首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: Both vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) have been used in preclinical studies to induce new blood vessel growth in ischemic cardiac muscle with promising results. However, clinical trials have been much less convincing and further work is needed. This study expands on prior work by comparing the long-term proangiogenic effects of direct intramyocardial (IM) injection of bFGF, as well as IM and intravenous (IV) VEGF in a porcine model of chronic hibernating myocardium. METHODS: Mini-swine with proximal 90% left circumflex (LCx) coronary stenosis subtending chronically ischemic, viable (hibernating) myocardium by positron emission tomography (PET) and dobutamine stress echocardiography (DSE) were randomized to IM bFGF (n = 5), IM VEGF(165) (n = 5), IV VEGF(165) (n = 5), IM vehicle (n = 5), or sham redo-thoracotomy (n = 4). The bFGF protein was administered in a total dose of 1.35 microg divided into 30 IM injections. IM VEGF(165) protein was administered in a total dose of 15 microg/kg divided into 30 injections; IV VEGF(165) was given at a dose of 50 ng. kg(-1). min(-1) for 200 minutes at three 72-hour intervals (30 microg/kg total dose). After 3 and 6 months the PET and DSE studies were repeated, and the animals were sacrificed for tissue vascular density and angiogenic protein analysis. RESULTS: Myocardial blood flow (MBF) by PET was significantly improved 3 months posttreatment in the IM bFGF and IM VEGF(165) groups, differences that were sustained at 6 months. There was no significant increase in MBF 3-months posttreatment in the IV VEGF(165) group; however, at 6 months MBF was significantly improved. No change in MBF was seen in the IM vehicle or sham groups. Regional wall motion at rest and peak stress in the LCx region demonstrated small but statistically significant improvements by 6 months in the IM bFGF and IV VEGF(165) groups only; no improvement was seen in the IM VEGF(165), IM vehicle, or sham groups. Quantitative vascular density was significantly increased in the LCx regions of all treatment groups (IM bFGF, IM VEGF(165), IV VEGF(165)) 6-months postoperatively. No significant increase in LCx region myocardial bFGF or VEGF protein levels was seen in the treated animals at 6 months. CONCLUSIONS: The IM bFGF, IM VEGF(165), and IV VEGF(165) all improve regional perfusion and vascular density 6-months posttherapy in the animal model utilized. Functional improvements were less consistent. Both bFGF and VEGF(165) may be useful therapies for improving regional perfusion in chronically ischemic myocardium, although combination therapy with additional growth factors or cellular therapies may be necessary if concomitant improvements in function are to be seen.  相似文献   

2.
OBJECTIVE: Therapeutic angiogenesis is an alternative method of revascularization for end-stage coronary artery disease. We determined the effects of intramyocardial and intracoronary basic fibroblast growth factor 2 on myocardial blood flow and function in a porcine model of hibernating myocardium. METHODS: Twenty-four mini-swine with 90% left circumflex artery stenosis and documented hibernating myocardium by positron emission tomography and dobutamine stress echocardiography were randomized to intramyocardial basic fibroblast growth factor 2 at 0.6 microg/kg (mid-dose, n = 6, 30 injections/animal), 6 microg/kg (high-dose, n = 6, 30 injections/animal), or intramyocardial vehicle control (n = 6). The intracoronary group received 6 microg/kg basic fibroblast growth factor 2 (n = 6) into the right and left circumflex artery coronary arteries. Positron emission tomography and dobutamine stress echocardiography were repeated at 1 and 3 months. RESULTS: In the vehicle group, normalized left circumflex artery myocardial blood flow was 0.74 +/- 0.04 at 1 month and 0.75 +/- 0.07 at 3 months compared with 0.68 +/- 0.03 at baseline. In the intracoronary group, myocardial blood flow was 0.71 +/- 0.03 at 1 month and 0.72 +/- 0.04 at 3 months compared with 0.67 +/- 0.04 at baseline. In the mid group, myocardial blood flow was 0.73 +/- 0.06 at 1 month and 0.85 +/- 0.05 at 3 months (P <.001) compared with 0.67 +/- 0.04 at baseline. In the high group, myocardial blood flow was 0.81 +/- 0.06 at 1 month and 0.83 +/-.04 at 3 months (P =.03) compared with 0.71 +/- 0.02 at baseline. No significant improvements in ischemia were demonstrated in any of the groups by dobutamine stress echocardiography at 1 or 3 months. CONCLUSIONS: In porcine hibernating myocardium, intramyocardial basic fibroblast growth factor 2 significantly improved regional myocardial blood flow 3 months after treatment. There was no significant change in function in any of the 4 groups. These data suggest that intramyocardial dosing of basic fibroblast growth factor 2 (0.6 microg/kg) may be an optimal dose for improving perfusion in the treatment of end-stage coronary artery disease.  相似文献   

3.
Background. Transmyocardial laser revascularization (TMR) has been demonstrated effective for relieving angina, although prior studies have yielded inconsistent results regarding postoperative myocardial perfusion and function. This study evaluated long-term changes in myocardial perfusion and contractile reserve after TMR in a model of hibernating myocardium.

