首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
IntroductionDespite the great potential of targeted α-radioimmunotherapy (RIT) as demonstrated by pre-clinical and clinical trials, limited progress has been made on the improvement of chelation chemistry for 212Bi and 213Bi. A new bifunctional ligand 3p-C-NETA was evaluated for targeted α RIT using 212Bi and 213Bi.MethodsRadiolabeling of 3p-C-NETA with 205/6Bi, a surrogate of 212Bi and 213Bi, was evaluated at pH 5.5 and room temperature. In vitro stability of the 205/6Bi-3p-C-NETA-trastuzumab conjugate was evaluated using human serum (pH 7, 37 °C). Immunoreactivity and specific activity of the 205/6Bi-3p-C-NETA-trastuzumab conjugate were measured. An in vivo biodistribution study was performed to evaluate the in vivo stability and tumor targeting properties of the 205/6Bi-3p-C-NETA-trastuzumab conjugate in athymic mice bearing subcutaneous LS174T tumor xenografts.ResultThe 3p-C-NETA-trastuzumab conjugate was extremely rapid in complexing with 205/6Bi, and the corresponding 205/6Bi-3p-C-NETA-trastuzumab was stable in human serum. 205/6Bi-3p-C-NETA-trastuzumab was prepared with a high specific activity and retained immunoreactivity. 205/6Bi-3p-C-NETA-trastuzumab conjugate displayed excellent in vivo stability and targeting as evidenced by low normal organ and high tumor uptake.ConclusionThe results of the in vitro and in vivo studies indicate that 3p-C-NETA is a promising chelator for RIT applications using 212Bi and 213Bi. Further detailed in vivo evaluations of 3p-C-NETA for targeted α RIT are warranted.  相似文献   

2.
IntroductionIn spite of recently approved B-RAF inhibitors and immunomodulating antibodies, metastatic melanoma has poor prognosis and novel treatments are needed. Melanoma stem cells (MSC) have been implicated in the resistance of this tumor to chemotherapy. Recently we demonstrated in a Phase I clinical trial in patients with metastatic melanoma that radioimmunotherapy (RIT) with 188-Rhenium(188Re)-6D2 antibody to melanin was a safe and effective modality. Here we investigated the interaction of MSC with RIT as a possible mechanism for RIT efficacy.MethodsMice bearing A2058 melanoma xenografts were treated with either 1.5 mCi 188Re-6D2 antibody, saline, unlabeled 6D2 antibody or 188Re-labeled non-specific IgM.ResultsOn Day 28 post-treatment the tumor size in the RIT group was 4-times less than in controls (P < 0.001). The tumors were analyzed by immunohistochemistry and FACS for two MSC markers — chemoresistance mediator ABCB5 and H3K4 demethylase JARID1B. There were no significant differences between RIT and control groups in percentage of ABCB5 or JARID1B-positive cells in the tumor population. Our results demonstrate that unlike chemotherapy, which kills tumor cells but leaves behind MSC leading to recurrence, RIT kills MSC at the same rate as the rest of tumor cells.ConclusionsThese results have two main implications for melanoma treatment and possibly other cancers. First, the susceptibility of ABCB5 + and JARID1B + cells to RIT in melanoma might be indicative of their susceptibility to antibody-targeted radiation in other cancers where they are present as well. Second, specifically targeting cancer stem cells with radiolabeled antibodies to ABCB5 or JARID1B might help to completely eradicate cancer stem cells in various cancers.  相似文献   

