pyridylmethyl)-ethylenediamine (TPEN), a transition-metal chelator, was recently found to protect against myocardial ischemia-reperfusion injury. The goals of this study were to investigate the in vivo antiarrhythmic and antifibrillatory potential of TPEN in rats and guinea pigs and to study the in vitro effects of TPEN on calcium homeostasis in cultured newborn rat cardiac cells in normoxia and hypoxia. We demonstrated on an in vivo rat model of ischemia-reperfusion that TPEN abolishes ventricular fibrillation incidence and mortality and decreases the incidence and duration of ventricular tachycardia. To elucidate the mechanism of cardioprotection by TPEN, contraction, synchronization, and intracellular calcium level were examined in vitro. We have shown for the first time that TPEN prevented the increase in intracellular Ca(2+) levels ([Ca(2+)](i)) caused by hypoxia and abolished [Ca(2+)](i) elevation caused by high extracellular Ca(2+) levels ([Ca(2+)](o)) or by caffeine. Addition of TPEN returned synchronized beating of cardiomyocytes desynchronized by [Ca(2+)](o) elevation. To discover the mechanism by which TPEN reduces [Ca(2+)](i) in cardiomyocytes, the cells were treated with thapsigargin, which inhibits Ca(2+) uptake into the sarcoplasmic reticulum (SR). TPEN successfully reduced [Ca(2+)](i) elevated by thapsigargin, indicating that TPEN did not sequester Ca(2+) in the SR. However, TPEN did not reduce [Ca(2+)](i) in the Na(+)-free medium in which the Na(+)/Ca(2+) exchanger was inhibited. Taken together, the results show that activation of sarcolemmal Na(+)/Ca(2+) exchanger by TPEN increases Ca(2+) extrusion from the cytoplasm of cardiomyocytes, preventing cytosolic Ca(2+) overload, which explains the beneficial effects of TPEN on postischemic cardiac status.  相似文献   

5.
Epilepsy is one of the most common neurological disorders. Although epilepsy can be idiopathic, it is estimated that up to 50% of all epilepsy cases are initiated by neurological insults and are called acquired epilepsy (AE). AE develops in 3 phases: (1) the injury (central nervous system [CNS] insult), (2) epileptogenesis (latency), and (3) the chronic epileptic (spontaneous recurrent seizure) phases. Status epilepticus (SE), stroke, and traumatic brain injury (TBI) are 3 major examples of common brain injuries that can lead to the development of AE. It is especially important to understand the molecular mechanisms that cause AE because it may lead to innovative strategies to prevent or cure this common condition. Recent studies have offered new insights into the cause of AE and indicate that injury-induced alterations in intracellular calcium concentration levels [Ca(2+)](i) and calcium homeostatic mechanisms play a role in the development and maintenance of AE. The injuries that cause AE are different, but they share a common molecular mechanism for producing brain damage-an increase in extracellular glutamate concentration that causes increased intracellular neuronal calcium, leading to neuronal injury and/or death. Neurons that survive the injury induced by glutamate and are exposed to increased [Ca(2+)](i) are the cellular substrates to develop epilepsy because dead cells do not seize. The neurons that survive injury sustain permanent long-term plasticity changes in [Ca(2+)](i) and calcium homeostatic mechanisms that are permanent and are a prominent feature of the epileptic phenotype. In the last several years, evidence has accumulated indicating that the prolonged alteration in neuronal calcium dynamics plays an important role in the induction and maintenance of the prolonged neuroplasticity changes underlying the epileptic phenotype. Understanding the role of calcium as a second messenger in the induction and maintenance of epilepsy may provide novel insights into therapeutic advances that will prevent and even cure AE.  相似文献   