Methods. Miniswine had subtotal left circumflex coronary artery occlusion to reduce resting blood flow to 10% of baseline. After 2 weeks in the low-flow state, positron emission tomography and dobutamine stress echocardiography were performed to document ischemic, viable (hibernating) myocardium in the left circumflex distribution. Animals then had sham redo thoracotomy (n = 4) or TMR (n = 6). Six months later the positron emission tomography and dobutamine stress echocardiography studies were repeated.

Results. Myocardial blood flow in the left circumflex distribution as measured by positron emission tomography was significantly reduced in all animals after 2 weeks in the low-flow state. In animals that had TMR, there was significant improvement in myocardial blood flow to the lased regions 6 months postoperatively. No significant change in myocardial blood flow was seen in sham animals at 6 months. Dobutamine stress echocardiography after 2 weeks of low-flow demonstrated severe hypocontractility at rest in the left circumflex region of all animals, with a biphasic response to dobutamine consistent with hibernating myocardium. In animals that had TMR, there was a trend toward improved resting function and significantly improved regional stress function in the lased segments 6 months postoperatively, consistent with a reduction in ischemia. Global left ventricular wall motion at peak stress improved significantly as well. There was no change in wall motion 6 months postoperatively in sham-operated animals.

Conclusions. This study found improvements in myocardial perfusion and regional and global contractile reserve 6 months after TMR in a porcine model of hibernating myocardium. This improved perfusion and function likely accounts for the clinical benefits of the procedure.  相似文献   


4.
BACKGROUND: Transmyocardial laser revascularization (TMR) is an emerging treatment for end-stage coronary artery disease. A variety of lasers are currently available to perform the procedure, although their relative efficacy is unknown. The purpose of this study was to compare changes in myocardial blood flow and function 6 months after TMR with holmium:yttrium-aluminum-garnet (holmium:YAG), carbon dioxide (CO2), and xenon chloride excimer lasers in a model of chronic ischemia. METHODS: Miniswine underwent subtotal (90%) left circumflex coronary stenosis. Baseline positron emission tomography and dobutamine stress echocardiography were performed to document hibernating myocardium in the left circumflex coronary artery distribution. Animals were then randomized to sham redo-thoracotomy (n = 5) or TMR using a holmium:YAG (n = 5), CO2 (n = 5) or excimer (n = 5) laser. Six months postoperatively, the positron emission tomography and dobutamine stress echocardiography studies were repeated and the animals sacrificed. RESULTS: In animals undergoing TMR with holmium: YAG and CO2 lasers, a significant improvement in myocardial blood flow to the lased left circumflex regions was seen. No significant change in myocardial blood flow was seen in sham- or excimer-lased animals. There was a significant improvement in regional stress function of the lased segments 6 months postoperatively in animals undergoing holmium:YAG and CO2 laser TMR that was consistent with a reduction in ischemia. There was no change in wall motion in sham- or excimer-lased animals. Significantly greater neovascularization was observed in the holmium:YAG and CO2 lased regions than with either the sham procedure or excimer TMR. CONCLUSIONS: Transmyocardial laser revascularization with either holmium:YAG or CO2 laser improves myocardial blood flow and contractile reserve in lased regions 6 months postoperatively. These changes were not seen following excimer TMR or sham thoracotomy, suggesting that differences in laser energy or wavelength or both may be important in the induction of angiogenesis.  相似文献   