3.
IntroductionMonitoring the effectiveness of therapy early and accurately continues to be challenging. We hypothesize that determination of Human Epidermal Growth Factor Receptor 2 (HER2) mRNA in malignant breast cancer (BC) cells by positron emission tomography (PET) imaging, before and after treatment, would reflect therapeutic efficacy.MethodWT4340, a peptide nucleic acid (PNA) 12-mer complementary to HER2 mRNA was synthesized together with -CSKC, a cyclic peptide, which facilitated internalization of the PNA via IGFR expressed on BC cells, and DOTA that chelated Cu-64. Mice (n = 8) with BT474 ER +/HER2+ human BC received doxorubicin (DOX, 1.5 mg/kg) i.p. once a week for six weeks. Mice (n = 8) without DOX served as controls. All mice were PET imaged with F-18-FDG and 48 h later with Cu-64-WT4340. PET imaging were performed before and 72 h after each treatment. Standardized uptake values (SUVs) were determined and percent change calculated. Animal body weight (BW) and tumor volume (TV) were measured.ResultsSUVs for Cu-64-WT4340 after DOX treatment declined by 54% ± 17% after the second dose, 41% ± 15% after the fourth dose, and 29% ± 7% after the sixth dose, compared with 42% ± 22%, 31% ± 18%, and 13% ± 9% (p < 0.05) for F-18-FDG. In untreated mice, the corresponding percent SUVs for Cu-64-WT4340 were 145% ± 82%, 165% ± 39%, and 212% ± 105% of pretreatment SUV, compared with 108% ± 28%, 151% ± 8%, and 152% ± 35.5%, (p < 0.08) for F-18-FDG. TV in mice after second dose was 114.15% ± 61.83%, compared with 144.7% ± 64.4% for control mice. BW of DOX-treated mice was 103.4% ± 7.6% of pretreatment, vs. 100.1% ± 4.3% for control mice.ConclusionTherapeutic efficacy was apparent sooner by molecular PET imaging than by determination of reduction in TV.  相似文献   

4.
IntroductionThe gastrin-releasing peptide receptor (GRPR) was shown to be expressed with high density on several types of cancers. Radiolabeled peptides for imaging and targeted radionuclide therapy have been developed. In this study, we evaluated the potential of statine-based bombesin antagonists, conjugated to 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) through oligoethyleneglycol spacers, labeled with 177Lu and we determined the effect of polyethyleneglycol (PEG) spacer length on in vitro and in vivo properties.MethodsThe bombesin antagonists were synthesized on solid phase using Fmoc chemistry; the spacers Fmoc-dPEGx-OH (x = 2, 4, 6 and 12) and the DOTA(tBu)3 were coupled using a standard procedure. The peptides were labeled with 177Lu and evaluated in vitro (lipophilicity, serum stability, internalization and binding affinity assays). Biodistribution studies were performed in PC-3 tumor-bearing nude mice.ResultsThe solid-phase synthesis was straightforward with an overall yield ranging from 30% to 35% based on the first Fmoc cleavage. The hydrophilicity increased with spacer length (logD: − 1.95 vs − 2.22 of PEG2 and PEG12 analogs, respectively). There is a tendency of increased serum stability by increasing the spacer length (T1/2 = 246 ± 4 and 584 ± 20 for PEG2 and PEG6 analogs, respectively) which seems to reverse with the PEG12 analog. The IC50 values are similar with the only significant difference of the PEG12 analog. The 177Lu-labeled PEG4 and PEG6 conjugates showed similar pharmacokinetic with high tumor uptake and excellent tumor-to-kidney ratios (7.8 and 9.7 at 4 h for the PEG4 and PEG6 derivatives, respectively). The pancreas uptake was relatively high at 1 h but it shows fast washout (0.46% ± 0.02% IA/g and 0.29% ± 0.08% IA/g already at 4 h).ConclusionAmong all the studied analogs the PEG4 and PEG6 showed significantly better properties. The very high tumor-to-non-target organ ratios, in particular tumor-to-kidney ratios, already at early time point will be important in regard to safety concerning kidney toxicity.  相似文献   

5.
IntroductionAs a first trial for in vivo imaging of β-secretase (BACE1) in Alzheimer's disease brain, we applied a novel non-peptidergic small molecule which has high affinity to the enzyme, naphthalene-1-carboxylic acid (3′-chloro-4′-fluoro-4-piperazin-1-yl-biphenyl-3-yl)amide (NCFB) into positron emission tomography (PET) probe. In the current study, N-11C-methylated compound of NCFB, [11C]Me-NCFB was synthesized and evaluated for the visualization of BACE1 in brain.MethodsBACE1 inhibitory constant was measured by FRET assay. [11C]Me-NCFB was synthesized from NCFB with [11C]methyl triflate. To evaluate properties of [11C]Me-NCFB, log P value, stability in mouse plasma and brain uptake index were measured. The biodistribution in 6-week-old ddY mice was also studied.ResultsBACE1 inhibitory constant showed an affinity of Me-NCFB to the enzyme (IC50 = 2.3 ± 0.80 μM). [11C]Me-NCFB was synthesized in a 3.0% ± 0.55% decay-corrected radiochemical yield. [11C]Me-NCFB showed high lipophilicity, high stability in mouse plasma and blood–brain barrier (BBB) permeability. Injected to 6-week-old ddY mice, [11C]Me-NCFB penetrated BBB and was retained in the brain (0.79% ± 0.22% ID/g at 2 min and 0.75% ± 0.08% ID/g at 60 min after injection, respectively), moreover, rapid blood clearance was observed.Conclusion[11C]Me-NCFB could have a potential as a PET probe for the imaging of BACE1 in the brain.  相似文献   