6.
Epilepsy is one of the most common neurological disorders. Although epilepsy can be idiopathic, it is estimated that up to 50% of all epilepsy cases are initiated by neurological insults and are called acquired epilepsy (AE). AE develops in 3 phases: (1) the injury [central nervous system (CNS) insult]. (2) epileptogenesis (latency), and (3) the chronic epileptic (spontaneous recurrent seizure) phases. Status epilepticus (SE), stroke, and traumatic brain injury (TBI) are 3 major examples of common brain injuries that can lead to the development of AE. It is especially important to understand the molecular mechanisms that cause AE because it may lead to innovative strategies to prevent or cure this common condition. Recent studies have offered new insights into the cause of AE and indicate that injury-induced alterations in intracellular calcium concentration levels ([Ca(2+)](i)) and calcium homeostatic mechanisms play a role in the development and maintenance of AE. The injuries that cause AE are different, but the share a common molecular mechanism for producing brain damage--an increase in extracellular glutamate and are exposed to increased [Ca(2+)](i) are the cellular substrates to develop epilepsy because dead cells do not seize. The neurons that survive injury sustain permanent long-term plasticity changes in [Ca(2+)](i) and calcium homeostatic mechanisms that are permanent and are a prominent feature of the epileptic phenotype. In the last several years, evidence has accumulated indicating that the prolonged alteration in neuronal calcium dynamics plays an important role in the induction and maintenance of the prolonged neuroplasticity changes underlying the epileptic phenotype. Understanding the role of calcium as a second messenger in the induction and maintenance of epilepsy may provide novel insights into therapeutic advances that will prevent and even cure AE.  相似文献   

7.
Heat shock protein 70 (HSP70) mediates delayed cardioprotection of preconditioning. Cytosolic calcium ([Ca(2+)])(i) overload precipitates injury, whereas attenuation of [Ca(2+)](i) overload is believed to be responsible for cardioprotection. There is evidence suggesting a link between HSP70 and [Ca(2+)](i) homeostasis. We hypothesize that activation of HSP70 by preconditioning may restore [Ca(2+)](i) homeostasis altered by ischemic insults. To test the hypothesis, we determined the effects of preconditioning with metabolic inhibition or pretreating with U50,488H [trans-(+)-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)cyclohexyl]-benzeneacetamide (a kappa-opioid receptor agonist)] on viability and injury, HSP70 expression, and [Ca(2+)](i) in ventricular myocytes subjected to metabolic inhibition and anoxia (MI/A), with blockade of HSP70 synthesis. In myocytes with vehicle pretreatment, the percentage of dead cells determined by trypan blue exclusion, the injury reflected by release of lactate dehydrogenase, and the resting [Ca(2+)](i) measured by spectrofluorometry significantly increased, whereas the amplitude of electrically induced [Ca(2+)](i) transient decreased, after 10 min with 10 mM 2-deoxy-d-glucose and 10 mM sodium dithionite, known to cause MI/A. However, when myocytes were subjected for 30 min to either 20 mM lactate and 10 mM 2-deoxy-d-glucose (MIP) or 30 microM U50,488H (UP) 20 h before MI/A, the changes in viability and injury, and [Ca(2+)](i) responses were significantly attenuated. These were accompanied by a significantly increased HSP70 expression. Furthermore, blockade of HSP70 synthesis with selective antisense oligonucleotides abolished the beneficial effects of MIP or UP. This study provides first evidence that activation of HSP70 induced by preconditioning, which conferred delayed cardioprotection, restored partially the [Ca(2+)](i) homeostasis altered by ischemic insults.  相似文献   

