首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Age-related macular degeneration (AMD) is the leading cause of blindness in developed countries. There is no effective treatment for the most prevalent atrophic (dry) form of AMD. Atrophic AMD is triggered by abnormalities in the retinal pigment epithelium (RPE) that lies beneath the photoreceptor cells and normally provides critical metabolic support to these light-sensing cells. Secondary to RPE dysfunction, macular rods and cones degenerate leading to the irreversible loss of vision. Oxidative stress, formation of drusen, accumulation of lipofuscin, local inflammation and reactive gliosis represent the pathologic processes implicated in pathogenesis of atrophic AMD. This review discusses potential target areas for small-molecule and biologic intervention, which may lead to development of new therapeutic treatments for atrophic AMD.  相似文献   

2.
Age-related macular degeneration (AMD) is the leading cause of blindness in developed countries. There is no effective treatment for the most prevalent atrophic (dry) form of AMD. Atrophic AMD is triggered by abnormalities in the retinal pigment epithelium (RPE) that lies beneath the photoreceptor cells and normally provides critical metabolic support to these light-sensing cells. Secondary to RPE dysfunction, macular rods and cones degenerate leading to the irreversible loss of vision. Oxidative stress, formation of drusen, accumulation of lipofuscin, local inflammation and reactive gliosis represent the pathologic processes implicated in pathogenesis of atrophic AMD. This review discusses potential target areas for small-molecule and biologic intervention, which may lead to development of new therapeutic treatments for atrophic AMD.  相似文献   

3.
Age-related macular degeneration (AMD) is a disease leading to severe visual loss and legal blindness in the elderly population. Its pathogenesis, likely multifactorial, involving a complex interaction of metabolic, functional, genetic and environmental factors, remains poorly understood. For these reasons currently used therapeutic approaches are insufficiently effective. Although major abnormalities are seen in four functionally interrelated tissues, i.e., photoreceptors, retinal pigment epithelium (RPE), Bruch's membrane and choriocapillaries, the impairment of RPE cell functions is an early and crucial event in the molecular pathways leading to clinically relevant AMD changes. RPE progressively degenerate, which results in a progressive irreversible degeneration of photoreceptors. Four processes: lipofuscinogenesis, drusogenesis, inflammation and neovascularization, specifically contribute to the development of two forms of AMD, the dry form (non-exudative; geographic atrophy) and the wet form (exudative, neovascular). This paper briefly describes major molecular and cellular events leading to AMD, and presents currently used and new experimental, forthcoming therapeutic strategies.  相似文献   

4.
5.
Age-related macular degeneration (AMD) is the leading cause of vision loss and blindness among the elderly. Although the pathogenesis of this disease remains still obscure, several researchers have report that death of retinal pigmented epithelium (RPE) caused by excessive accumulation of A2E is crucial determinants of AMD. In this study, the preventive effect of Vaccinium uliginosum L. (V.U) extract and its fractions on AMD was investigated in blue light-irradiated human RPE cell (ARPE-19 cells). Blue light-induced RPE cell death was significantly inhibited by the treatment of V.U extract or its fraction. To identify the mechanism, FAB-MS analysis revealed that V.U inhibits the photooxidation of N-retinyl-N-retinylidene ethanolamine (A2E) induced by blue light in cell free system. Moreover, monitoring by quantitative HPLC also revealed that V.U extract and its fractions reduced intracellular accumulation of A2E, suggesting that V.U extract and its fractions inhibit not only blue light-induced photooxidation, but also intracellular accumulation of A2E, resulting in RPE cell survival after blue light exposure. A2E-laden cell exposed to blue light induced apoptosis by increasing the cleaved form of caspase-3, Bax/Bcl-2. Additionally, V.U inhibited by the treatment of V.U extract or quercetin-3-O-arabinofuranoside. These results suggest that V.U extract and its fractions have preventive effect on blue light-induced damage in RPE cells and AMD.  相似文献   