5.
BACKGROUND: Prior experimental and clinical studies have drawn disparate conclusions regarding the effects of transmyocardial laser revascularization (TMR) on regional cardiac innervation in the treated regions. Regional afferent denervation has been proposed as a potential mechanism of action of the procedure, although this as yet remains unproven. The purpose of the present study was to evaluate regional myocardial sympathetic innervation both early (3 days) and late (6 months) after TMR. METHODS: Mini-swine in the early group were randomized to be sacrificed 3 days after holmium:YAG TMR (n = 5) or sham thoractomy (n = 3). In the late group, mini-swine with hibernating myocardium in the left circumflex (LCx) region were randomized to sham redo-thoracotomy (n = 5), TMR of the LCx distribution with a carbon dioxide (n = 5), holmium:YAG (n = 5), or excimer (n = 5) laser. Six months postoperatively the animals were sacrificed. Additional animals in both the early (n = 2) and late (n = 2) groups served as age- and weight-matched normal controls. Immunohistochemistry and Western blot analysis for tyrosine hydroxylase (TYR-OH), a neural-specific enzyme found in sympathetic efferent nerves and a commonly used anatomic marker of regional innervation, were performed on lased and nonlased LCx and septal regions. RESULTS: Immunohistochemical staining for TYR-OH was markedly diminished in the lased myocardial regions 3 days after TMR. This staining was significantly reduced compared to untreated septal regions, sham-operated, and normal LCx myocardium. Quantitative immunoblotting confirmed a significant reduction in TYR-OH (p < 0.05) protein concentration in the lased regions 3 days after TMR. On the contrary, TYR-OH staining was present in LCx myocardium surrounding the laser channels of all animals in all groups 6 months postoperatively. Staining was not different from controls. Similarly, there was no difference in LCx TYR-OH protein concentration between the normal, sham, or 6 months postoperative lased groups (p > 0.2 by one-way ANOVA). CONCLUSIONS: TMR-treated myocardium demonstrates anatomic evidence of regional sympathetic denervation 3 days postoperatively, although myocardium lased with each of the three lasers currently in clinical use is reinnervated by 6 months as evidenced by immunoblotting and immunohistochemistry for TYR-OH. These results suggest that mechanisms other than denervation may account for the long-term reductions in angina seen after TMR.  相似文献   

6.
An experimental model of chronic myocardial hibernation   总被引:9,自引:0,他引:9  
BACKGROUND: Hibernating myocardium describes persistently impaired ventricular function at rest caused by reduced coronary blood flow. However, a realistic animal model reproducing this chronic ischemic state does not exist. The purpose of this study was to explore whether chronic low-flow hibernation could be produced in swine. METHODS: Miniswine underwent 90% stenosis of the left circumflex coronary artery. Positron emission tomography and dobutamine stress echocardiography were performed 3 and 30 days (n = 6) or 14 days (n = 4) after occlusion to evaluate myocardial blood flow and viability. Triphenyl tetrazolium chloride assessed percent infarction. Electron microscopy was used to identify cellular changes characteristic of hibernating myocardium. RESULTS: Positron emission tomography (13N-labeled-ammonia) 3 days after occlusion demonstrated a significant reduction in myocardial blood flow in the left circumflex distribution. This reduced flow was accompanied by increased glucose use (18F-fluorodeoxyglucose), which is consistent with hibernating myocardium. Thirty days after occlusion, positron emission tomography demonstrated persistent low flow with increased glucose use in the left circumflex distribution. Dobutamine stress echocardiography 3 days after occlusion demonstrated severe hypocontractility at rest in the left circumflex region. Regional wall motion improved with low-dose dobutamine followed by deterioration at higher doses (biphasic response), findings consistent with hibernating myocardium. The results of dobutamine stress echocardiography were unchanged 30 days after occlusion. Triphenyl tetrazolium chloride staining (n = 6) revealed a mean of 8% +/- 2% infarction of the area-at-risk localized to the endocardial surface. Electron microscopy (n = 4) 14 days after occlusion demonstrated loss of contractile elements and large areas of glycogen accumulation within viable cardiomyocytes, also characteristic of hibernating myocardium. CONCLUSIONS: Chronic low-flow myocardial hibernation can be reproduced in an animal model after partial coronary occlusion. This model may prove useful in the study of the mechanisms underlying hibernating myocardium and the use of therapies designed to improve blood flow to the heart.  相似文献   

7.
Background. Recent clinical use of vascular endothelial growth factor (VEGF) in the treatment of both myocardial and peripheral ischemia has suggested the possibility of tissue specific coregulation of VEGF and its receptors (eg, kinase domain region [KDR]). The present study was performed to detect the relationship between VEGF and KDR protein levels after acute myocardial and peripheral ischemia.

Methods. Eleven dogs were divided into two groups: peripheral ischemia (n = 6, ligation of major limb arteries) and myocardial ischemia (n = 5, circumflex artery ligation). Muscle biopsy specimens were taken from the perfusion territories of the occluded circumflex artery and limb arteries 3 hours and 6 hours after ligation. Protein levels were determined using Western blot analysis.

