首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Escherichia coli photolyase, excitation of the FAD cofactor in its semireduced radical state (FADH*) induces an electron transfer over approximately 15 A from tryptophan W306 to the flavin. It has been suggested that two additional tryptophans are involved in an electron transfer chain FADH* <-- W382 <-- W359 <-- W306. To test this hypothesis, we have mutated W382 into redox inert phenylalanine. Ultrafast transient absorption studies showed that, in WT photolyase, excited FADH* decayed with a time constant tau approximately 26 ps to fully reduced flavin and a tryptophan cation radical. In W382F mutant photolyase, the excited flavin was much longer lived (tau approximately 80 ps), and no significant amount of product was detected. We conclude that, in WT photolyase, excited FADH* is quenched by electron transfer from W382. On a millisecond scale, a product state with extremely low yield ( approximately 0.5% of WT) was detected in W382F mutant photolyase. Its spectral and kinetic features were similar to the fully reduced flavin/neutral tryptophan radical state in WT photolyase. We suggest that, in W382F mutant photolyase, excited FADH* is reduced by W359 at a rate that competes only poorly with the intrinsic decay of excited FADH* (tau approximately 80 ps), explaining the low product yield. Subsequently, the W359 cation radical is reduced by W306. The rate constants of electron transfer from W382 to excited FADH* in WT and from W359 to excited FADH* in W382F mutant photolyase were estimated and related to the donor-acceptor distances.  相似文献   

2.
Picosecond fluorescence decay of tryptophans in myoglobin.   总被引:3,自引:1,他引:2       下载免费PDF全文
The fluorescence decay characteristics of Mb, MbCO, metMb (sperm whale), metMb (yellowfin tuna), and their apo derivatives were determined by using a picosecond streak camera and time-correlated single photon counting. The emission is dominated by tryptophans that transfer their energy to the heme on a subnanosecond time scale. Sperm whale Mb and derivatives have two tryptophans and their decays can be interpreted mainly as two exponentials, one of ca. 20 ps and the other of 130 ps, whereas tuna Mb has one tryptophan and its emission is nonexponential but dominated by one component of 31 ps. These results along with Förster energy transfer calculations allow us to assign the ca. 30-ps emission to Trp-14 and the 130-ps emission to Trp-7 in Mb. The streak camera was modified to determine the decay of the fluorescence anisotropy. In metMb (tuna) the fluorescence anisotropy decays in 100 ps, which is postulated to result from rapid motion of the Trp-14. Because energy transfer was used to gate the anisotropy, the fast motion of Trp-14 is proposed to correspond to only 10% of the equilibrium distribution of molecules.  相似文献   

3.
The fluorescence of heme proteins is influenced by energy transfer from the excited tryptophan to the heme. Molecular dynamics simulations of the tryptophan and heme motions in sperm whale myoglobin were used to calculate the fluorescence intensity and anisotropy decays. The side chains underwent both small rapid orientational fluctuations and large infrequent transitions between conformations. The predicted motions of the tryptophans and the heme produce large fluctuations in the instantaneous rate of energy transfer, but no stable conformations in which energy transfer is suppressed were found. The calculated fluorescence anisotropies exhibited a large subpicosecond decay, corresponding to nondiffusive side-chain motions. The calculations adequately predict the observed fluorescence decay curve for myoglobin and the total anisotropy decay at 16-ps time resolution. The subnanosecond decays of anisotropy for tryptophan-14 in tuna myoglobin are not reproduced by the calculation.  相似文献   

4.
The rates of the quenching and recovery of tryptophan fluorescence are determined in the microsecond-millisecond time scale during the photocycle of bacteriorhodopsin under different perturbations. The kinetics suggest the presence of two quenching processes, a rapid one (on the time scale of photocycle intermediate L550 formation or faster) and a slow one (slightly slower than the slow component of intermediate M412 formation). The slow quenching process is found to respond to different perturbations in the same manner as the slow component of M412 formation. It has the same activation energy, it is inhibited if metal cations are removed, it is negligible at pH values greater than the pKa of tyrosine, and its rate is slowed down when 75% of the lipids are removed. These results, together with the observed value of the quenching activation energy, suggest that the rates of the tryptophan fluorescence quenching, like those of tyrosinate and M412 formations during the cycle, are all determined by the rates of the protein conformation changes. The pH studies of the slow quenching process show that the maximum quenching probability occurs at neutral pH. A rapid decrease in quenching occurs at lower pH (approximately 3 and approximately 5.5) and higher pH (approximately 9). Two quenching mechanisms involving energy transfer to either retinal or to tyrosinate are considered. Protein conformation changes resulting from a change in the ionization state of amino acids of different pKa values could change the tryptophan-retinal (or tryptophan-tyrosinate) coupling and thus the quenching efficiency.  相似文献   

