首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Quantitative autoradiographic, biochemical and functional studies were performed to investigate the endothelin receptor subtypes and signal transduction systems that mediate endothelin-1 (ET-1)-induced contraction in rat isolated tracheal smooth muscle. 2. Specific binding of 0.5 nM [125I]-ET-1 to tracheal smooth muscle was inhibited by at least 40% in the presence of either the ETA receptor selective ligand BQ-123 (1 microM) or the ETB receptor-selective ligand sarafotoxin S6c (30 nM), indicating the presence of both ETA and ETB receptors in this tissue. 3. ET-1 and sarafotoxin S6c were both potent spasmogens of rat isolated tracheal smooth muscle preparations. Sarafotoxin S6c-induced contractions were unaffected in the presence of the ETA receptor antagonist BQ-123 (10 microM), but were markedly attenuated in tissue previously exposed to 100 nM sarafotoxin S6c to induce ETB receptor desensitization. ET-1-induced contractions were, at most, only partially attenuated either by blocking the ETA receptor-effector system (with 10 microM BQ-123) or by desensitizing the ETB receptor-effector system with sarafotoxin S6c. However, ET-1-induced contractions were markedly attenuated by blocking both receptor-effector systems simultaneously. These findings suggest that ET-1 could induce contraction by stimulating either ETA or ETB receptors. 4. ET-1 (10 microM) induced a 7 fold increase in intracellular [3H]-inositol phosphate accumulation over basal levels in rat isolated tracheal smooth muscle. In contrast, sarafotoxin S6c (2.5 microM) increased intracellular [3H]-inositol phosphate accumulation by only 2 fold. ET-1-induced accumulation of [3H]-inositol phosphates was abolished by 10 microM BQ-123.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
This study has examined the effects of animal age on the contractile responsiveness and inositol phosphate-generating capacities of guinea-pig (0-104 weeks) and rat (4-104 weeks) isolated tracheal smooth muscle in response to endothelin-1 (ET-1). The influence of animal age on the specific binding of [125I]ET-1 to guinea-pig and rat isolated tracheal tissue was also examined. The potency (pD2) of ET-1 was three to four times greater in tracheal tissue taken from 4-week-old rats than in similar tissue from 12- to 32-week-old animals, although maximum response (Emax) was not significantly altered. Neither pD2 nor Emax were influenced by ageing in epithelium-intact guinea-pig tracheal preparations. In contrast, removal of the airway epithelium significantly increased the contractile potency of ET-1 by two- to three-fold in tissue from animals of 6-20 weeks of age, but not in tissue from newborn animals. Significant falls in specific [125I]ET-1 grain density with ageing were demonstrated during the maturation phase in both species. In the rat, the decrease between 4 and 12 weeks was reflected in the fall in ET-1 potency at 12 weeks. However, the age-associated reduction in airway smooth muscle ET receptor number in the guinea-pig was not mirrored by significant changes in sensitivity to ET-1, suggesting the presence of a functional receptor reserve. ET-1 (1 nM) caused significant increases in intracellular inositol phosphates, with levels generally higher in rat than in guinea-pig trachea. ET-1-induced inositol phosphate accumulation decreased significantly with respect to animal age in both guinea-pig and rat isolated tracheal tissue. However, this was not correlated with changes in contractile pD2 or Emax. For example, in both rat and guinea-pig, the smallest ET-1-induced increases in intracellular inositol phosphates were measured in airway smooth muscle from the oldest animals tested, although tissue sensitivity to ET-1 was stable in both species after 12 weeks of age. These data suggest that relatively low levels of inositol phosphates were required to elicit Emax, consistent with the presence of more than one signal transduction process.  相似文献   

3.
1. Endothelin-1 (ET-1) binding site densities and constrictor activities were compared in airway smooth muscle preparations of human, guinea-pig, rat and mouse. 2. The mean contractile response to 0.3 microM ET-1 (measured as the % maximum response to 10 microM carbachol, % Cmax +/- s.e.mean) and the mean concentration of ET-1 producing 30% Cmax (95% confidence limits) were respectively; 85.9 +/- 5.4% and 3.4 nM (2.4-5.0) for mouse trachea (n = 11), 88.8 +/- 4.7% and 18.2 nM (11.2-25.2) for rat trachea (n = 6), 71.0 +/- 7.1% and 35.2 nM (5.4-231) for human bronchus (n = 3), and 32.3 +/- 3.0% and 241 nM (125-460) for guinea-pig trachea (n = 6). 3. Light microscopic autoradiography revealed specific [125I]-ET-1 binding sites localized to the smooth muscle band, with very low levels of binding associated with cartilage, submucosal and epithelial cells. 4. Quantitative autoradiographic analyses of the concentration-dependence of specific [125I]-ET-1 binding (0.1-2 nM) to smooth muscle revealed similar dissociation constants but markedly different specific binding site densities for the various animal species. The order of densities of specific [125I]-ET-1 binding sites was rat trachea (69.0 +/- 11.2 amol mm-2) greater than human bronchus (42.7 +/- 17.5 amol mm-2) greater than mouse trachea (28.7 +/- 2.6 amol mm-2) greater than guinea-pig trachea (8.3 +/- 1.8 amol mm-2). 5. A positive relationship between [125I]-ET-1 binding site density and ET-1 constrictor activity was observed in airway smooth muscle preparations from rat, human and guinea-pig.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