6.
Aminopeptidase N (APN) is selectively expressed on many tumors and the endothelium of tumor neovasculature, and may serve as a promising target for cancer diagnosis and therapy. Asparagine–glycine–arginine (NGR) peptides have been shown to bind specifically to the APN receptor and have served as vehicles for the delivery of various therapeutic drugs in previous studies. The purpose of this study was to synthesize and evaluate the efficacy of a 68Ga-labeled NGR peptide as a new molecular probe that binds to APN.MethodsNGR peptide was conjugated with 1,4,7,10-tetraazacyclododecane-N,N’,N”,N”’-tetraacetic acid (DOTA) and labeled with 68Ga at 95 °C for 10 min. In vitro uptake and binding analysis was performed with A549 and MDA-MB231 cells. Biodistribution of 68Ga-DOTA-NGR was determined in normal mice by dissection method. 68Ga-DOTA-NGR PET was performed in A549 and MDA-MB231 xenografts, and included dynamic and static imaging. APN expression in tumors and new vasculatures was analyzed by immunohistochemistry.ResultsThe radiochemical purity of 68Ga-DOTA-NGR was 98.0% ± 1.4% with a specific activity of about 17.49 MBq/nmol. The uptake of 68Ga-DOTA-NGR in A549 cells increased with longer incubation times, and could be blocked by cold DOTA-NGR, while no specific uptake was found in MDA-MB231 cells. In vivo biodistribution studies showed that 68Ga-DOTA-NGR was mainly excreted from the kidney, and rapidly cleared from blood and nonspecific organs. MicroPET imaging showed that high focal accumulation had occurred in the tumor site at 1 h post-injection (pi) in A549 tumor xenografts. A significant reduction of tumor uptake was observed following coinjection with a blocking dose of DOTA-NGR, whereas only mild uptake was found in MDA-MB231 tumor xenografts. Tumor uptake, measured as the tumor/lung ratio, increased with time peaking at 12.58 ± 1.26 at 1.5 h pi. Immunohistochemical staining confirmed that APN was overexpressed on A549 cells and neovasculature.Conclusions68Ga-DOTA-NGR was easily synthesized and showed favorable biodistribution and kinetics. 68Ga-DOTA-NGR could also specifically bind to the APN receptor in vitro and in vivo, and might be a potential molecular probe for the noninvasive detection of APN-positive tumors and neovasculature.  相似文献   

7.
IntroductionThe aim of the present study was to develop and demonstrate a viable method for the reactor production of 169Er with acceptable specific activity using moderate flux reactor and its purification from 169Yb following electrochemical pathway based on mercury-pool cathode to avail 169Er in radionuclidically pure form essential for its therapeutic use.MethodsErbium-169 was produced in reactor by neutron bombardment of isotopically enriched (98.2% in 168Er) erbium target at a thermal neutron flux of ~ 8 × 1013 n.cm- 2.s- 1 for 21 d. A thorough optimization of irradiation parameters including neutron flux, irradiation time and target cooling time was carried out. The influence of different experimental parameters for the quantitative removal 169Yb from 169Er was investigated, optimized and based on the results; a two-cycle electrochemical separation procedure was adopted. The suitablility of purified 169Er for application in radiation synovectomy and bone pain palliation was ascertained by carrying out radiolabeling studies with hydroxypaptite (HA) particles and 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraaminomethylene phosphonic acid (DOTMP), respectively.ResultsThermal neutron irradiation of 10 mg of isotopically enriched (98.2% in 168Er) erbium target at a flux of ~ 8 × 1013 n.cm- 2.s- 1 for 21 d followed by a two-step electrochemical separation of 169Yb impurity yielded ~ 3.7 GBq (100 mCi) of 169Er with a specific activity of ~ 370 MBq/mg (10 mCi/mg) and radionuclidic purity of > 99.99%. The reliability of this approach was amply demonstrated by performing several production batches, where the performance of each batch remained consistent. The utility of the purified 169Er was demonstrated in the radiolabeling studies with HA particles and DOTMP, wherein both the radiolabeled products were obtained with high radiolabeling yield (> 99%).ConclusionsA viable strategy for the batch production and purification of 169Er, suitable for therapeutic applications, has been developed and demonstrated.  相似文献   