Results. In myocardium, VEGF levels increased on average eightfold from baseline (p < 0.05) both 3 hours and 6 hours after occlusion, whereas myocardial KDR levels dropped by about 60% at 3 hours and 80% at 6 hours (p < 0.05). With limb ischemia, both VEGF and KDR levels were significantly elevated at 3 hours.

Conclusions. In acute ischemia, regulation of VEGF and KDR may be controlled differently in cardiac and skeletal muscle. Myocardial KDR levels showed a significant decrease from baseline compared with a significant rise with peripheral ischemia.  相似文献   


8.
Basic fibroblast growth factor in HIV-associated hemolytic uremic syndrome   总被引:4,自引:0,他引:4  
Endothelial injury is the primary pathogenic event leading to the renal thrombotic microangiopathic lesions typical of the hemolytic uremic syndrome (HUS). Basic fibroblast growth factor (bFGF) is an angiogenic growth factor released by injured endothelial cells. In a previous study we have found a significant accumulation of bFGF in human immunodeficiency virus (HIV)-transgenic mice with renal disease. Here we investigated whether bFGF was accumulated in the circulation and kidneys of two children with HIV-associated HUS (HIV-HUS), and studied the mechanisms involved in this process. The plasma levels of bFGF in children with HIV-HUS (124±20 pg/ml) were increased compared with five children with HIV nephropathy (49±6 pg/ml) and twenty HIV-infected children without renal disease (26±4 pg/ml, P<0.001). Immunohistochemistry and receptor binding studies showed that bFGF was accumulated bound to heparan sulfate proteoglycans in renal glomeruli and interstitium surrounding renal tubules in HIV-HUS kidneys. Basic FGF stimulated the proliferation of mesangial and urinary renal tubular epithelial cells isolated from both patients. These findings support the hypothesis that bFGF and its low-affinity binding sites may play a relevant role in modulating the process of glomerular and renal tubular regeneration during the acute stages of HIV-HUS. A follow-up study in a larger sample population is required to confirm these results. Received: 31 July 1998 / Revised: 23 October 1998 / Accepted: 17 November 1998  相似文献   

9.
OBJECTIVE: Growth factor based angiogenesis, with or without cell therapy, is a promising therapeutic modality for patients with coronary artery disease. We compared the relative efficacies of surgically delivered vascular endothelial growth factor (VEGF) and fibroblast growth factor-2 (FGF-2) in a swine model of hypercholesterolemia-induced endothelial dysfunction which captures many of the pathophysiologic abnormalities of human coronary disease. METHODS: Yucatan mini-swine (20-30 kg), fed a high cholesterol diet (total 20 weeks), underwent circumflex ameroid placement to create chronic myocardial ischemia, followed three weeks later by perivascular administration of VEGF (2 microg; n=6), FGF-2 (100 microg; n=6), or placebo (n=7) in the ischemic territory. Normocholesterolemic animals (n=7) served as controls. Four weeks later, endothelial function, collateral-dependent perfusion, as well as myocardial protein and mRNA levels of angiogenic mediators were assessed. RESULTS: Endothelial dysfunction was observed in all hypercholesterolemic animals as impaired microvessel relaxation in response to adenosine diphosphate and VEGF. VEGF administration improved baseline-adjusted collateral-dependent perfusion at rest (-0.03+/-0.05 vs -0.12+/-0.04, VEGF vs placebo, p=0.09), but FGF-2 delivery caused a significantly greater improvement in perfusion compared to either group (+0.15+/-0.03, p<0.05 vs HC-placebo and HC-VEGF) at rest. Molecular analysis revealed increased eNOS expression (135%+/-8%, p=0.03 vs placebo) in all growth factor treated animals and increased expression of FGF-2 receptor, FGFR1 (65+/-26%, p=0.04 vs placebo), in FGF-2 treated animals. No significant changes were demonstrated in other angiogenic mediators including Akt, Syndecan-4. CONCLUSIONS: In the setting of hypercholesterolemic endothelial dysfunction, FGF-2 is more effective than VEGF at enhancing collateral-dependent perfusion and thus, may be a better candidate than VEGF for angiogenic therapy in patients with end-stage CAD.  相似文献   