5.
The covalently linked chlorophyll a dimer exhibits remarkably different properties in the folded and open configurations. In the folded configuration the absorption maximum is at 695 nm and the fluorescence maximum is at 730 nm. Laser output at 733 and 735 nm is obtained for solutions in wet benzene and 0.1 M ethanol/toluene, respectively. Measurements of fluorescence lineshapes, made with a transverse excited atmospheric (TEA) nitrogen laser for excitation, show the lifetime shortening associated with stimulated emission resulting from appreciable concentrations of molecules in S1 excited states. In contrast, the open dimer has absorption and fluorescence spectra essentially the same as those of chlorophyll a monomer. Unlike either the folded dimer or chlorophyll a monomer, the open dimer shows no laser emission or fluorescene lifetime shortening. It does not appear that the behavior of the open dimer can be explained in terms of excimer or triplet formation or by nonradiative decay processes. It is suggested that absorption of the exciting radiation by S1, leading to the formation of an exciplex or charge transfer state, may be involved. Significantly, no large changes in fluorescence quantum yield or fluorescence lifetime are observed for these dimers as compared to monomer chlorophyll. This suggests that concentration quenching and lifetime shortening in condensed chlorophyll systems involve more than the simple proximity of two chlorophyll molecules.  相似文献   

6.
The method of flash photolysis was used to identify the transient absorption spectrum and to characterize the decay kinetics of the indole triplet of human serum albumin. This protein was studied because it contains a single indole side chain which is deeply buried in an expandable oily region and because the phosphorescence of the homologous indole in bovine serum albumin could not be detected at ambient temperatures. The transient was identified on the following basis: (i) its triplet-triplet absorption spectrum was similar to those previously reported for indole and tryptophan; (ii) it was quenched by small quantities of oxygen; and (iii) it was photobleached by 370- to 700-nm light. In a nitrogen-saturated solution at room temperature, the indole triplet decays exponentially for more than a factor of 10 with a lifetime of 0.5 msec. These observations suggest that, because of its exponential decay and relatively long lifetime, the triplet will be more valuable than the indole singlet as an intrinsic reporter group for the study of the structure and dynamics of proteins in solution.  相似文献   

7.
We use single-molecule fluorescence lifetimes to probe dynamics of photoinduced reversible electron transfer occurring between triphenylamine (donor) and perylenediimide (acceptor) in single molecules of a polyphenylenic rigid dendrimer embedded in polystyrene. Here, reversible electron transfer in individual donor-acceptor molecules results in delayed fluorescence that is emitted with a high photon count rate. By monitoring fluorescence decay times on a photon-by-photon basis, we find fluctuations in both forward and reverse electron transfer spanning a broad time range, from milliseconds to seconds. Fluctuations are induced by conformational changes in the dendrimer structure as well by polystyrene chain reorientation. The conformational changes are related to changes in the dihedral angle of adjacent phenyl rings located in the dendritic branch near the donor transferring the charge, a torsional motion that results in millisecond fluctuations in the "through-bond" donor-acceptor electronic coupling. Polymer chain reorientation leads to changes in the local polarity experienced by the donors and to changes in the solvation of the charge-separated state. As a result, switching between different donor moieties within the same single molecule becomes possible and induces fluctuations in decay time on a time scale of seconds.  相似文献   