8.
Two low-background setups for material screening based on HPGe detectors were built in the Garching Underground Laboratory with an overburden of ~10 m.w.e. They include several layers of passive shielding as well as an active muon veto. The first setup (GEM) comprises a 150% efficiency HPGe detector which can optionally be surrounded by a NaI(Tl) scintillation detector that serves as anti-Compton veto. The second setup (LoAx) consists of two smaller HPGe detectors which are arranged face-to-face to cover a larger solid angle around the sample and to allow coincidence measurements.For a 5.6 kg piece of copper after 11 days of measurement we have reached a sensitivity for 226Ra and 228Ra/228Th of ~5 mBq kg−1 with the GEM setup. In the LoAx setup we have achieved limits of less than 100 mBq kg−1 for 234Th and 210Pb with a 156 g sample of PPO wavelength shifter after 18 days of measurement.  相似文献   

9.
IntroductionLeukemia stem cells (LSCs) are believed to be responsible for initiating and propagating acute myeloid leukemia (AML) and for causing relapse after treatment. Radioimmunotherapy (RIT) targeting these cells may improve the treatment of AML, but is limited by the low density of target epitopes. Our objective was to study a human polynucleotide kinase/phosphatase (hPNKP) inhibitor that interferes with DNA repair as a radiosensitizer for the Auger electron RIT agent, 111In-NLS-7G3, which recognizes the CD123+/CD131- phenotype uniquely displayed by LSCs.MethodsThe surviving fraction (SF) of CD123+/CD131- AML-5 cells exposed to 111In-NLS-7G3 (33–266 nmols/L; 0.74 MBq/μg) or to γ-radiation (0.25-5 Gy) was determined by clonogenic assays. The effect of A12B4C3 (25 μmols/L) combined with 111In-NLS-7G3 (16–66 nmols/L) or with γ-radiation (0.25–2 Gy) on the SF of AML-5 cells was assessed. The density of DNA double-strand breaks (DSBs) in the nucleus was measured using the γ-H2AX assay. Cellular dosimetry was estimated based on the subcellular distribution of 111In-NLS-7G3 measured by cell fractionation.ResultsBinding of 111In-NLS-7G3 to AML-5 cells was reduced by 2.2-fold in the presence of an excess (1 μM) of unlabeled NLS-7G3, demonstrating specific binding to the CD123+/CD131- epitope. 111In-NLS-7G3 reduced the SF of AML-5 cells from 86.1 ± 11.0% at 33 nmols/L to 10.5 ± 3.6% at 266 nmols/L. Unlabeled NLS-7G3 had no significant effect on the SF. Treatment of AML-5 cells with γ-radiation reduced the SF from 98.9 ± 14.9% at 0.25 Gy to 0.03 ± 0.1% at 5 Gy. A12B4C3 combined with 111In-NLS-7G3 (16–66 nmols/L) enhanced the cytotoxicity up to 1.7-fold compared to treatment with radioimmunoconjugates alone and was associated with a 1.6-fold increase in DNA DSBs in the nucleus. A12B4C3 enhanced the cytotoxicity of γ-radiation (0.25–0.5 Gy) on AML-5 cells by up to 1.5-fold, and DNA DSBs were increased by 1.7-fold. Exposure to 111In-NLS-7G3 (66 nmols/L) delivered up to 0.6 Gy to AML-5 cells.ConclusionsWe conclude that A12B4C3 radiosensitized AML cells to the DNA damaging effects of 111In-NLS-7G3. Combination treatment may increase the effectiveness for Auger electron RIT of AML targeting the LSC subpopulation.  相似文献   

