首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
2.
Brain derived neurotrophic factor (BDNF) expression is significantly reduced in the Parkinson's disease substantia nigra. This neurotrophin has potent affects on dopaminergic neuron survival protecting them from the neurotoxins MPTP and 6-hydroxydopamine (6-OHDA) commonly used to create animal models of Parkinson's disease and also promoting dopaminergic axonal sprouting. In this study, we demonstrate that an antisense oligonucleotide infusion (200 nM for 28 days) to prevent BDNF production in the substantia nigra of rats mimics many features of the classical animal models of Parkinson's disease. 62% of antisense treated rats rotate (P < or = 0.05) in response to dopaminergic receptor stimulation by apomorphine. 40% of substantia nigra pars compacta tyrosine hydroxylase immunoreactive neurons are lost (P < or = 0.00001) and dopamine uptake site density measured by (3)H-mazindol autoradiography is reduced by 34% (P < or = 0.005). Loss of haematoxylin and eosin stained nigral neurons is significant (P < or = 0.0001) but less extensive (34%). These observations indicate that loss of BDNF expression leads both to down regulation of the dopaminergic phenotype and to dopaminergic neuronal death. Therefore, reduced BDNF mRNA expression in Parkinson's disease substantia nigra may contribute directly to the death of nigral dopaminergic neurons and the development of Parkinson's disease.  相似文献   

3.
BACKGROUND:Parkinson's disease (PD) is a chronic, progressive neurodegenerative central nervous system disease which occurs in the substantia nigra-corpus striatum system. The main pathological feature of PD is selective dopaminergic neuronal loss with distinctive Lewy bodies in populations of surviving dopaminergic neurons. In the clinical and neuropathological diagnosis of PD, brain-derived neurotrophic factor mRNA expression in the substantia nigra pars compacta is reduced by 70%, and surviving dopaminergic neurons in the PD substantia nigra pars compacta express less brain-derived neurotrophic factor (BDNF) mRNA (20%) than their normal counterparts. In recent years, knowledge surrounding the relationship between neurotrophic factors and PD has increased, and detailed pathogenesis of the role of neurotrophic factors in PD becomes more important.  相似文献   

4.
Supranigral infusions of the TrkB-receptor-preferring neurotrophins BDNF or NT-4/5 augment locomotor behaviours, pars compacta firing rates and striatal dopamine metabolism. However these actions of BDNF or NT-4/5 may involve other neurotransmitter systems in addition to dopamine neurons in the substantia nigra. We thus investigated the effects of 2-week supranigral infusions of BDNF or NT-4/5 on rat peptidergic striatonigral neurons and nigral GABAergic neurons. Radioimmunoassay revealed that BDNF and NT-4/5 elevated substantia nigra levels of substance P (by 46 and 57% respectively) and substance K (by 64 and 81%). In addition, BDNF elevated substance K by 59% in a nigral projection area, the superior colliculus. NT-4/5 elevated dynorphin A in the substantia nigra (by 52%) and met -enkephalin in substantia nigra and globus pallidus (by 89%). None of these neuropeptides were altered in the striatum. Consistent with these findings, supranigral infusions of BDNF elevated the mRNA for preprotachykinin A in striatal neurons. In the same animals, glutamic acid decarboxylase (GAD)67 mRNA was increased by 48% in the substantia nigra. The cross-sectional area of GAD67-positive neuronal somata in the BDNF-infused nigra was increased by 59%, and 70% of nigral GABAergic neurons had a cross-sectional area >550 μm2, whereas 95% of the neurons in vehicle-infused animals had cross-sectional areas <550 μm2. Thus, supranigral infusions of BDNF or NT-4/5 increase tachykinin mRNA and protein levels within striatonigral neurons and increase the size and GAD67 mRNA expression levels of nigral GABAergic neurons. These results suggest that BDNF or NT-4/5 may modify the output of the basal ganglia not only through effects on dopamine neurons but also by increasing neurotransmission in striatonigral peptidergic and nigral GABAergic pathways.  相似文献   

5.
The distribution of substance P (SP), tyrosine hydroxylase (TH), and glutamic acid decarboxylase (GAD) immunoreactivity in the substantia nigra of the rat was studied by means of an ultrastructural double-labeling immunocytochemical method. Direct synaptic contact between SP-immunoreactive terminals and GAD-positive nigral neurons was more often observed in the pars lateralis than the pars reticularis and was rarely observed in the pars compacta. Substance P-positive terminals also formed synapses with cell bodies and dendrites of TH-positive, dopaminergic neurons in the pars compacta and pars reticulata. Multiple SP-immunoreactive terminals were often observed with symmetrical and, less frequently, asymmetrical synapses on individual TH-containing dendrites. Evidence of SP-containing terminals contacting both GABAergic and dopaminergic neurons in the substantia nigra suggests a direct excitatory action upon nigral projection neurons.  相似文献   