8.
Time-resolved fluorescence anisotropy (FA) measurements are reported for five helical bilayer-spanning henicosapeptides, each containing one tryptophan at sequence position 1, 6, 11, 16, or 21. The FA decay reflects two molecular processes in all cases: local internal fluctuations of the tryptophan side chain with a relaxation time of 200-500 ps, and motions of the whole polypeptide molecule with a relaxation time of 9-10 ns. The amplitudes of the fast fluctuation are largest at the helix ends and decrease toward the center of the helix. A similar observation was made for the helical polypeptides dissolved in organic solvents showing that the mobility gradient along the polypeptide sequence is an inherent property of the polypeptide helix and not due to the lipid bilayer. However, the amplitudes of the fast fluctuations can be modulated by the physical state of the lipid bilayer. With decreasing temperature, the internal mobility of the tryptophan in all positions decreases with an abrupt change at the lipid-phase transition. Concomitant molecular dynamics calculations indicate a correlation between the fast FA decay and conformational fluctuations within the helix. According to the simulation, the conformation of the polypeptide is on average predominantly helical, but actually the molecule can fluctuate between a variety of different substructures. The conformational fluctuations are largest at the helix ends and provide the free space required for rotation of the indole ring around the tryptophan side chain bonds.  相似文献   

9.
Early conformational events during folding of acyl-CoA binding protein (ACBP), an 86-residue alpha-helical protein, were explored by using a continuous-flow mixing apparatus with a dead time of 70 micros to measure changes in intrinsic tryptophan fluorescence and tryptophan-dansyl fluorescence energy transfer. Although the folding of ACBP was initially described as a concerted two-state process, the tryptophan fluorescence measurements revealed a previously unresolved phase with a time constant tau = 80 micros, indicating formation of an intermediate with only slightly enhanced fluorescence of Trp-55 and Trp-58 relative to the unfolded state. To amplify this phase, a dansyl fluorophore was introduced at the C terminus by labeling an I86C mutant of ACBP with 5-IAEDANS [5-((((2-iodoacetyl)amino)ethyl)amino)naphthalene-1-sulfonic acid]. Continuous-flow refolding of guanidine HCl-denatured ACBP showed a major increase in tryptophan-dansyl fluorescence energy transfer, indicating formation of a partially collapsed ensemble of states on the 100-micros time scale. A subsequent decrease in dansyl fluorescence is attributed to intramolecular quenching of donor fluorescence on formation of the native state. The kinetic data are fully accounted for by three-state mechanisms with either on- or off-pathway intermediates. The intermediate accumulates to a maximum population of 40%, and its stability depends only weakly on denaturant concentration, which is consistent with a marginally stable ensemble of partially collapsed states with approximately 1/3 of the solvent-accessible surface buried. The findings indicate that ultrafast mixing methods combined with sensitive conformational probes can reveal transient accumulation of intermediate states in proteins with apparent two-state folding mechanisms.  相似文献   

10.
We report the development of two dominant-acting genetic markers useful for monitoring gene transfer in mammalian cells that are based on prokaryotic genes encoding key steps in the synthesis of the essential amino acids, tryptophan and histidine. Under appropriate conditions, expression of these genes obviates the nutritional requirements for their respective amino acid products. Expression of the trpB gene of Escherichia coli, which encodes the beta subunit of tryptophan synthase (EC 4.2.1.20), allows mammalian cell survival and multiplication in medium containing indole in place of tryptophan. The hisD gene of Salmonella typhimurium encodes histidinol dehydrogenase (EC 1.1.1.23), which catalyzes the two-step NAD+-dependent oxidation of L-histidinol to L-histidine. In medium lacking histidine and containing histidinol, only mammalian cells expressing the hisD product survive. The selection is a double one in that the provided precursor histidinol is itself toxic to animal cells through its inhibition of histidyl-tRNA synthetase; thus, the dehydrogenase both removes an inhibitor and forms a required end product. Alternatively, the his selection may be carried out under conditions in which the dehydrogenase serves mainly to detoxify histidinol. For either the trp or his selections the substitute nutrient (indole or histidinol) is readily available, inexpensive, stable, permeable to cells, and convertible to the end product in a step controlled by a single gene. Vectors based upon murine retrovirus and papovavirus backbones have been successfully employed for both genes, allowing selection in a range of cell types, including 3T3, CV-1, and HeLa. These dominant selective schemes should provide generally useful and inexpensive alternatives to others currently in use, such as the gpt, neo, hygro, dhfr, and tk selections.  相似文献   