8.
There is increasing evidence that extracellular ATP acting on purinoceptors may play an important signalling role in renal epithelial cells, often through alterations in cellular Ca(2+). In this paper effects of extracellular ATP and related purinoceptor agonists and antagonists on [Ca(2+)](i) have been studied in single cells from primary cultures of rat proximal tubule cells. Responses to 1--100 micromol/l ATP were heterogeneous; 55% of cells showed a transient rise in [Ca(2+)](i), 20% of cells showed a transient fall; in 25% there was no response. ATP actions on [Ca(2+)](i) were abolished by pre-treatment with thapsigargin. The P(2) receptor antagonist suramin unexpectedly increased the [Ca(2+)](i) response to ATP; the related antagonist XAMR 0721 did not significantly alter ATP responses. This difference is likely to arise from the inhibition of ATP hydrolysis by suramin. UTP, ADP and the non-hydrolyzable ATP analogue adenosine-5'-O-(3-thio)-triphosphate (ATP gamma S)produced similar increases in [Ca(2+)](i). The magnitude of the [Ca(2+)](i) responses to 100 micromol/l agonist gave an agonist potency order of ATP> or =ADP> or =UTP approximately ATP gamma S. Desensitisation experiments demonstrated the presence of more than one P2Y ATP receptor subtype on a single cell. These results are consistent with the expression of purinoceptors of both P2Y(1) and P2Y(2) subclasses on individual rat proximal tubule cells coupled to inositol trisphosphate-mediated release of intracellular calcium stores.  相似文献   

9.
BACKGROUND: It is generally accepted that the plasma membrane of mammalian ventricular myocytes regulates the cytosolic concentration of Ca(2+). In this study we investigated the effects of some P2-purinoceptor antagonists and metals such as copper and zinc on the adenosine triphosphate (ATP)-induced increase in intracellular concentration of free Ca(2+) ([Ca(2+)](i)). METHODS AND RESULTS: Cardiomyocytes were isolated from adult male Sprague-Dawley rats loaded with Fura-2, and fluorescence measurements were performed by employing stirred cell suspensions at room temperature. ATP (50 μM) increased [Ca(2+)](i) over the basal value, and 10 μM cibacron blue or verapamil virtually abolished it. The ATP-induced increase in [Ca(2+)](i) was not observed in Ca(2+)- or Mg(2+)-free buffers. Incubation of cells with ZnCl(2) produced a significant depression of the ATP-induced increase in [Ca(2+)](i); 25 μM Zn(2+) decreased the peak response to approximately 50% of the control value. The ATP-induced increase in [Ca(2+)](i), was inhibited by low concentrations (1-5 μM) of Cu(2+) but was markedly augmented by high concentrations (25 μM) of Cu(2+). The increase in the [Ca(2+)](i) response to cron blue, and Zn(2+), but not by ryanodine or caffeine pretreatment. CONCLUSIONS: The ATP-induced increase in [Ca(2+)](i) is dependent on the extracellular concentrations of Ca(2+) as well as Mg(2+) and is antagonized by cibacron blue and Zn(2+). On the other hand, Cu(2+) produced a biphasic response to the ATP-induced increase in [Ca(2+)](i) in cardiomyocytes.  相似文献   

10.
Disruption of cellular acid-base status alters the host defence functions of alveolar macrophages (m phi). These pH effects might be mediated by pH-sensitive changes in the signalling pathways of the effector functions of m phi. The present study examined the effects of intracellular pH (pH(i)) on the free cytosolic calcium concentration ([Ca(2+)](i)), an important second messenger for cell functions. [Ca(2+)](i) and pH(i) of rabbit resident alveolar m phi were measured using fluorescent dyes. With extracellular pH (pH(o)) of 7.4, the steady-state pH(i) and [Ca(2+)](i) were approx. 7.14 and 123 nM respectively. Incubation at pH(o) 6.8 caused a sustained cytosolic acidosis, but did not affect [Ca(2+)](i). Likewise, [Ca(2+)](i) was unchanged when m phi at pH(o) 7.4 were acidified using bafilomycin A(1) or sodium propionate. In contrast, [Ca(2+)](i) was markedly sensitive to cytosolic alkalosis. Exposure to NH(4)Cl at pH(o) 7.4 caused transient increases in both pH(i) and [Ca(2+)](i). The Ca(2+) response was mediated by release of intracellular Ca(2+) from thapsigargin-sensitive stores and was potentiated by capacitative entry of extracellular Ca(2+). Incubation at high pH(o) values (>7.4) produced sustained increases in pH(i) and [Ca(2+)](i). The sustained elevation of [Ca(2+)](i) was consistent with pH-sensitive inhibition of plasma-membrane Ca(2+)-ATPase. The response to high pH(o) was unaffected by blockade of L-type or receptor-operated Ca(2+) channels with nifedipine or SKF-96365, and was independent of extracellular Na(+). The findings indicate that pH impacts cytosolic Ca(2+) homoeostasis at multiple levels. The data suggest that cellular acid-base status can influence Ca(2+)-dependent signalling events in resident alveolar m phi, especially during alkaline disruptions of pH(i).  相似文献   