10.
INTRODUCTION: Deep venous thrombosis (DVT) resolution involves fibrinolysis, neovascularization, and fibrosis. We hypothesized that promoting neovascularization would accelerate DVT resolution. METHODS: A rat model of stasis DVT was produced with proximal ligation of the inferior vena cava (IVC) and all visible tributaries. One microg of interferon inducible protein (IP-10; angiostatic chemokine), basic fibroblast growth factor (bFGF; pro-angiogenic cytokine), epithelial neutrophil activating protein (ENA-78; pro-angiogenic chemokine), or saline solution control was injected into the IVC after ligation, and then via tail vein injection daily until sacrifice at either 4 or 8 days. Peripheral blood counts were measured, and thrombus weight was recorded at sacrifice. Laser Doppler in vivo imaging was used to estimate post-thrombotic IVC blood flow. Immunohistologic assessment of the thrombosed IVC for polymorphonuclear neutrophils (PMNs), monocytes (ED-1), and laminin (neovascular channels) was performed or the thrombus was separated from the IVC and assayed for keratinocyte cytokine (KC), monocyte chemotactic protein-1 (MCP-1), bFGF with enzyme-linked immunosorbent assay (ELISA), and total collagen with a direct colorimetric assay. RESULTS: Peripheral blood and intrathrombus PMNs and monocytes were not significantly different in the treated or control rats. There were no differences in any measure at 4 days. At 8 days, thrombus neovascularity, but not weight or collagen content, was increased in rats treated with bFGF or ENA-78 compared with control rats (17.6 +/- 0.93, 16.2 +/- 0.97 vs 13.2 +/- 0.79; channels/5 high-power fields (hpf; n = 6-10; P <.05). Post DVT IVC blood flow was significantly increased in bFGF-treated rats but not in rats treated with IP-10 or ENA-78, as compared with control rats. Rats treated with ENA-78 had increased intrathrombus bFGF compared with control rats (85 +/- 27 pg/mg protein vs 20 +/- 6 pg/mg protein; n = 6; P <.05), but other mediators were not significantly different in treated rats compared with control rats. CONCLUSION: Pro-angiogenic compounds increase thrombus neovascularization, but this does not correlate with smaller or less fibrotic DVT. Mechanisms other than neovascularization may be more important to hasten DVT dissolution.Clinical relevance Improved therapy for deep venous thrombosis (DVT) will ideally increase the rate of thrombus dissolution and eliminate the bleeding risks of anticoagulation. This study evaluated promoting DVT neovascularization with angiogenic chemokines, and, while successful by experimental measures, this did not translate into smaller DVT. Solely promoting thrombus neovascularization will not likely speed resolution.  相似文献   

11.
BACKGROUND: We investigated heterotopic hepatocyte transplantation on biodegradable polymers as a potential treatment for end-stage liver disease. The primary problem has been insufficient engraftment of transplanted cells partly because of insufficient vascularization. Increasing vascularization through locally delivered angiogenic factors may increase angiogenesis and hepatocyte engraftment. METHODS: We studied the effect of local delivery of basic fibroblast growth factor (bFGF) on angiogenesis and hepatocyte engraftment within tissue-engineered liver constructs. Poly-l-lactic acid discs were fabricated and coated with either a mixture of saline, sucralfate, and Hydron (control group) or bFGF, sucralfate, and Hydron (bFGF group). bFGF release from polymers in vitro was tested using an ELISA. Hepatocytes were isolated from Lewis rats, seeded on control (n=9) or bFGF (n=11) polymers, and implanted into the small bowel mesentery of syngeneic animals. Specimens were harvested after 2 weeks and analyzed for hepatocyte engraftment. Microvascular density was compared between control (n=6) and bFGF groups (n=5). RESULTS: Three hundred twenty-three thousandths of a microgram of bFGF were incorporated per polymer. Greater than 99% of the bFGF was released into solution by 72 hr in vitro. Two weeks after implantation, microvascular density, as measured by capillaries per high-powered field (c/hpf), was significantly greater in the bFGF group (43.8 c/hpf), compared with the control group (30.5 c/hpf; P<0.005). Specimens from the bFGF group (mean engraftment, 61,355 microm2) showed a 2.5-fold increase in hepatocyte engraftment as compared with control (24,197 microm2; P<0.002). CONCLUSIONS: The angiogenic growth factor bFGF can be incorporated into degradable polymers used as delivery devices for hepatocyte transplantation. Implantation of these devices increases angiogenesis into the device and increases hepatocyte engraftment.  相似文献   