10.
IntroductionAlthough encouraging results had been shown in antiangiogenesis therapy monitoring, the underlying mechanism of RGD radiotracer accumulation needs to be further illustrated. This study was aimed to investigate the diversity of RGD radiotracers in monitoring antiangiogenic agent's effects and the underlying mechanism in ovarian cancer-bearing mice with a new agent flavopiridol compared with paclitaxel.MethodsOvarian cancer SKOV-3 xenograft-bearing mice were established and divided into three groups, flavopiridol, paclitaxel and control. Flavopiridol (5 mg/kg body weight) and paclitaxel (20 mg/kg body weight) were administered every 3 days for 16 days. Tumor growth and proliferation were monitored by caliper measurements and immunofluorescence staining. Antiangiogenic effects were determined by tumor microvessel density (MVD) in vivo and by endothelial cell tube formation assay in vitro, respectively. 99mTc-3P-RGD2 was prepared, and its biodistribution studies were carried out. The effect of antiangiogenesis therapy on integrin αvβ3 expression was studied by immunohistochemical staining and flow cytometry.ResultsBoth paclitaxel and flavopiridol therapy could apparently inhibit tumor growth and proliferation, and antiangiogenic effects of therapy were validated in vivo and in vitro. However, compared with the control group, ID%/g tumor uptake of 99mTc-3P-RGD2 showed a significant decrease at 2 hours (by 39.96% ± 8.23%, P = 0.044) and at 4 hours (by 35.76% ± 11.42%, P = 0.024) post injection in the paclitaxel-treated group, but a slight increase of tumor uptake in the flavopiridol-treated group at 2 hours (by 4.42% ± 0.24%, p = 0.898) and at 4 hours (by 12.2% ± 1.84%, P = 0.702). The further studies indicated flavopiridol therapy has a dual-effect, reducing integrin αvβ3 expression on endothelial cells due to the reduction of tumor MVD and up-regulating the integrin αvβ3 expression on tumor cells.ConclusionsThere is diversity in evaluating antiangiogenic response when using 99mTc-3P-RGD2, which may be an important reminder in future clinical applications of RGD radiotracers as a strategy for antiangiogenesis therapy response monitoring.  相似文献   

11.
Studies of naturally occurring radioactive materials (NORM) distribution of 226Ra, 228Ra and 40K in East Malaysia were carried out as part of a marine coastal environment project. The results of measurements will serve as baseline data and background reference level for Malaysia coastlines. Sediments from 21 coastal locations and 10 near shore locations were collected for analyses. The samples were dried, finely ground, sealed in a container and stored for a minimum of 30 days to establish secular equilibrium between 226Ra and 228Ra and their respective radioactive progenies. They were counted using a high-purity germanium (HPGe) spectrometer covering the respective progeny energy peak. For 40K, the presence of this was measured directly via its 1460 keV energy peak. The concentration of 226Ra, 228Ra and 40K in samples obtained from coastal Sarawak ranged between 23 and 41 (mean 30±2) Bq/kg, 27 and 45 (mean 39±4) Bq/kg and 142 and 680 (mean 462±59) Bq/kg, respectively. Meanwhile, the concentration of 226Ra, 228Ra and 40K for samples obtained from coastal Sabah ranged between 16 and 30 (mean 23±2) Bq/kg, 23 and 45 (mean 35±4) Bq/kg and 402 and 842 (mean 577±75) Bq/kg, respectively. For the Sarawak near shore stations, the concentration of 226Ra, 228Ra and 40K ranged between 11 and 36 (mean 22±2) Bq/kg, 21 and 65 (mean 39±5) Bq/kg and 149 and 517 (mean 309±41) Bq/kg, respectively. Meanwhile, the concentration of 226Ra, 228Ra and 40K for samples obtained from Sabah ranged between 9 and 31 (mean 14±2) Bq/kg, 10 and 48 (mean 21±3) Bq/kg and 140 and 580 (mean 269±36) Bq/kg, respectively. The calculated external hazard values of between 0.17 and 0.33 (less than unity) showed that there is little risk of external hazard to the workers handling the sediments.  相似文献   