6.
Although the mechanisms and susceptibility factors of troglitazone-associated idiosyncratic liver injury have not been elucidated, experimental evidence has identified oxidant stress and mitochondrial injury as a potential hazard in vitro. In search of upstream mediators of toxicity, we hypothesized that troglitazone-induced increased mitochondrial generation of superoxide might activate the thioredoxin-2 (Trx2)/apoptosis signal-regulating kinase 1 (Ask1) signaling pathway, leading to cell death, and that, hence, the mitochondrially targeted radical scavenger, mito-carboxy proxyl (CP), would prevent the increase in superoxide net levels and inhibit mitochondrial signaling and cell injury. Immortalized human hepatocytes (HC-04) were exposed to troglitazone (0-100 microM), which caused concentration and time-dependent apoptosis after 12-24 h (ketoconazole-insensitive). We found that troglitazone rapidly dissipated the mitochondrial inner transmembrane potential (DeltaPsi(m)) and independently increased the net levels of mitochondrial superoxide by 5-fold. This was followed by a shift of the redox ratio of mitochondrial Trx2 toward the oxidized state and subsequent activation of Ask1. Cell injury, but not the decrease in DeltaPsi(m), was prevented by cyclosporin A (3 microM), indicating that mitochondrial permeabilization, but not membrane depolarization, was causally involved in cell death. Mito-CP not only decreased troglitazone-induced superoxide levels but also prevented Trx2 oxidation and activation of Ask1 and protected cells from toxic injury. These data indicate that troglitazone, but not its oxidative metabolite(s), produce intramitochondrial oxidant stress that activates the Trx2/Ask1 pathway, leading to mitochondrial permeabilization. Furthermore, the data support our concept that targeted delivery of an antioxidant to mitochondria can inhibit upstream signaling and protect from troglitazone-induced lethal cell injury.  相似文献   

7.
俞永珍  邹秀兰  邹玉平 《天津医药》2015,43(9):1079-1081
线粒体 DNA (mtDNA) 是线粒体内具有遗传效应的双股闭环 DNA 分子, 对细胞及其功能具有重要作用。视网膜色素上皮 (RPE) 细胞活动亦由大量线粒体参与。因 RPE 细胞代谢活跃, 当发生氧化应激时可引起线粒体及 mtDNA 损伤; 当线粒体及 mtDNA 损伤无法及时修复而使损伤积累, 可引起 RPE 及线粒体功能障碍, 并诱发启动细胞凋亡, 进而引发某些眼病, 如年龄相关性黄斑变性等。现就 mtDNA 与 RPE 细胞的功能关系、 mtDNA 损伤修复及检测方法作一综述。  相似文献   

8.
9.
Introduction: Age-related macular degeneration (AMD) is the leading cause of vision loss among the elderly. Atrophic AMD, including early, intermediate and geographic atrophy (GA), accounts for ~90% of all cases. It is a multifactorial degeneration characterized by chronic inflammation, oxidative stress and aging components. Although no FDA-approved treatment yet exists for the late stage of atrophic AMD, multiple pathological mechanisms are partially known and several promising therapies are in various stages of development.

Areas covered: Underlying mechanisms that define atrophic AMD will help provide novel therapeutic targets that will address this largely unmet clinical need. The purpose of this paper is to review current promising drugs that are being evaluated in clinical trials. Because no pharmacological treatments are currently available for late stage of atrophic AMD, any new therapy would have extensive market potential.

Expert opinion: The number of AMD patients is predicted to increase to ~30 million worldwide by 2020. In response to this enormous unmet clinical need, new promising therapies are being developed and evaluated in clinical trials. We propose that the assessment of novel interventions will also need to consider the genotypes of participants, as the benefit may be determined by polymorphisms in an individual’s genetic background.  相似文献   


10.
Age-related macular degeneration (ARMD) is the leading cause of blindness in the developed world and yet its pathogenesis remains poorly understood. Retina has high levels of polyunsaturated fatty acids (PUFAs) and functions under conditions of oxidative stress. To investigate whether peroxidative products of PUFAs induce apoptosis in retinal pigmented epithelial (RPE) cells and possibly contribute to ARMD, human retinal pigmented epithelial cells (ARPE-19) were exposed to micromolar concentrations of H2O2, 4-hydroxynonenal (HNE) and 4-hydroxyhexenal (HHE). A concentration- and time-dependent increase in H2O2-, HNE-, and HHE-induced apoptosis was observed when monitored by quantifying DNA fragmentation as determined by ELISA, flow cytometry, and Hoechst staining. The broad-spectrum inhibitor of apoptosis Z-VAD inhibited apoptosis. Treatment of RPE cells with a thionein peptide prior to exposure to H2O2 or HNE reduced the formation of protein-HNE adducts as well as alteration in mitochondrial membrane potential and apoptosis. Using 3H-HNE, various metabolic pathways to detoxify HNE by ARPE-19 cells were studied. The metabolites were separated by HPLC and characterized by ElectroSpray Ionization-Mass Spectrometry (ESI-MS) and gas chromatography-MS. Three main metabolic routes of HNE detoxification were detected: (1) conjugation with glutathione (GSH) to form GS-HNE, catalyzed by glutathione-S-transferase (GST), (2) reduction of GS-HNE catalyzed by aldose reductase, and (3) oxidation of HNE catalyzed by aldehyde dehydrogenase (ALDH). Preventing HNE formation by a combined strategy of antioxidants, scavenging HNE by thionein peptide, and inhibiting apoptosis by caspase inhibitors may offer a potential therapy to limit retinal degeneration in ARMD.  相似文献   