6.
Lesions of the substantia nigra of rats were made by local injections of 6-hydroxydopamine. The degenerative changes in the brain were studied by means of the Fink-Heimer technique. Survival times of 2 or 3 days were optimal for the demonstration of degeneration. Extensive necrotic changes were observed in neurons of the substantia nigra pars compacta following 6-hydroxydopamine injections; control injections did not produce necrosis. Dense fields of terminal degeneration were observed in the caudate of the 6-hydroxydopamine treated rats but not in the caudates of the control animals. A comparison was made on the amount of degeneration present in the ventral nucleus of the thalamus after three types of lesions: (a) nigral injection of 6-hydroxydopamine; (b) nigral injection of carrier solution (control); and (c) electrolytic lesion of the substantia nigra. Lesions (a) and (b) produced only small amounts of thalamic degeneration, while lesion (c) produced extensive terminal degeneration in the ventral thalamic nucleus. The toxic effects of nigral injections of 6-hydroxydopamine were confined to the dopaminergic neurons of the substantia nigra pars compacta; nondopaminergic neurons of the substantia nigra pars reticulata, and their thalamic projection field, appeared normal in silver stains.  相似文献   

7.
We have performed unilateral transection of the medial forebrain bundle (MFB) and studied BDNF mRNA and trkB mRNA levels at different postlesion times in the nigrostriatal system by means of in situ hybridization. BDNF mRNA levels were transiently induced in the substantia nigra pars compacta at 1 day postaxotomy. The disposition of BDNF mRNA expressing cells at this postlesion time in substantia nigra mimicked that of the dopaminergic neurons expressing the mRNA for the dopamine transporter. TrkB mRNA levels remained unaltered in the ventral mesencephalon at the different postlesion times examined-1 to 14 days. In contrast, trkB mRNA levels were significantly induced in the striatum at the longer postlesion time examined-14 days-when all neurodegenerative events are completed. It is becoming apparent that nigral BDNF mRNA levels are anterogradely transported to its target tissue in striatum. However, following axotomy, the lesion site represents a second potential target for BDNF action. Consequently, we also analyzed the pattern of mRNA expression for BDNF and trkB at the lesion site where dopaminergic axons are disconnected. There, we found notable inductions of both BDNF mRNA and trkB mRNA levels at 4 days postaxotomy. BDNF mRNA expressing cells were confined at the site of axotomy, which coincided precisely to that showing induction of trkB mRNA. Altogether, our results anticipate promising trophic roles of BNDF in the injured nigrostriatal system.  相似文献   

8.
Baker SA  Stanford LE  Brown RE  Hagg T 《Brain research》2005,1039(1-2):177-188
Brain-derived neurotrophic factor (BDNF) promotes survival of injured dopaminergic nigrostriatal neurons of the adult rodent substantia nigra pars compacta, as well their development in vitro. BDNF deficiency may play a role in Parkinson's disease, as the surviving dopaminergic nigrostriatal neurons have reduced levels of BDNF, and a BDNF gene polymorphism is present in a subpopulation of patients. Here, we investigated whether a lack of BDNF in early postnatal BDNF-/- mice or a chronic 50% reduction in BDNF levels in aging BDNF+/- mice would affect the survival of the dopaminergic nigrostriatal neurons. In general terms, BDNF-/- and BDNF+/- mice had morphologically and quantitatively normal nigrostriatal neurons at any time between postnatal day 14 (P14) and 18 months, when compared to their wild-type littermates. BDNF-/- mice (P14 and P21 only) had fewer dopaminergic dendrites in the substantia nigra, suggesting that BDNF plays a role in phenotypic maturation, but not in neuronal birth or survival. BDNF-/- mice also had aberrant tyrosine hydroxylase (TH) positive cell bodies in the pars reticulata. During adulthood and aging, BDNF+/- mice performed equally well as their wild-type littermates in tests of motor coordination, and both showed aging-related decreases in the size of the dopaminergic neurons as well as in motor coordination. These results suggest that chronic deficits in BDNF alone do not affect survival or function of dopaminergic nigrostriatal neurons during aging or potentially even in Parkinson's disease.  相似文献   