11.
Human cerebral cortical synaptosomes were used to study voltage-dependent Ca(2+) channels mediating calcium influx in human axon terminals. Synaptosomes were depolarized by elevation of the extracellular K(+) concentration by 30 mM or by the addition of veratridine (10 microM). Increase in cytosolic concentration of calcium [Ca(2+)](i) induced by either stimulus was abolished in the absence of extracellular Ca(2+) ions. omega-Agatoxin IVA inhibited the K(+)-induced [Ca(2+)](i) increase concentration-dependently (IC(50): 113 nM). omega-Conotoxin GVIA (0.1 microM) inhibited K(+)-induced [Ca(2+)](i) increase by 20%. omega-Conotoxin MVIIC (0.2 microM) caused an inhibition by 85%. Nifedipine (1 microM) had no effect on K(+)-induced [Ca(2+)](i) increase. Veratridine-induced increase in [Ca(2+)](i) was inhibited by omega-conotoxin GVIA (0.1 microM) and omega-Agatoxin IVA (0.2 microM; by about 25 and 45%, respectively). Nifedipine inhibited the veratridine-evoked [Ca(2+)](i) increase concentration-dependently (IC(50): 4.9 nM); Bay K 8644 (3 microM) shifted the nifedipine concentration-response curve to the right. Mibefradil (10 microM) abolished the increase in [Ca(2+)](i) evoked by K(+) and reduced the increase evoked by veratridine by almost 90%. KB-R7943 (3 microM) an inhibitor of the Na(+)/Ca(2+) exchanger NCX1, decreased the increase in [Ca(2+)](i) evoked by veratridine by approximately 20%. It is concluded that the increase in [Ca(2+)](i) after K(+) depolarization caused by Ca(2+) influx predominantly via P/Q-type Ca(2+) channels and after veratridine depolarization via N- and P/Q-type, but also by L-type Ca(2+) channels. The toxin- and nifedipine-resistant fraction of the veratridine response may result both from influx via R-type Ca(2+) channels and by Ca(2+) inward transport via Na(+)/Ca(2+) exchanger.  相似文献   

12.
This laboratory has reported previously that Delta(9)-tetrahydrocannabinol (Delta(9)-THC) and cannabinol (CBN) robustly elevate intracellular calcium ([Ca(2+)](i)) in resting human and murine T cells, whereas CP55,940 [5-(1,1-dimethylheptyl)-2-(5-hydroxy-2-(3-hydroxypropyl)cyclohexyl)phenol], a high-affinity ligand for CB1 and CB2, does not. In light of our previous studies, the objective of the present investigation was to examine the ability of various cannabinoid compounds to elevate [Ca(2+)](i) in the CB2 receptor-expressing human peripheral blood acute lymphoid leukemia T cell line and the dependence of structural similarity to Delta(9)-THC therein. The present studies demonstrate that CBN and HU-210 [(6aR,10aR)-3-(1,1-dimethylbutyl)-6a,7,10,10a-tetrahydro-6,6-dimethyl-6H-dibenzo[b,d]pyran-9-methanol], both tricyclic and in that respect structurally similar to Delta(9)-THC, elevate [Ca(2+)](i). The [Ca(2+)](i) elevation elicited by both CBN and HU-210 was attenuated upon removal of extracellular calcium and upon pretreatment with SK&F96365 [1-[beta-[3-(4-methoxyphenyl)propoxy]-4-methoxyphenethyl]-1H-imidazole], an inhibitor of receptor-operated cation channels. In addition, pretreatment with either CB1 or CB2 receptor antagonists attenuated the CBN- and HU-210-mediated [Ca(2+)](i) elevation. Further investigation of the dependence of Delta(9)-THC, CBN, and HU-210 on cannabinoid receptors using splenocytes from wild-type and CB1(-/-)/CB2(-/-) mice showed that the [Ca(2+)](i) elevation elicited by all three tricyclic cannabinoids was independent of CB1 and CB2. Moreover, both the CB1 and CB2 receptor antagonists attenuated that rise in [Ca(2+)](i) elicited by the tricyclic cannabinoids in the wild-type and CB1(-/-)/CB2(-/-) mouse splenocytes. Taken together, the present results demonstrate that classic tricyclic cannabinoids with structural similarity to Delta(9)-THC elicit a robust influx of calcium in T cells putatively through receptor-operated cation channels in a manner sensitive to the cannabinoid receptor antagonists, but independent of the CB1 and CB2 receptors.  相似文献   