11.
Chicken egg-white lysozyme forms a yellow complex with N-methylnicotinamide chloride. Titration studies utilizing the appearance of the yellow color as a measure of complex formation indicate that the weak complex (association constant k = 3.2 liter mole(-1)) involves a single class of binding sites on the lysozyme molecule. By analogy with similar titration studies on model compounds containing the indole moiety, the site for N-methylnicotinamide binding is probably the indole ring of a single, solvent-available tryptophan residue. The yellow color itself apparently arises from a charge transfer transition, with the indole ring system serving as the donor and N-methylnicotinamide as the acceptor. Complete resolution of the charge transfer spectrum of the lysozyme-N-methylnicotinamide complex was not achieved due to the very high absorbance of the protein near the short-wavelength absorption edge of the band. However, it is possible to consider the spectrum as the sum of two Gaussian bands whose positions and relative intensities agree remarkably well with the positions and relative intensities obtained by Gaussian fitting of the charge transfer spectra of several model complexes between substituted indoles and N-methylnicotinamide. The geometry for such complex formation requires that the ring faces of both donor and acceptor be more or less completely available for complexation. The possible use of N-methylnicotinamide as a molecular probe for tryptophan residues having at least one indole ring face freely available to the solvent is discussed.  相似文献   

12.
Recent studies of the lifetime of fluorescence after picosecond pulse excitation of photosynthetic organisms revealed relatively complex decay kinetics that indicated a sum of three exponential components with lifetimes spanning the range from about 0.1-2.5 ns. These fluorescence lifetime data were examined in the context of a simple photochemical model for photosystem II that was used previously to account for fluorescence yield data obtained during continuous illumination. The model, which consists of a single fluorescing species of antenna chlorophyll and a reaction center, shows that, in general, the decay kinetics after pulse excitation should consist of the sum of two exponential decays. The model also shows that in going from open to closed reaction centers the lifetime of fluorescence may increase much more than the yield of fluorescence and surprisingly long fluorescence lifetimes can be obtained. However, conditions can be stated where fluorescence will decay essentially as a single component and with lifetime changes that are proportional to the yield changes. A heterogeneity was also introduced to distinguish photosystem IIα units, which can transfer excitation energy among themselves but not the photosystem I, and photosystem IIβ units, which can transfer energy to photosystem I but not to other photosystem II units. It is proposed that the rather complex fluorescence lifetime data can be accounted for in large part by the simple photochemical model with the α, β heterogeneity in photosystem II.  相似文献   

13.
3-Phosphoglycerate kinase is composed of two globular domains separated by a wide cleft. The substrate binding sites are situated on the inner surfaces of the two domains. By analogy to other kinases, it has been postulated that the catalytic mechanism of phosphoglycerate kinase involves a hinge bending domain motion that brings the substrates together to allow phosphoryl transfer. To characterize this large-scale conformational change, as well as the dynamics of the unliganded enzyme in solution, we have applied site-directed mutagenesis and time-resolved nonradiative energy transfer techniques. Two genetically engineered cysteines (Cys-135 and Cys-290), one in each of the two domains, were covalently labeled with a donor and acceptor pair of fluorescent probes. Analysis of subnanosecond fluorescence decay curves yielded the equilibrium distribution of interdomain distances. In the absence of substrates, the distribution of distances between the two labeled sites was very broad, with a full width at half maximum estimated as 20 A or broader, indicative of a large number of conformational substates in solution. The mean distance, 31.5 +/- 1 A, was 8 A smaller than in the crystal structure. Upon addition of ATP alone or of ATP and 3-phosphoglycerate, the average distance increased to 38 +/- 1 A and the width of the distribution decreased. Addition of 3-phosphoglycerate alone induced a similar but smaller change. The rate of conformational state fluctuations (interconversion between states) was found to be slow on the nanosecond time scale, as expected for a protein with a relatively large interdomain contact area.  相似文献   

14.
We measure the fluorescence quantum yield of bilirubin bound to its highest-affinity site on human serum albumin to increase from about 0.001 near room temperature to 0.5 at 77 K. The quantum yield for configurational (Z leads to E) photoisomerization about the meso double bonds concomitantly decreases from about 0.22 to less than 0.01 over the same temperature range in reciprocal relationship to the fluorescence yield. Transient absorption spectra recorded after excitation with a 0.5-ps pulse of 305-nm light decay with a lifetime of 19 +/- 3 ps at 22 degrees C and 35 +/- 7 ps at 2 degrees C. Bilirubin undergoes the same photoisomerization reaction in chloroform solution, in which a similar short-lived (17 +/- 3 ps at 22 degrees C) transient is observed. From these and other data we conclude that configurational isomerization of bilirubin is the predominant nonradiative pathway that competes with pigment fluorescence, that photoisomerization proceeds via a short-lived (much less than 18 ps) partially twisted excited-singlet-state intermediate, and that bilirubin remains relatively unihibited with respect to photoisomerization when bound to human serum albumin.  相似文献   