12.
OBJECTIVE: Vascular endothelial growth factor acts in part through nitric oxide release, the availability of which is decreased in endothelial dysfunction associated with advanced coronary artery disease. This could explain the relatively disappointing results of vascular endothelial growth factor therapy in clinical studies compared with animal studies. We examined the influence of L-arginine supplementation to vascular endothelial growth factor therapy on myocardial microvascular reactivity and perfusion in a porcine model of endothelial dysfunction. METHODS: Twenty-four pigs were fed either a normal (NORM, n = 8) or high-cholesterol diet with (CHOL-ARG, n = 8) or without (CHOL, n = 8) L-arginine. All pigs underwent ameroid placement on the circumflex artery and then 3 weeks later received surgical vascular endothelial growth factor treatment. Four weeks after treatment, endothelial-dependent coronary microvascular responses and lateral myocardial perfusion were assessed. Endothelial cell density was determined by means of immunohistochemistry. Vascular endothelial growth factor, endothelial nitric oxide synthase, and Akt levels were determined by means of immunoblotting. RESULTS: Pigs from the CHOL group showed endothelial dysfunction in the circumflex territory, which was normalized by L-arginine supplementation. Vascular endothelial growth factor treatment was ineffective in the CHOL group (circumflex/left anterior descending coronary artery blood flow ratios: 0.95 [rest] and 0.74 [pace] before-after treatment; P < .05 compared with the NORM group). Addition of L-arginine restored the angiogenic effect of vascular endothelial growth factor (ratios: 1.13 [rest] and 1.20 [pace]; P < .05) and was associated with increased endothelial cell density, as well as vascular endothelial growth factor, endothelial nitric oxide synthase, and Akt protein levels in the ischemic territory. CONCLUSIONS: L-Arginine supplementation can restore normal endothelium-dependent vasorelaxation and angiogenic response to vascular endothelial growth factor in a swine model of chronic myocardial ischemia with hypercholesterolemia-induced endothelial dysfunction. These findings suggest a putative role for L-arginine in combination with vascular endothelial growth factor therapy for end-stage coronary artery disease.  相似文献   

13.
BACKGROUND: Previous work showed a twofold increase in stiffness of nonischemic myocardium at the base during ischemia of the left anterior wall. Whether the diastolic response of nonischemic myocardium to remote ischemia depends on the localization of the ischemic or the nonischemic area is unknown. METHODS: In dogs with open chests, regional function in ischemic and nonischemic myocardium was assessed (sonomicrometry) before and 5 min after occlusion of the left anterior descending coronary artery (LAD; n = 7) or the left circumflex coronary artery (LCX; n = 7). RESULTS: In nonischemic myocardium at the base, left anterior descending and left circumflex coronary artery occlusion both resulted in a twofold increase in chamber stiffness, whereas contractility and peak lengthening rate remained unchanged. In nonischemic myocardium of the posterior wall, left anterior descending coronary artery occlusion resulted in a significant (P<0.05 vs. control, P<0.05 vs. base) increase (mean+/-SD) in chamber stiffness (25+/-6%), contractility (17+/-5%), and peak lengthening rate (28+/-6%). In nonischemic myocardium at the apex, left circumflex coronary artery occlusion resulted in a significant (P<0.05 vs. control, P<0.05 vs. base) increase in chamber stiffness (15+/-5%), contractility (16+/-4%), and peak lengthening rate (19+/-6%). CONCLUSIONS: Stiffening of remote nonischemic myocardium occurs regardless of the localization of the ischemic and nonischemic area. The systolic and diastolic responses of nonischemic myocardium are not necessarily homogenous but may vary among different regions.  相似文献   

14.
BACKGROUND: Angiogenesis is crucial for tumor growth and metastasis. In several tumors, microvascular density has been shown to correlate with metastasis and aggressiveness. Basic fibroblast growth factor (bFGF) has potent angiogenic activity and has been identified in a wide variety of malignancies including head and neck squamous cell carcinomas (HNSCC). Material and Methods Frozen sections of 50 HNSCC were immunostained for von Willebrand factor and bFGF. Microvessels were counted by light microscopy; bFGF expression was studied at the light and electron microscopic level. Laryngeal cancer cell line HlaC79 was incubated with interferon (IFN) alpha and beta. bFGF quantification was performed by ELISA, and antiproliferative effects were determined by BrdU assay. RESULTS: The mean number of blood vessels (77.5 +/- 23.7) is significantly increased in HNSCC compared with controls (17.1 +/- 5.9). bFGF protein expression was detected in all HNSCC but not in control tissue. An correlation between bFGF expression and mean number of microvessels was found (p <.001). However, no correlation between bFGF expression and the main clinicopathologic features was shown. The long-term exposure (144 hr) of HNSCC cells to noncytostatic concentrations of IFN alpha and beta (>10 U/mL) down-regulated the protein production of bFGF. CONCLUSION: bFGF expression and angiogenesis are enhanced in HNSCC. The higher microvessel density in HNSCC with strong bFGF expression supports the importance of bFGF for tumor angiogenesis. IFN alpha and beta treatment leads to a down-regulation of bFGF expression independent of their antiproliferative effects, suggesting that IFN treatment might result in a reduction of angiogenesis in HNSCC.  相似文献   