11.
Mitochondrial oxidative stress plays important roles in aging and age-related degenerative disorders. The newly identified mitochondrial thioredoxin (mtTrx; Trx2) is a key component of the mitochondrial antioxidant system which is responsible for the clearance of reactive intermediates and repairs proteins with oxidative damage. Here, we show that in cultured SH-SY5Y human neuroblastoma 1cells, overexpression of mtTrx inhibited apoptosis and loss of mitochondrial membrane potential induced by a chemical oxidant, tert-butylhydroperoxide (tBH). The effects of calcium ionophore (Br-A23187) were not affected by mtTrx, suggesting the protection was specific against oxidative injury. The mitochondrial glutathione pool was oxidized by tBH, and this oxidation was not inhibited by increased mtTrx. Consequently, the antioxidant function of mtTrx is not redundant, but rather in addition, to that of GSH. Mutations of Cys90 and Cys93 to serines rendered mtTrx ineffective in protection against tBH-induced cytoxicity. These data indicate that mtTrx controls the mitochondrial redox status independently of GSH and is a key component of the defensive mechanism against oxidative stress in cultured neuronal cells.  相似文献   

12.
It has been widely reported that silver nanoparticles (AgNPs) induce oxidative stress in various cell lines. However, the mechanism for this effect and its consequences for cellular signaling are poorly understood. In this study, human umbilical vein endothelial cells (HUVECs) were used to assess the toxicity and investigate the associated molecular mechanisms caused by exposure to AgNPs. We demonstrated that AgNP exposure significantly and dose‐dependently decreased the cell viability, induced reactive oxygen species (ROS) generation and led to early apoptosis in HUVECs. Our findings showed that AgNPs induced excess ROS production that affected the signaling pathways by a mechanism that depended on activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity through upregulation of NADPH oxidase 4 (NOX4) protein expressions. Moreover, AgNPs could disrupt the inactivation of the nuclear factor erythroid 2‐related factor 2 (Nrf2)‐mediated antioxidant response, which is considered another important element for oxidative stress caused by AgNPs in HUVECs. The redox imbalance between NOX4 and Nrf2 was an important cause for the ROS overproduction that led to cell injury in HUVECs. The results provided insight into the mechanisms of oxidative stress induced by AgNPs in vascular endothelial cells.  相似文献   

13.
《药学学报(英文版)》2022,12(5):2506-2521
Retinal pigment epithelial (RPE) is primarily impaired in age-related macular degeneration (AMD), leading to progressive loss of photoreceptors and sometimes choroidal neovascularization (CNV). mTOR has been proposed as a promising therapeutic target, while the usage of its specific inhibitor, rapamycin, was greatly limited. To mediate the mTOR pathway in the retina by a noninvasive approach, we developed novel biomimetic nanocomplexes where rapamycin-loaded nanoparticles were coated with cell membrane derived from macrophages (termed as MRaNPs). Taking advantage of the macrophage-inherited property, intravenous injection of MRaNPs exhibited significantly enhanced accumulation in the CNV lesions, thereby increasing the local concentration of rapamycin. Consequently, MRaNPs effectively downregulated the mTOR pathway and attenuate angiogenesis in the eye. Particularly, MRaNPs also efficiently activated autophagy in the RPE, which was acknowledged to rescue RPE in response to deleterious stimuli. Overall, we design and prepare macrophage-disguised rapamycin nanocarriers and demonstrate the therapeutic advantages of employing biomimetic cell membrane materials for treatment of AMD.  相似文献   