13.
The present study was carried out to determine the intracellular free calcium concentration ([Ca(2+)](i)) and the activity of its regulatory enzymes (Na(+),K(+)-ATPase and Ca(2+)-ATPase) in leucocytes. Levels of plasma lysophosphatidylcholine (LPC) were also measured. Then the relationship between these parameters and the clinical severity of asthma and bronchial reactivity was studied. Patients with asthma were divided into three groups: acute asthma (subjects in acute exacerbation), uncontrolled asthma (subjects currently symptomatic) and stable asthma (subjects currently asymptomatic). A group of normal subjects was also studied. Spirometry, specific airway conductance and bronchial reactivity measurements were carried out. The following biochemical parameters were studied in venous blood: leucocyte [Ca(2+)](i), Na(+), K(+)-ATPase and Ca(2+)-ATPase activities, and plasma LPC. Leucocyte [Ca(2+)](i) was increased and the activities of Na(+),K(+)-ATPase and Ca(2+)-ATPase were decreased in patients with asthma. Plasma levels of LPC were also increased. These changes were observed to be greatest among asthmatics in acute exacerbation of asthma, and lesser in magnitude in patients with less severe asthma. The activities of both ATPases were found to have a significant positive correlation, and [Ca(2+)](i) and the levels of plasma LPC a significant negative correlation, with predicted forced expiratory volume in 1 s (FEV(1)). No significant correlation was observed between the biochemical parameters and bronchial reactivity. It is concluded that intracellular calcium homoeostasis is abnormal in asthma; specifically, the activities of Na(+),K(+)-ATPase and Ca(2+)-ATPase are decreased. These abnormalities may modulate the clinical severity of asthma.  相似文献   

14.
BACKGROUND: The plasma membrane Ca(2+)-ATPase (PMCA) plays an essential role in maintaining low intracellular Ca(2+) ([Ca(2+)](i)) in resting platelets. Earlier studies demonstrated that platelet activation by thrombin results in tyrosine phosphorylation of PMCA, which inhibits pump activity. OBJECTIVES: The objective was to determine the functional consequences of PMCA tyrosine phosphorylation. METHODS: A decapeptide including the tyrosine phosphorylation site of PMCA and a scrambled version were synthesized and introduced into human platelets using saponin. Fura-2 calcium monitoring and aggregometry were used to characterize the effects of inhibition of tyrosine phosphorylation. RESULTS: Western blot analysis of immunoprecipitates showed that introduction of the inhibitory peptide decreased tyrosine phosphorylation of PMCA by nearly 60% in saponin-permeabilized, thrombin-treated platelets as compared with the scrambled control peptide. Concomitant with inhibition of PMCA tyrosine phosphorylation was a significant decrease in [Ca(2+)](i) during thrombin-mediated platelet activation. The functional consequence of reduced PMCA tyrosine phosphorylation and decreased [Ca(2+)](i) was a significant delay in the onset of thrombin-mediated platelet aggregation. CONCLUSIONS: The results demonstrate that PMCA tyrosine phosphorylation regulates [Ca(2+)](i) during platelet activation, which affects downstream events in the activation process. Moreover, PMCA tyrosine phosphorylation and resultant inhibition of PMCA activity produces a positive feedback loop mechanism by enhancing the increase in [Ca(2+)](i) accompanying platelet activation.  相似文献   