15.
16.
OBJECTIVE: Therapeutic angiogenesis using basic fibroblast growth factor (bFGF) in coronary artery disease has been documented in a number of papers. However, the effectiveness is discrepant among documents. In this study, we evaluated the distribution of bFGF in the rat heart by different administration methods, and investigated the efficacy of slow-released administration of bFGF using biodegradable hydrogel microspheres (bFGF microspheres) in a pig infarction model toward an enhanced coronary bypass surgery. METHODS: Heart failure due to myocardial infarction was induced in rats and pigs. In the rat study, free form of bFGF (central venous injection, intracoronary injection, and intramyocardial administration) and bFGF microspheres (intramyocardial administration) were given 4 weeks later. The remaining radioactivity of bFGF in the hearts was estimated 1, 24, and 72 h later. On the other hand, the pigs were randomized into two groups 4 weeks after myocardial infarction. While the control group (n=8) had gelatin hydrogel microspheres with saline, the FGF group (n=8) received bFGF microspheres in the left ventricular (LV) wall. RESULTS: In the rat study, after intramyocardial administration of bFGF microspheres, more bFGF remained in the rat heart 72 h later compared with the other methods (P<0.0001). In the pig study, 4 weeks after the treatment, the FGF group had smaller LV diastolic diameter (48.7+/-5.3 vs. 56.7+/-5.2 mm, P<0.01) than the control group. LV end-systolic elastance was higher in the FGF group (2.96+/-1.2 vs. 1.06+/-0.3 mmHg/ml, P<0.01). In microscopic examinations, many neovessels were found in and around the scar tissue, and the vascular density in the FGF group was significantly higher (61.5+/-18.3 vs. 153.0+/-29.0/mm2, P<0.01). In addition, the infarcted LV walls were less expanded and more thickened in the FGF group. CONCLUSIONS: Biodegradable hydrogel microspheres with bFGF improved LV function and inhibited LV remodeling by angiogenesis in pigs with chronic myocardial infarction. bFGF microspheres into ischemic myocardium may revascularize small ungraftable vessels and may potentially increase distal run-off when applied in coronary bypass surgery.  相似文献   

17.
BACKGROUND: Angiogenic therapy for ischemic tissues using angiogenic growth factors has been reported on an experimental and a clinical level. Electroporation enhances the efficiency of plasmid-based gene transfer in a variety of tissues. The purpose of this study was to evaluate the angiogenic effects of plasmid-based gene transfer using basic fibroblast growth factor (bFGF) in combination with electroporation. MATERIALS AND METHODS: The transfection efficiency of in vivo electroporation in rabbit skeletal muscles was evaluated using pCAccluc+ encoding luciferase. To evaluate the angiogenic effects of bFGF gene in ischemic limb, we constructed a plasmid, pCAcchbFGFcs23, containing human bFGF cDNA fused with the secretory signal sequence of interleukin (IL)-2. Then, 500 microg of pCAcchbFGFcs23 or pCAZ3 (control plasmid) was injected into the ischemic thigh muscles in a rabbit model of hind limb ischemia with in vivo electroporation (bFGF-E(+) group and LacZ-E(+) group). Other sets of animals were injected with pCAcchbFGFcs23 (bFGF-E(-) group) or pCAZ3 (LacZ-E(-) group) without electroporation. Then 28 days later, calf blood pressure ratio, angiographic score, in vivo blood flow, and capillary density in the ischemic limb were measured. RESULTS: Gene transfer efficiency increased markedly with the increase in voltage up to 100 V. Regarding angiogenic responses, calf blood pressure ratio, in vivo blood flow, and capillary density only in the bFGF-E(+) group were significantly higher than those in LacZ-E(-) group. Angiographic scores in the bFGF-E(+) and bFGF-E(-) groups were significantly higher than that in the LacZ-E(-) group. CONCLUSION: These data suggest that in vivo electroporation enhances bFGF gene transfer for the treatment of ischemic limb muscles.  相似文献   

18.
Background: Previous work showed a twofold increase in stiffness of nonischemic myocardium at the base during ischemia of the left anterior wall. Whether the diastolic response of nonischemic myocardium to remote ischemia depends on the localization of the ischemic or the nonischemic area is unknown.