14.
Abstract: The present study was conducted to investigate the possible protective effects of lycopene (LP) and ellagic acid (EA) on aroclor (AR) 1254‐induced testicular and spermatozoal toxicity associated with the oxidative stress and apoptosis in male rats. The control group was treated with placebo. LP (10 mg/kg/every other day), EA (2 mg/kg/every other day) and AR (2 mg/kg/day) groups were given alone LP, EA and AR respectively. One of the last two groups received AR + LP, and the other treated with AR + EA. Body and reproductive organ weights, epididymal sperm characteristics, testicular tissue lipid peroxidation levels, antioxidant enzyme activities, histopathological changes and apoptosis via Bax and Bcl‐2 genes were investigated. AR administration caused statistically significant decreases in body‐weight, epididymal sperm concentration, testicular superoxide dismutase activity, diameters of seminiferous tubules, germinal cell layer thickness and Johnsen’s testicular score, and increases in relative weights of testis, epidydimis and seminal vesicles, rates of abnormal sperm and apoptotic cell expression along with degeneration, desquamation and disorganization in spermatogenic cells, and interstitial oedema and congestion in testicular tissue. LP and EA treatments to AR‐treated rats markedly decreased abnormal sperm rates, testicular thiobarbituric acid reactive substances level, and increased the glutathione (GSH) level, GSH‐peroxidase, catalase activities and epidiymal sperm concentration as compared with the alone AR group. Additionally, the AR‐induced histopathological damages were totally or partially recovered by LP or EA administrations respectively. AR damages the testicular tissue and spermatozoa by impairing the oxidant/antioxidant balance and by increasing the apoptotic spermatogenic cell rates. However, both LP and EA have modulator effects on AR‐induced reproductive dysfunction in male rats.  相似文献   

15.
16.
17.
Current evidence demonstrates that protein kinase C (PKC) belongs to a group of cell-signaling molecules that are sensitive targets for redox modifications and functional alterations that mediate oxidant-induced cellular responses. Our studies have demonstrated that diminished intracellular GSH was associated to inactivation of classic isoforms and increased activity of novel PKCs, and triggered molecular signals important for cell survival. Loss of GSH and oxidative damage are probably an early signaling event in apoptotic death, which is characterized by the activation of PKC-delta. Apoptotic process consequent to GSH depletion was inhibited by rottlerin, a PKC-delta-specific inhibitor, which exerted a negative effect on oxyradical production. Therefore, it may be concluded that PKC-delta activity is related to reactive oxygen species production and is involved in the pathway leading to apoptosis and growth arrest.  相似文献   

18.
19.
Age-related macular degeneration (AMD) is a progressive retinal disease that is a leading cause of visual impairment and severe vision loss. The number of people affected by AMD is increasing and constitutes a huge worldwide health problem. The beneficial effects of fish consumption on AMD have been revealed over the past decades, and in this review, we summarizes the beneficial effects of fatty fish on AMD and its mechanism of action. Fatty fish affects the development of AMD by inhibiting neovascularization, interacting with retinal pigment epithelial (RPE) cells, displacing Omega-6, and inducing cellular responses. It is recommended that people at high risk or with moderate or more severe AMD should consider eating more fatty fish in addition to maintaining a healthy lifestyle of weight control and smoking cessation and the need to promote new models of personalized AMD prevention and treatment.  相似文献   

20.
Abnormal accumulation of the free-form all-trans-retinal (atRAL), a major intermediate of human visual cycle, is considered to be a key cause of retinal pigment epithelial (RPE) dysfunction in the pathogenesis of retinal degenerative diseases such as age-related macular degeneration (AMD). Paeoniflorin (PF), a monoterpene glucoside isolated from Paeonia lactiflora Pall., has been used in clinical treatment of retinal degenerative diseases in China for several years; however, the underlying mechanism remains unclear. The aim of this study is to investigate the protective effect of PF against atRAL toxicity in human ARPE-19 cells and its molecular mechanism. The results of our study showed that the pre-treatment of PF dose-dependently attenuated atRAL-induced cell injury by the reduction of Nox1/ROS-associated oxidative stress, mitochondrial dysfunction and GRP78-PERK-eIF2α-ATF4-CHOP-regulated endoplasmic reticulum (ER) stress in ARPE-19 cells. Additionally, our data showed that PF mainly exerted its activity via triggering calcium-calmodulin dependent protein kinase II (CaMKII)-mediated activation of AMP-activated protein kinase (AMPK). AMPK inhibition significantly reversed the protective effect of PF against atRAL toxicity in ARPE-19 cells. Overall, our findings provided the novel mechanism of PF protecting human RPE cells, which may prevent the progression of retinal degenerative diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号