15.
Platelet activation and aggregation are essential to limit posttraumatic blood loss at sites of vascular injury but also contributes to arterial thrombosis, leading to myocardial infarction and stroke. Agonist-induced elevation of [Ca(2+)](i) is a central step in platelet activation, but the underlying mechanisms are not fully understood. A major pathway for Ca(2+) entry in nonexcitable cells involves receptor-mediated release of intracellular Ca(2+) stores, followed by activation of store-operated calcium (SOC) channels in the plasma membrane. Stromal interaction molecule 1 (STIM1) has been identified as the Ca(2+) sensor in the endoplasmic reticulum (ER) that activates Ca(2+) release-activated channels in T cells, but its role in mammalian physiology is unknown. Platelets express high levels of STIM1, but its exact function has been elusive, because these cells lack a normal ER and Ca(2+) is stored in a tubular system referred to as the sarcoplasmatic reticulum. We report that mice lacking STIM1 display early postnatal lethality and growth retardation. STIM1-deficient platelets have a marked defect in agonist-induced Ca(2+) responses, and impaired activation and thrombus formation under flow in vitro. Importantly, mice with STIM1-deficient platelets are significantly protected from arterial thrombosis and ischemic brain infarction but have only a mild bleeding time prolongation. These results establish STIM1 as an important mediator in the pathogenesis of ischemic cardio- and cerebrovascular events.  相似文献   

16.
BACKGROUND: Hydrogen peroxide (H(2)O(2)) in high concentrations has been implicated in heart dysfunction attributable to ischemia-reperfusion. Although H(2)O(2) is also known to increase the intracellular concentration of Ca(2+) ([Ca(2+)](i)) in cardiomyocytes, the mechanisms for such a change are not clear. In this study, the sources and mechanisms of increase in [Ca(2+)](i) caused by high concentrations of H(2)O(2) in cardiomyocytes were explored. METHODS AND RESULTS: Cardiomyocytes were isolated from adult male Sprague-Dawley rats. Cell viability was examined by trypan blue exclusion test. [Ca(2+)](i) was measured by employing cell suspension at room temperature and Fura-2 fluorescence technique. Incubation of cells with 0.25-l mmol/L H(2)O(2) increased [Ca(2+)](i) in a time- and concentration-dependent manner. Catalase attenuated the H(2)O(2)-induced increase in [Ca(2+)](i) significantly, whereas mannitol showed no effect. Neither the presence of verapamil, a sarcolemmal Ca(2+) channel blocker, nor the removal of Ca(2+) from the medium produced any significant reduction in the H(2)O(2)-induced increase in [Ca(2+)](i). Conversely, treatment of cardiomyoctes with staurosporin, a protein kinase C inhibitor, thapsigargin, a sarcoplasmic reticulum Ca(2+)-pump adenosine triphosphatase inhibitor, as well as ryanodine, a sarcoplasmic reticulum Ca(2+)-release channel blocker, markedly prevented the 0.5-mmol/L H(2)O(2)-induced increase in [Ca(2+)](i). The responses of cardiomyoctes to H(2)O(2) and other Ca(2+)-mobilizing agents, such as KCl or adenosine triphosphate, were additive. No changes in cardiomyocyte viability were seen on incubation with 0.5 and 1 mmol/L H(2)O(2). Perfusion of the isolated heart with H(2)O(2) (0.1-0.5 mmol/L) depressed the left ventricular developed pressure, rate of contraction, and rate of relaxation, whereas the left ventricular end-diastolic pressure was increased. CONCLUSIONS: These results indicate that formation of H(2)O(2) under pathophysiological conditions such as ischemic heart disease may induce changes in Ca(2+) homeostasis in cardiomyocytes and may induce contractile dysfunction. Furthermore, the sarcoplasmic reticulum involving a protein kinase C-mediated mechanism appears to be the main site of action of H(2)O(2) in cardiomyocytes.  相似文献   