Methods: In dogs with open chests, regional function in ischemic and nonischemic myocardium was assessed (sonomicrometry) before and 5 min after occlusion of the left anterior descending coronary artery (LAD; n = 7) or the left circumflex coronary artery (LCX; n = 7).

Results: In nonischemic myocardium at the base, left anterior descending and left circumflex coronary artery occlusion both resulted in a twofold increase in chamber stiffness, whereas contractility and peak lengthening rate remained unchanged. In nonischemic myocardium of the posterior wall, left anterior descending coronary artery occlusion resulted in a significant (P < 0.05 vs. control, P < 0.05 vs. base) increase (mean +/- SD) in chamber stiffness (25 +/- 6%), contractility (17 +/- 5%), and peak lengthening rate (28 +/- 6%). In nonischemic myocardium at the apex, left circumflex coronary artery occlusion resulted in a significant (P < 0.05 vs. control, P < 0.05 vs. base) increase in chamber stiffness (15 +/- 5%), contractility (16 +/- 4%), and peak lengthening rate (19 +/- 6%).  相似文献   


19.
Basic fibroblast growth factor (bFGF) has been identified in the human prostate. The level of bFGF has been reported to be elevated in benign prostatic hyperplasia (BPH), compared with normal prostate, suggesting that the growth factor may play a role in this disease of the prostate. Basic FGF is a mitogen for cultured human prostate-derived fibroblasts (PF). PF also synthesize bFGF, suggesting that growth regulation of these cells may be under autocrine control. The current study was undertaken to identify factors that affect PF proliferation and bFGF expression. Transforming growth factor β1 (TGF-β1) inhibited PF proliferation. The inhibition by TGF-β1 was partially overcome by bFGF but not by epidermal growth factor (EGF), platelet-derived growth factor (PDGF), insulin-like growth factor type 1 (IGF-1), or insulin. Incubation of PF with TGF-β1 increased bFGF mRNA and immunoreactive bFGF levels in a dose- and time-dependent fashion. None of the other growth factor studies affected bFGF levels. PF were also found to express TGF-β1 mRNA, the level of which was increased two- to fivefold by TGF-β1. These observations suggest that PF proliferation is controlled by the interaction of two different growth factors. It is possible that bFGF/TGF-β imbalance in favor of cell proliferation promotes prostatic stromal hyperplasia. © 1993 Wiley-Liss, inc.  相似文献   

20.
OBJECTIVES: Donor airway ischemia is a significant problem after tracheal replacement with homograft or lung transplantation. Omentopexy is the usual countermeasure to prevent or overcome the ischemia of the airway but this is frequently not sufficient. This study was designed to investigate whether basic fibroblast growth factor (bFGF) can augment tracheal revascularization and its epithelial regeneration in rabbit tracheal autograft. METHODS: About half the length (44-45%) of the trachea of New Zealand white rabbit were autotransplanted in the original position immediately after harvest. In group I (n=15, control group), cervical tracheal autotransplantation was done only. In group II (n=15, omentopexy group), the cervical tracheal autograft was wrapped with subcutaneously advanced omentum. In group III (n=15, bFGF group), 1 microg of bFGF was applied evenly on the graft after the completion of anastomosis. Five animals in each group were examined on the 3rd, 7th and 14th postoperative days. Three rings of trachea were taken at the mid portion of the graft and the supra-carinal untouched normal trachea in each. The effect of revascularization was assessed by measuring the uptake of human serum albumin labeled with 99m technetium, which was injected into the left atrium just before sacrifice. The epithelial regeneration was assessed by means of light microscopic examination. RESULTS: The proportion of perfusion of the graft to normal trachea was much higher in group III (P<0.05) on day 3 (25.4, 27.8 and 54.7% in groups I, II and III, respectively), but there was no difference on the 7th and 14th days. The epithelial regeneration was better in group III (P<0.05) than in the other groups on day 3, and was better in groups II and III than group I on day 7. CONCLUSION: we concluded that bFGF enhances the revascularization and epithelial regeneration of the tracheal autograft, especially during their early phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号