9.
The survival of injured adult dopaminergic substantia nigra pars compacta neurons can be promoted by various neurotrophic factors. Most neurotrophic factor receptors are activated by intracellular tyrosine phosphorylation upon ligand binding and are subsequently inactivated or dephosphorylated by protein tyrosine phosphatases. This raised the possibility that tyrosine phosphatase inhibition might improve neuronal survival. Here, we infused the stable water-soluble tyrosine phosphatase-specific inhibitor, peroxovanadium [potassium bisperoxo(1,10-phenanthroline)oxovanadate (V) (bpV(phen))], for 14 days close to the substantia nigra starting immediately after a unilateral moderate injury by injection of the neurotoxin 6-hydroxydopamine (6-OHDA) into the midbrain of adult Sprague-Dawley rats. The dopaminergic nigrostriatal neurons were identified by retrograde tracing with fluorogold 7 days prior to the injury. With infusion of 3 or 10 microm peroxovanadium, 75% of these neurons survived compared to 45% in vehicle-infused rats. Degeneration of the dopaminergic projections to the neostriatum was also reduced by 10 microm peroxovanadium. Twenty minutes after an acute injection of peroxovanadium into the substantia nigra, increased tyrosine phosphorylation in Western blots of nigral extracts was seen in the same protein bands as after injections of brain-derived neurotrophic factor (BDNF) or NT-4. This suggests that peroxovanadium enhances endogenous neurotrophic signalling resulting in improved neuronal survival. The neuroprotective effects of this small molecule protein tyrosine phosphatase inhibitor represent a proof-of-principle for a novel treatment strategy in a model for Parkinson's disease.  相似文献   

10.
Progressive degeneration of dopaminergic neurons in the substantia nigra pars compacta is the main histopathological characteristic of Parkinson's disease. We studied the electrophysiological characteristics of the spontaneous activity of substantia nigra pars compacta dopaminergic neurons in rats with a partial, unilateral, 6-hydroxydopamine lesion of the nigrostriatal pathway. In addition, the effects of subthalamotomy and prolonged levodopa treatment on the activity of dopaminergic neurons were investigated. As a result of the lesion ( approximately 50% neuronal loss), the number of spontaneously active neurons was significantly reduced. Basal firing rate, burst firing and responsiveness to intravenously administered apomorphine remained unchanged. In contrast, the variation coefficient, a measure of interspike interval regularity, was significantly increased. Ibotenic acid (10 microg) lesion of the ipsilateral subthalamic nucleus in lesioned rats did not modify the electrophysiological parameters. However, prolonged levodopa treatment (100 mg/kg/day + benserazide 25 mg/kg/day, 14 days) reversed the irregularity observed in cells from lesioned rats, while it induced an irregular firing pattern in cells from intact rats. Our results using an experimental model of moderate Parkinson's disease indicate that surviving substantia nigra pars compacta dopaminergic neurons fire irregularly. In this model, subthalamotomy does not modify the firing pattern while levodopa treatment efficiently restores normal firing of SNpc neurons and does not appear to be toxic to them.  相似文献   

11.
Feng Z  Li D  Fung PC  Pei Z  Ramsden DB  Ho SL 《Neuroreport》2003,14(15):1927-1929
The primary lesion in Parkinson's disease is the death of dopaminergic neurons in the substantia nigra. The role of cyclooxygenase (COX)-2 in the etiology of Parkinson's disease was explored using COX-2 gene knockout mice. Mortality after injection of 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine (MPTP, a chemical known to cause parkinsonism in humans) in heterozygous COX-2-deficient mice was lower than that in wild-type mice. The number of tyrosine hydroxylase immunoreactive neurons in the substantia nigra pars compacta of MPTP-treated wild-type mice declined to a greater extent than in heterozygous mice. Inhibition of COX-2 protein expression decreased the lesion caused by MPTP and protected the dopaminergic neurons in substantia nigra pars compacta. This result suggested that inhibition of COX-2 has potential therapeutic implications.  相似文献   