17.
Dimethyl disulfide (DMDS), a plant-derived insecticide, is a promising fumigant as a substitute for methyl bromide. To further understand the mode of action of DMDS, we examined its effect on cockroach octopaminergic neurosecretory cells, called dorsal unpaired median (DUM) neurons, using whole-cell patch-clamp technique, calcium imaging and antisense oligonucleotide strategy. At low concentration (1 microM), DMDS modified spontaneous regular spike discharge into clear bursting activity associated with a decrease of the amplitude of the afterhyperpolarization. This effect led us to suspect alterations of calcium-activated potassium currents (IKCa) and [Ca(2+)](i) changes. We showed that DMDS reduced amplitudes of both peak transient and sustained components of the total potassium current. IKCa was confirmed as a target of DMDS by using iberiotoxin, cadmium chloride, and pSlo antisense oligonucleotide. In addition, we showed that DMDS induced [Ca(2+)](i) rise in Fura-2-loaded DUM neurons. Using calcium-free solution, and (R,S)-(3,4-dihydro-6,7-dimethoxy-isoquinoline-1-yl)-2-phenyl-N,N-di-[2-(2,3,4-trimethoxy-phenyl)ethyl]-acetamide (LOE 908) [an inhibitor of transient receptor potential (TRP)gamma], we demonstrated that TRPgamma initiated calcium influx. By contrast, omega-conotoxin GVIA (an inhibitor of N-type high-voltage-activated calcium channels), did not affect the DMDS-induced [Ca(2+)](i) rise. Finally, the participation of the calcium-induced calcium release mechanism was investigated using thapsigargin, caffeine, and ryanodine. Our study revealed that DMDS-induced elevation in [Ca(2+)](i) modulated IKCa in an unexpected bell-shaped manner via intracellular calcium. In conclusion, DMDS affects multiple targets, which could be an effective way to improve pest control efficacy of fumigation.  相似文献   

18.
Disruption of intracellular calcium initiates multiple cell-damaging processes, such as apoptosis. In normal cells, the levels of Ca(2+) are low in the mitochondria, whereas in apoptotic cells, Ca(2+) increases. Mitochondria uptake Ca(2+) via an inner membrane channel called the uniporter and extrude it into the cytoplasm through a Na(+)/Ca(2+) exchanger. Overload of Ca(2+) in the mitochondria in CGP-treated cells leads to its damage, thus affecting cellular function and survival. The goal of these experiments was to determine the importance of mitochondrial calcium ([Ca(2+)](m)) in apoptosis of prostate cancer cells. Furthermore, we have examined the advantages of increasing the [Ca(2+)](m) and treating the cells with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), a potent apoptotic agent. Our results show that, under these treatment conditions, inhibiting the Na(+)/Ca(2+) exchanger using benzothiazepin CGP-37157 (CGP) did not induce apoptosis. However, combination of CGP and TRAIL increased the apoptotic response approximately 25-fold compared with control. Increase in apoptosis followed enhanced levels of [Ca(2+)](m) and was accompanied by pronounced mitochondrial changes characteristic of mitochondria-mediated apoptosis. Experiments with calcium ionophores showed that mere increase in cytosolic and/or mitochondrial Ca(2+) was not sufficient to induce apoptosis. These results have therapeutic implications as inhibitors of Na(+)/Ca(2+) exchanger are being used for treating some neurologic and cardiologic ailments, and TRAIL induces apoptosis preferentially in cancer cells. Furthermore, this system provides an excellent model to investigate the role of [Ca(2+)](m) in apoptosis.  相似文献   