12.
Water 226Ra concentration in springs was measured in regions with high indoor radon: Ural, North Caucasus (Russia), Niska Banja (Serbia), Piestany (Slovakia), and Issyk-Kul (Kyrgyzstan). This paper presents the results for 226Ra concentration above 0.03 Bq l–1. Radium in water could indicate indoor radon problem in the region and water investigation is useful at the initial stage of radon survey. Even low 226Ra concentration in water (0.1–0.6 Bq l–1) caused high 226Ra activity in travertine (up to 1500 Bq kg?1), which resulted in indoor radon concentration above 2000 Bq m?3 (Niska Banja).  相似文献   

13.
IntroductionAmong the number of generator systems providing radionuclides with decay parameters promising for imaging and treatment applications, there is the 44Ti (T1/2 = 60 years)/44Sc (T1/2 = 3.97 h) generator. This generator provides a longer-lived daughter for extended PET/CT measurements compared to the chemically similar system 68Ge/68Ga. Scandium also exists as 47Sc, a potential therapeutic radionuclide. It is possible to produce 44Sc in a cyclotron using, for example, the 44Ca (d, n) 44Sc nuclear reaction. In that case, the isomeric state 44mSc (T1/2 = 58.6 h) is co-produced and may be used as an in vivo 44mSc/44Sc generator. The aim of this study is to evaluate the feasibility of this in vivo 44mSc/44Sc generator and to demonstrate that the daughter radionuclide stays inside the chelator after decay of the parent radionuclide. Indeed, the physico-chemical process occurring after the primary radioactive decay (EC, IT, Auger electron …) has prevented in many cases the use of in-vivo generator, because of the post-effect as described in the literature.MethodsThe DOTA macrocyclic ligand forms stable complexes with many cations and has been shown to be the most suitable chelating moiety for scandium. Initially, the radiolabeling of DOTA and a DOTA-peptide (DOTATATE) with Sc was performed and optimized as a function of time, pH, metal-to-ligand ratio and temperature. Next, the physico-chemical processes that could occur after the decay (post-effect) were studied. 44mSc(III)-labeled DOTA-peptide was quantitatively adsorbed on a solid phase matrix through a hydrophobic interaction. Elutions were then performed at regular time intervals using a DTPA solution at various concentrations. Finally, the radiolabelled complex stability was studied in serum.ResultsRadiolabeling yields ranged from 90% to 99% for metal-to-ligand ratio ranging from 1:10 to 1:500 for DOTA or DOTATATE respectively. The optimum physico-chemical parameters were pH = 4–6, t = 20 min, T = 70 °C. Then, the 44mSc-DOTATATE complex, radiolabeled at 98%, was adsorbed through a hydrophobic interaction to a solid phase. Unlabeled scandium was completely eluted from the column whereas the Sc-DOTATATE complex was 100% retained. The release of 44Sc from the complex due to decay was less than 1% over 2 periods of 44mSc, independent of the DTPA concentration used for elution. 44mSc/44Sc-DOTATATE was stable in serum over 72 h.ConclusionsThe results indicate that the decay of 44mSc to 44Sc does not affect the integrity of the radiolabeled compound. Thus the 44mSc/44Sc generator is chemically valid and stable in serum. It could be used for PET imaging as an in-vivo generator increasing the life time of the scandium and allowing the use of antibody as labelled compound. Further in-vivo biological evaluations should complete this work.  相似文献   