12.
In order to investigate whether striatal dopaminergic mechanisms are involved in the behavioural expression of the GABAergic mechanisms within the pars reticulata of the substantia nigra, apomorphine or haloperidol were bilaterally administered into the caudate nucleus of cats pretreated with a unilateral injection of picrotoxin or muscimol into the nigral pars reticulata. Although the doses selected for the intracaudate injections have been shown to be maximally effective in affecting the behavioural expression of the caudate function, the pharmacological treatment of the caudate nucleus did not produce any significant change in the behaviour elicited from the nigra; neither the picrotoxin-induced asymmetric posturing, asymmetric circling, freezing and hind leg disorders nor the muscimol-induced asymmetric posturing, asymmetric spinning and stereotyped licking were significantly affected. The latter behaviour was absent in animals with a partial or total destruction of the nigral pars reticulata.As the behavioural expression of the nigral pars reticulata differed completely from the asymmetric head twisting known to be characteristic for the caudate nucleus, it is suggested that the behavioural expression of the caudate nucleus requires a main output station elsewhere in the brain. Furthermore, the present results demonstrate that the nigral pars reticulata does not form part and parcel of a feedback system that simply transmits incoming signals from the caudate nucleus towards the pars compacta, i.e. the origin of the dopaminergic, nigrostriatal system. Finally, the present study demonstrates that the dopaminergic activity within the caudate nucleus may only modify, but certainly not determine, the behavioural expression of the nigral pars reticulata. It is concluded that the nigral pars reticulata not only transmits, but also transforms its incoming signals.  相似文献   

13.
Hypoxia-ischemia during the perinatal period causes excitotoxic lesions in sensitive brain areas, such as the striatum. The impact of hypoxia-ischemia on nigral neurons is less well known. Hypoxia alone, a less traumatic event without overt histological sequelae, has neuroprotective properties when used as a preconditioning stimulus. In some pathologies, injured neurons of the nigrostriatal system in the adult may be the result of neurodegenerative processes that originated at early stages of life. The effects of hypoxia on the immunoreactivity to tyrosine hydroxylase of the dopaminergic neurons of the substantia nigra pars compacta and the effects of a period of hypoxia previous to an excitotoxic lesion were examined by means of histological and Western blot methods, at immediate and late periods of the episode. By counting the number of tyrosine hydroxylase-stained neurons and c-fos-positive nuclei a short period after injection of quinolinic acid into the striatum, we observed that hypoxia induced a more marked decrease in the number of tyrosine hydroxylase-stained neurons. On the contrary, c-fos-positive profiles decreased in the substantia nigra pars reticulata of the quinolinic acid-injected animals after the preconditioning hypoxia. Hypoxia alone did not affect the number of tyrosine hydroxylase-positive neurons in the pars compacta nor did hypoxia induce c-fos expression in the pars reticulata. More sensitive Western blot analysis of tissue blocks that included the whole substantia nigra demonstrated the same trend as the immunohistochemical results. We conclude that the responses of the substantia nigra neurons to hypoxia are regionalized and potential neuroprotective effects may depend on the vulnerability of each neuronal type.  相似文献   

14.
This study investigated the effects of curcumin on nigrostriatal dopaminergic (DA) neurons and glial response in 6-hydroxydopamine (6-OHDA) hemiparkinsonian mice. Following unilateral intrastriatal 6-OHDA injection, mice were daily injected with curcumin for seven days, beginning on the day of lesion. Seven days after 6-OHDA lesioning, sections from the striatum and the substantia nigra pars compacta (SNpc) were collected and immunohistochemically stained for DA neurons and reactive glia. Curcumin decreased 6-OHDA-induced loss of nigral tyrosine hydroxylase-immunoreactive (TH-IR) neurons and striatal TH-IR fibers. The neuroprotection was coincided with a significant attenuation of microglial and astroglial reaction in the SNpc and the striatum. These results suggest that the neuroprotective effects of curcumin in 6-OHDA-lesioned mice may be mediated through its anti-inflammatory properties or direct protection on nigral DA neurons, thereby reducing neuronal injury-induced glial activation.  相似文献   

15.
Brain-derived neurotrophic factor (BDNF) is expressed in dopaminergic neurons of the substantia nigra pars compacta (SNpc) and the ventral tegmental area and provides trophic support for these neurons in vitro. To study the effects of BDNF on the nigrostriatal dopaminergic system in vivo, we administered a single, unilateral injection of BDNF into the medial SNpc of rats and evaluated rotational behavior, striatal levels of dopamine and metabolites, and number of dopaminergic neurons in the SNpc. We found that a single injection of 2 or 3 μg of BDNF, but not of vehicle, caused a persistent increase in the net number of amphetamine-induced rotations/min contraversive to the site of injection. The pattern of rotation is consistent with increased activity of the nigrostriatal dopaminergic system on the side of injection. The amphetamine-induced contraversive rotation could be blocked by administration of the dopaminergic antagonist haloperidol. Apomorphine, a direct-acting dopaminergic agonist, did not induce rotation. Levels of dopamine in the striatum and number of dopaminergic neurons in the SNpc were similar in BDNF- and vehicle-treated animals. The increase in contraversive rotations persisted for up to 12 months after a single injection of BDNF.  相似文献   