19.
The present study explores the hypothesis that the new anti-epileptic drug levetiracetam (LEV) could interfere with the inositol 1,4,5-trisphosphate (IP(3))-dependent release of intracellular Ca(2+) initiated by G(q)-coupled receptor activation, a process that plays a role in triggering and maintaining seizures. We assessed the effect of LEV on the amplitude of [Ca(2+)](i) response to bradykinin (BK) and ATP in single Fura-2/acetoxymethyl ester-loaded PC12 rat pheochromocytoma cells, which express very high levels of LEV binding sites. LEV dose-dependently reduced the [Ca(2+)](i) increase, elicited either by 1 microM BK or by 100 microM ATP (IC(50), 0.39 +/- 0.01 microM for BK and 0.20 +/- 0.01 microM for ATP; Hill coefficients, 1.33 +/- 0.04 for BK and 1.38 +/- 0.06 for ATP). Interestingly, although the discharge of ryanodine stores by a process of calcium-induced calcium release also took place as part of the [Ca(2+)](i) response to BK, LEV inhibitory effect was mainly exerted on the IP(3)-dependent stores. In fact, the drug was still effective after the pharmacological blockade of ryanodine receptors. Furthermore, LEV did not affect Ca(2+) stored in the intracellular deposits since it did not reduce the amplitude of [Ca(2+)](i) response either to thapsigargin or to ionomycin. In conclusion, LEV inhibits Ca(2+) release from the IP(3)-sensitive stores without reducing Ca(2+) storage into these deposits. Because of the relevant implications of IP(3)-dependent Ca(2+) release in neuron excitability and epileptogenesis, this novel effect of LEV could provide a useful insight into the mechanisms underlying its antiepileptic properties.  相似文献   

20.
The involvement of inositol 1,4,5-trisphosphate (IP(3)) formation in the voltage-dependent regulation of intracellular Ca(2+) concentration ([Ca(2+)](i)) was examined in smooth muscle cells of the porcine coronary artery. Slow ramp depolarization from -90 to 0 mV induced progressive [Ca(2+)](i) increase. The slope was reduced or increased in the presence of Cd(2+) or (±)-1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-[trifluoromethyl]-phenyl)pyridine-3-carboxlic acid methyl ester (Bay K 8644), respectively. The decrease in [Ca(2+)](i) via the membrane hyperpolarization induced by K(+) channel openers (levcromakalim and Evans blue) under current clamp was identical to that under voltage clamp. The step hyperpolarization from -40 to -80 mV reduced [Ca(2+)](i) uniformly over the whole-cell area with a time constant of ~10 s. The [Ca(2+)](i) at either potential was unaffected by heparin, an inhibitor of IP(3) receptors. Alternatively, [Ca(2+)](i) rapidly increased in the peripheral regions by depolarization from -80 to 0 mV and stayed at that level (~400 nM) during a 60-s pulse. When the pipette solution contained IP(3) pathway blockers [heparin, 2-aminoethoxydiphenylborate, xestospongin C, or 1-[6-[((17β)-3-methoxyestra-1,3,5[10]-trien-17-yl)amino]hexyl]-1H-pyrrole-2,5-dione (U73122)], the peak [Ca(2+)](i) was unchanged, but the sustained [Ca(2+)](i) was gradually reduced by ~250 nM within 30 s. In the presence of Cd(2+), a long depolarization period slightly increased the [Ca(2+)](i), which was lower than that in the presence of heparin alone. In coronary arterial myocytes, the sustained increase in the [Ca(2+)](i) during depolarization was partly caused by the Ca(2+) release mediated by the enhanced formation of IP(3). The initial [Ca(2+)](i) elevation triggered by the Ca(2+) influx though voltage-dependent Ca(2+) channels may be predominantly responsible for the activation of phospholipase C for IP(3) formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号