15.
Flavoproteins can function as hydrophobic sites for vitamin B(2) (riboflavin) or, in other structures, with cofactors for catalytic reactions such as glucose oxidation. In this contribution, we report direct observation of charge separation and recombination in two flavoproteins: riboflavin-binding protein and glucose oxidase. With femtosecond resolution, we observed the ultrafast electron transfer from tryptophan(s) to riboflavin in the riboflavin-binding protein, with two reaction times: approximately 100 fs (86% component) and 700 fs (14%). The charge recombination was observed to take place in 8 ps, as probed by the decay of the charge-separated state and the recovery of the ground state. The time scale for charge separation and recombination indicates the local structural tightness for the dynamics to occur that fast and with efficiency of more than 99%. In contrast, in glucose oxidase, electron transfer between flavin-adenine-dinucleotide and tryptophan(s)/tyrosine(s) takes much longer times, 1.8 ps (75%) and 10 ps (25%); the corresponding charge recombination occurs on two time scales, 30 ps and nanoseconds, and the efficiency is still more than 97%. The contrast in time scales for the two structurally different proteins (of the same family) correlates with the distinction in function: hydrophobic recognition of the vitamin in the former requires a tightly bound structure (ultrafast dynamics), and oxidation-reduction reactions in the latter prefer the formation of a charge-separated state that lives long enough for chemistry to occur efficiently. Finally, we also studied the influence on the dynamics of protein conformations at different ionic strengths and denaturant concentrations and observed the sharp collapse of the hydrophobic cleft and, in contrast, the gradual change of glucose oxidase.  相似文献   

16.
For nicotinamide 1,N6-ethenoadenine dinucleotide (epsilonNAD+), the fluorescent analog of NAD+, in neutral aqueous solution the quantum yield has been determined to be 0.028 and the fluorescent lifetime, 2.1 nsec. Simultaneous determination of quantum yields and lifetimes of epsilonNAD+ and of the "half molecule" epsilonAMP allows the calculation of the percentage of stacked and open conformations of the dinucleotide. At 25 degrees in neutral aqueous solution there is 45 +/- 5% of stacked forms. The value of the fluorescent impurities, especially those containing the epsilon-adenosine moiety, and a purification procedure using high performance liquid chromatography was devised to obtain fluorescently homogeneous preparations. In order to study the effect on epsilon-adenosine fluorescence caused by the possible close proximity of a tryptophan in a polypeptide chain or protein, we have prepared 1,N6-etheno-9-[3-(indol-3-yl)propyl]adenine (epsilonAde9-C3-Ind3), a model compound in which indole is used as a neutral substitute for tryptophan. Fluorescence studies on epsilonAde9-C3-Ind3 show that the formation of an intramolecular complex results in complete quenching of the epsilon-adenine fluorescence. It is therefore predictable that positioning of the epsilon-adenosine of any fluorescent coenzyme moiety (e.q., epsilonATP, epsilonADP) in close proximity to a tryptophan in a protein will result in complete fluorescence quenching of the former.  相似文献   

17.
Measurements have been performed of the excited-state lifetimes and fluorescence yields of papain tryptophan units when acyl derivatives of Phe-glycinal are bound at the active site of the enzyme. The enhancement of tryptophan fluorescence in complexes of papain with the acetyl or benzyloxycarbonyl derivatives is not stereospecific with respect to the configuration of the phenylalanyl residue, and the L and D isomers are equally effective as active-site-directed inhibitors of papain action. Evidence is offered in favor of the conclusion that this enhancement is primarily a consequence of the interaction of the phenylalanyl side chain of the inhibitor with Trp-69 of the enzyme. This residue can exchange fluorescence energy with the other four tryptophans of papain (Trp-7, Trp-26, Trp-177, Trp-181) upon excitation near their absorption maxima, but such “homotransfer” is absent if they are excited at the long-wave edge of their absorption spectra. Crystallographic data indicate that Trp-26 is most favorably positioned for efficient energy exchange with Trp-69, and the fluorescence data have been used to calculate a distance of 11 Å between the two residues; this value is in satisfactory agreement with that found by crystallography. When derivatives of Phe-glycinal bearing an amino-terminal mansyl [6-(N-methylanilino)-2-naphthalene sulfonyl] group are bound at the active site of papain, the tryptophan fluorescence is quenched, as compared with that of the complex of papain with acetyl-Phe-glycinal, indicating energy transfer from papain tryptophan (most probably via Trp-26) to the fluorescent probe group. Although the L and D isomers of mansyl-Phe-glycinal are equally effective as inhibitors of papain action, the fluorescence quenching by the two isomers is different.  相似文献   