14.
IntroductionThe norepinephrine analogue 11C-meta-hydroxyephedrine (HED) has been used to interrogate sympathetic neuronal reuptake in cardiovascular disease. Application for longitudinal studies in small animal models of disease necessitates an understanding of test–retest variability. This study evaluated the repeatability of multiple quantitative cardiac measurements of HED retention and washout and the pharmacological response to reuptake blockade and enhanced norepinephrine levels.MethodsSmall animal PET images were acquired over 60 min following HED administration to healthy male Sprague Dawley rats. Paired test and retest scans were undertaken in individual animals over 7 days. Additional HED scans were conducted following administration of norepinephrine reuptake inhibitor desipramine or continuous infusion of exogenous norepinephrine. HED retention was quantified by retention index, standardized uptake value (SUV), monoexponential and one-compartment washout. Plasma and cardiac norepinephrine were measured by high performance liquid chromatography.ResultsTest retest variability was lower for retention index (15% ± 12%) and SUV (19% ± 15%) as compared to monoexponential washout rates (21% ± 13%). Desipramine pretreatment reduced myocardial HED retention index by 69% and SUV by 85%. Chase treatment with desipramine increased monoexponential HED washout by 197% compared to untreated controls. Norepinephrine infusion dose-dependently reduced HED accumulation, reflected by both retention index and SUV, with a corresponding increase in monoexponential washout. Plasma and cardiac norepinephrine levels correlated with HED quantitative measurements.ConclusionThe repeatability of HED retention index, SUV, and monoexponential washout supports its suitability for longitudinal PET studies in rats. Uptake and washout of HED are sensitive to acute increases in norepinephrine concentration.  相似文献   

15.
We have developed an improved generator for the production of the alpha emitting radionuclide 212Bi and its parent, 212Pb. These radionuclides are well suited to use as radiotherapeutic agents due to their relatively short half lives and appropriate particle particle emissions. The parent, 224Ra, is available from a long-lived parent and can be isolated on a generator which produces the daughters in good yield and low breakthrough. The 212Bi can be eluted by itself or in equilibrium with its parent.  相似文献   

16.
IntroductionMultiple myeloma (MM) is a B-cell malignancy of terminally differentiated plasma cells within the bone marrow. Despite intense research to develop new treatments, cure is almost never achieved. Alpha-radioimmunotherapy (RIT) has been shown to be effective in vivo in a MM model. In order to define where alpha-RIT stands in MM treatment, the aim of this study was to compare Melphalan, MM standard treatment, with alpha-RIT using a [213Bi]-anti-mCD138 antibody in a syngeneic MM mouse model.MethodsC57BL/KaLwRij mice were grafted with 1 × 106 5T33 murine MM cells. Luciferase transfected 5T33 cells were used for in vivo localization. The first step of the study was to assess the dose-response of Melphalan 21 days after engraftment. The second step consisted in therapeutic combination: Melphalan followed by RIT at day 22 or day 25 after engraftment. Toxicity (animal weight, blood cell counts) and treatment efficacy were studied in animals receiving no treatment, injected with Melphalan alone, RIT alone at day 22 or day 25 (3.7 MBq of [213Bi]-anti-CD138) and Melphalan combined with alpha-RIT.ResultsFifty percent of untreated mice died by day 63 after MM engraftment. In mice treated with Melphalan alone, only the 200 μg dose improved median survival. No animal was cured after Melphalan treatment whereas 60% of the mice survived with RIT alone at day 22 after tumor engraftment with only slight and reversible hematological radiotoxicity. No therapeutic effect was observed with alpha-RIT 25 days after engraftment. Melphalan and alpha-RIT combination does not improve overall survival compared to RIT alone, and results in increased leukocyte and red blood cell toxicity.ConclusionsAlpha-RIT seems to be a good alternative to Melphalan. Association of these two treatments provides no benefit. The perspectives of this work would be to evaluate RIT impact on the regimens incorporating the novel agents bortezomide, thalidomide and lenalidomide.  相似文献   