16.
Summary Bromocriptine reduces the spontaneous firing rate of neurons in the pars compacta of the substantia nigra but does not change the electrical activity of the neurons located in the pars reticulata. On the other hand, bromocriptine induces contralateral circling behaviour in rats with unilateral 6-hydroxydopamine nigral lesion. This increased motor activity follows an initial period of hypomotility. The decrease of the neuronal firing rate in the pars compacta of the substantia nigra coincides with the hypomotility observed in the lesioned rats.  相似文献   

17.
Reduced BDNF mRNA expression in the Parkinson's disease substantia nigra   总被引:10,自引:0,他引:10  
Brain-derived neurotrophic factor (BDNF) has potent effects on survival and morphology of dopaminergic neurons and thus its loss could contribute to death of these cells in Parkinson's disease (PD). In situ hybridization revealed that BDNF mRNA is strongly expressed by dopaminergic neurons in control substantia nigra pars compacta (SNpc). In clinically and neuropathologically typical PD, SNpc BDNF mRNA expression is reduced by 70% (P = 0.001). This reduction is due, in part, to loss of dopaminergic neurons which express BDNF. However, surviving dopaminergic neurons in the PD SNpc also expressed less BDNF mRNA (20%, P = 0.02) than their normal counterparts. Moreover, while 15% of control neurons had BDNF mRNA expression >1 SD below the control mean, twice as many (28%) of the surviving PD SNpc dopaminergic neurons had BDNF mRNA expression below this value. This 13% difference in proportions (95% CI 8-17%, P < or = 0.000001) indicates the presence of a subset of neurons in PD with particularly low BDNF mRNA expression. Moreover, both control and PD neurons displayed a direct relationship between the density of BDNF mRNA expression per square micrometer of cell surface and neuronal size (r(2) = 0.93, P 相似文献   

18.
Goto A  Doering L  Nair VD  Mishra RK 《Brain research》2001,900(2):314-319
The 40 kDa catecholamine regulated protein (CRP40) has been shown to covalently bind catcholamines in vitro. In this report we provide evidence for CRP40 localization in the dopaminergic nigrostriatal pathway. Using double labeling immunohistochemistry, CRP40 was detected in the majority of substantia nigra pars compacta and striatal neurons. In addition, CRP40 was also present in tyrosine hydroxylase immunonegative neurons. Subcellular localization of CRP40 shows a predominant nuclear presence in striatal neurons while distinct outlining of the nucleus and cell body staining were seen more readily in nigral neurons. These findings suggest that CRP40 may have multiple functions in a variety of neurons in the central nervous system.  相似文献   

19.
The substantia nigra receives a strong GABAergic input from the ipsilateral striatum and globus pallidus. Nigral GABAergic synaptic interactions have been described in the pars compacta (SNC) and pars reticulata (SNR) but not in the pars lateralis (SNL). The SNR and particularly the SNL are the nodal points of the GABAergic nigrotectal pathway. The present study analyzes the synaptic connections of GABAergic and dopaminergic neurons in each of the divisions of the substantia nigra by employing a double-labeling immunocytochemical technique at the light and electron microscope levels. Glutamic acid decar☐ylase (GAD)-containing terminals make symmetrical synaptic contacts with dopaminergic neurons in the SNC and SNR. Neurons that contain GAD also receive a GABAergic input in the SNR and SNL. The proportion of GAD-GAD contacts appears to be highest in the SNL where virtually all GAD-positive terminals are found to be in synaptic contact with or apposed to GAD positive profiles. This study demonstrates a strong GABAergic input onto nigral dopaminergic neurons and GABAergic neurons in the SNR and SNL. This GABAergic influence which is ontensibly striatal or pallidal in origin is particularly prominent in relation to the SNL-mediated nigro-collicular pathway.  相似文献   

20.
The expression pattern of metabotropic glutamate receptor 1alpha (mGluR1alpha) was immunohistochemically investigated in substantia nigra dopaminergic neurons of the macaque monkey. In normal monkeys, mGluR1alpha immunoreactivity was weakly observed in the dorsal tier of the substantia nigra pars compacta (SNc-d) where calbindin-D28k-containing dopaminergic neurons invulnerable to parkinsonian degeneration are specifically located. On the other hand, mGluR1alpha was strongly expressed in the ventral tier of the substantia nigra pars compacta (SNc-v). In monkeys treated with the parkinsonism-inducing drug, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), mGluR1alpha expression was decreased in dopaminergic neurons in the SNc-v that were spared its toxic action. These results suggest that mGluR1alpha expression may be involved at least partly in the vulnerability of dopaminergic neurons to parkinsonian insults.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号