18.
A well-known indication that a nucleotide has bound to myosin is the enhancement of the fluorescence of a specific tryptophan in the "subfragment 1" segment of the protein. Empirically the effect has been enormously useful in myosin enzymology. But beyond an early suggestion that it arises from a purine-tryptophan charge-transfer complex, the mechanism of the effect has not been considered. Here we consider the alternative that it arises from an ionizable group (either another residue or the phosphate of the nucleotide) whose proximity to the tryptophan is altered by substrate binding. We study this possibility by studying the interaction of an ionizable residue and tryptophan when both are incorporated in a diketopiperazine structure. The geometry of the situation is inferred from molecular mechanics simulations. Unexpectedly, the best explanation seems to be that the field of the imposed charge, acting across space, affects events in the excited state of the indole.  相似文献   

19.
Three approaches were used to study hybridization of complementary oligodeoxynucleotides by nonradiative fluorescence resonance energy transfer. (i) Fluorescein (donor) and rhodamine (acceptor) were covalently attached to the 5' ends of complementary oligodeoxynucleotides of various lengths. Upon hybridization of the complementary oligodeoxynucleotides, energy transfer was detected by both a decrease in fluorescein emission intensity and an enhancement in rhodamine emission intensity. In all cases, fluorescein emission intensity was quenched by about 26% in the presence of unlabeled complement. Transfer efficiency at 5 degrees C decreased from 0.50 to 0.22 to 0.04 as the distance between donor and acceptor fluorophores in the hybrid increased from 8 to 12 to 16 nucleotides. Modeling of these hybrids as double helices showed that transfer efficiency decreased as the reciprocal of the sixth power of the donor-acceptor separation R, as predicted by theory with a corresponding R0 of 49 A. (ii) Fluorescence resonance energy transfer was used to study hybridization of two fluorophore-labeled oligonucleotides to a longer, unlabeled oligodeoxynucleotide. Two 12-mers were prepared that were complementary to two adjacent sequences separated by four bases on a 29-mer. The adjacent 5' and 3' ends of the two 12-mers labeled with fluorescein and rhodamine exhibited a transfer efficiency of approximately 0.60 at 5 degrees C when they both hybridized to the unlabeled 29-mer. (iii) An intercalating dye, acridine orange, was used as the donor fluorophore to a single rhodamine covalently attached to the 5' end of one oligodeoxynucleotide in a 12-base-pair hybrid. Under these conditions, the transfer efficiency was approximately 0.47 at 5 degrees C. These results establish that fluorescence modulation and nonradiative fluorescence resonance energy transfer can detect nucleic acid hybridization in solution. These techniques, with further development, may also prove useful for detecting and quantifying nucleic acid hybridization in living cells.  相似文献   

20.
Determining the rate of forming the truly folded conformation of ultrafast folding proteins is an important issue for both experiments and simulations. The double-norleucine mutant of the 35-residue villin subdomain is the focus of recent computer simulations with atomistic molecular dynamics because it is currently the fastest folding protein. The folding kinetics of this protein have been measured in laser temperature-jump experiments using tryptophan fluorescence as a probe of overall folding. The conclusion from the simulations, however, is that the rate determined by fluorescence is significantly larger than the rate of overall folding. We have therefore employed an independent experimental method to determine the folding rate. The decay of the tryptophan triplet-state in photoselection experiments was used to monitor the change in the unfolded population for a sequence of the villin subdomain with one amino acid difference from that of the laser temperature-jump experiments, but with almost identical equilibrium properties. Folding times obtained in a two-state analysis of the results from the two methods at denaturant concentrations varying from 1.5-6.0 M guanidinium chloride are in excellent agreement, with an average difference of only 20%. Polynomial extrapolation of all the data to zero denaturant yields a folding time of 220 (+100,-70) ns at 283 K, suggesting that under these conditions the barrier between folded and unfolded states has effectively disappeared--the so-called "downhill scenario."  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号