17.
IntroductionThe increasing use of molecular imaging probes as biomarkers in oncology emphasizes the need for robust and stable methods for quantifying tracer uptake in PET imaging. The primary motivation for this research was to find an accurate method to quantify the total tumor uptake. Therefore we developed a histogram-based method to calculate the background subtracted lesion (BSL) activity and validated BSL by comparing the quantitative consistency with the total lesion glycolysis (TLG) in phantom and patient studies.MethodsA thorax phantom and a PET-ACR quality assurance phantom were scanned with increasing FDG concentrations. Volumes of interest (VOIs) were placed over each chamber. TLG was calculated with a fixed threshold at SUV 2.5 (TLG2.5) and a relative threshold at 42% of SUVmax (TLG42%). The histogram for each VOI was built and BSL was calculated. Comparison with the total injected FDG activity (TIA) was performed using concordance correlation coefficients (CCC) and the slope (a). Fifty consecutive patients with FDG-avid lung tumors were selected under an IRB waiver. TLG42%, TLG2.5 and BSL were compared to the reference standard calculating CCC and the slope.ResultsIn both phantoms, the CCC for lesions with a TIA ≤ 50 ml*SUV between TIA and BSL was higher and the slope closer to 1 (CCC = 0.933, a = 1.189), than for TLG42% (CCC = 0.350, a = 0.731) or TLG2.5 (CCC = 0.761, a = 0.727). In 50 lung lesions BSL had a slope closer to 1 compared to the reference activity than TLG42% (a = 1.084 vs 0.618 – for high activity lesions) and also closer to 1 than TLG2.5 (a = 1.117 vs 0.548 – for low activity lesions).ConclusionThe histogram based BSL correlated better with TIA in both phantom studies than TLG2.5 or TLG42%. Also in lung tumors, the BSL activity is overall more accurate in quantifying the lesion activity compared to the two most commonly applied TLG quantification methods.  相似文献   

18.
19.
IntroductionN-succinimidyl 4-guanidinomethyl-3-[I]iodobenzoate ([I]SGMIB) has shown promise for the radioiodination of monoclonal antibodies (mAbs) and other proteins that undergo extensive internalization after receptor binding, enhancing tumor targeting compared to direct electrophilic radioiodination. However, radiochemical yields for [131I]SGMIB synthesis are low, which we hypothesize is due to steric hindrance from the Boc-protected guanidinomethyl group ortho to the tin moiety. To overcome this, we developed the isomeric compound, N-succinimidyl 3-guanidinomethyl-5-[131I]iodobenzoate (iso-[131I]SGMIB) wherein this bulky group was moved from ortho to meta position.MethodsBoc2-iso-SGMIB standard and its tin precursor, N-succinimidyl 3-((1,2-bis(tert-butoxycarbonyl)guanidino)methyl)-5-(trimethylstannyl)benzoate (Boc2-iso-SGMTB), were synthesized using two disparate routes, and iso-[*I]SGMIB synthesized from the tin precursor. Two HER2-targeted vectors — trastuzumab (Tras) and a nanobody 5 F7 (Nb) — were labeled using iso-[I]SGMIB and [I]SGMIB. Paired-label internalization assays in vitro with both proteins, and biodistribution in vivo with trastuzumab, labeled using the two isomeric prosthetic agents were performed.ResultsWhen the reactions were performed under identical conditions, radioiodination yields for the synthesis of Boc2-iso-[131I]SGMIB were significantly higher than those for Boc2-[131I]SGMIB (70.7 ± 2.0% vs 56.5 ± 5.5%). With both Nb and trastuzumab, conjugation efficiency also was higher with iso-[131I]SGMIB than with [131I]SGMIB (Nb, 33.1 ± 7.1% vs 28.9 ± 13.0%; Tras, 45.1 ± 4.5% vs 34.8 ± 10.3%); however, the differences were not statistically significant. Internalization assays performed on BT474 cells with 5 F7 Nb indicated similar residualizing capacity over 6 h; however, at 24 h, radioactivity retained intracellularly for iso-[131I]SGMIB-Nb was lower than for [125I]SGMIB-Nb (46.4 ± 1.3% vs 56.5 ± 2.5%); similar results were obtained using Tras. Likewise, a paired-label biodistribution of Tras labeled using iso-[125I]SGMIB and [131I]SGMIB indicated an up to 22% tumor uptake advantage at later time points for [131I]SGMIB-Tras.ConclusionGiven the higher labeling efficiency obtained with iso-SGMIB, this residualizing agent might be of value for use with shorter half-life radiohalogens.  相似文献   

20.
An improved method for isolation of 61Cu2+ from a natCo target using cation exchange was developed. 61Cu2+ was eluted from a cation exchange resin column by 0.2 M HCl with 90% acetone, while Co2+ remained on the column. The whole separation process was completed within 50 min at more than 72% yield. The Co2+ impurity level in 61Cu2+ solution was reduced to less than 0.1 ppm. Highly pure 61Cu2+ solution was then applied to prepare 61Cu–1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)–human serum albumin (HSA) which showed good blood pool imaging properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号