1. In this study the mitogenic effects in human cultured tracheal smooth muscle cells of endothelin-1 (ET-1), ET-3, and sarafotoxin S6c (S6c), the ETB receptor-selective agonist, were explored either alone or in combination with the potent mitogen, epidermal growth factor (EGF). 2. In confluent, growth-arrested human airway smooth, neither ET-1 (0.01 nM-1 microM) nor ET-3 (0.001 nM-1 microM) or S6c (0.01 nM-1 microM) induced cell proliferation, as assessed by [3H]-thymidine incorporation. In contrast, EGF (1.6 pM-16 nM) produced concentration-dependent stimulation of DNA synthesis (EC50 of about 0.06 nM). The maximum increase of about 60 fold above control, elicited by 16 nM EGF, was similar to that obtained with 10% foetal bovine serum (FBS). EGF (0.16-16 nM) also produced a concentration-dependent increase in cell counts, whereas ET-1 (1-100 nM) was without effect on this index of mitogenesis. 3. ET-1 (1-100 nM) potentiated EGF-induced proliferation of human tracheal smooth muscle cells. For example, ET-1 (100 nM), which alone was without significant effect, increased by 3.0 to 3.5 fold the mitogenic influence of EGF (0.16 nM). The potentiating effect of ET-1 on EGF-induced proliferation was antagonized by BQ-123 (3 microM), the ETA receptor antagonist, but was unaffected by the ETB receptor antagonist BQ-788 (10 microM). 4. Neither ET-3 (1-100 nM) nor S6c (1-100 nM) influenced the mitogenic effects of EGF (0.16-1.6 nM). 5. [125I]-ET-1 binding studies revealed that on average the ratio of ETA to ETB receptors in human cultured tracheal smooth muscle cells was 35:65 ( +/- 3; n = 4), confirming the predominance of the ETB receptor subtype in human airway smooth muscle. 6. These data indicate that ET-1 alone does not induce significant human airway smooth muscle cell proliferation. However, it potently potentiated mitogenesis induced by EGF, apparently via an ETA receptor-mediated mechanism. These findings suggest that ET-1, a mediator detected in increased amounts in patients with acute asthma, may potentiate the proliferative effects of mitogens and contribute to the airway smooth muscle hyperplasia associated with chronic severe asthma.  相似文献   

5.
1. It has been shown previously that nordihydroguaiaretic acid (NDGA) inhibits endothelin-1 (ET-1)-induced contractions in rat isolated tracheal smooth muscle. To investigate the underlying mechanisms, this study examined the effects of NDGA on various aspects of the ETA and ETB receptor-effector systems which mediate ET-1-induced contractions in this preparation. 2. NDGA inhibited contractions induced by each of the isoforms of ET (ET-1, ET-2 and ET-3) but not those induced by the ETB receptor-selective agonist, sarafotoxin S6c, the cholinoceptor agonist, carbachol or the depolarizing spasmogen, KCl. 3. Quantitative autoradiographic studies of [125I]-ET-1 binding to rat tracheal smooth muscle indicated that NDGA was not an ET receptor antagonist. 4. NDGA inhibited the ETA receptor-mediated, intracellular Ca(2+)-dependent contractions induced by 100 nM ET-1 in Ca(2+)-free solution (by 75%, P < 0.01). Furthermore, NDGA markedly inhibited the contractions induced by ryanodine and cyclopiazonic acid; contractions purportedly due to Ca2+ release from intracellular stores. 5. Like NDGA, the sarcoplasmic reticulum Ca(2+)-ATPase inhibitors cyclopiazonic acid and thapsigargin inhibited contractions to ET-1, but not carbachol or KCl. However, cyclopiazonic acid, but not NDGA, also (a) induced transient contractions in rat trachea, (b) potentiated contractions induced by KCl, and (c) potentiated the extracellular Ca(2+)-dependent phase of ET-1-induced contractions, indicating that NDGA did not inhibit ET-1-induced contractions through Ca(2+)-ATPase inhibition and depletion of sarcoplasmic reticular Ca2+. 6. In control preparations, ET-1 induced a slowly developing, sustained contraction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Acrolein, an unsaturated aliphatic aldehyde, is a potent respiratory irritant. We have previously observed that acrolein administered ex vivo to isolated airways alters subsequent airway responsiveness to muscarinic agonists in terms of both mechanical activity of rings and calcium signaling in isolated cells. In the present study, we have examined the mechanisms by which acrolein alters Ca(2+) signaling. In freshly isolated rat tracheal smooth muscle cells, preexposure to acrolein increased the [Ca(2+)](i) oscillation frequency in response to endothelin 1 (ET-1, 0.1 microM), a contractile agonist that acts via the activation of a receptor different from the muscarinic cholinoceptor. We then studied acrolein-induced alteration in cell signaling with special attention to the steps downstream of membrane receptor activation i.e., the inositol 1,4,5-trisphosphate (InsP(3)) signaling pathway. Pretreatment of cells with LiCl (20 mM), a modulator of InsP(3) concentration, mimicked the effect of acrolein exposure on agonist-induced [Ca(2+)](i) response, i.e., increased the amplitude of the first Ca(2+) rise and the oscillation frequency in response to 0.1 and 10 microM acetylcholine (ACh), respectively. Moreover, in tracheal smooth muscle, preexposure to acrolein significantly increased carbachol-induced [(3)H]inositol-phosphates accumulation, up to 34 +/- 11% above unexposed tissue values. Finally, in beta-escin permeabilized cells, injection of InsP(3) (0.1-10 microM) induced a concentration-dependent [Ca(2+)](i) rise followed, for high InsP(3) concentration, by [Ca(2+)](i) oscillations, a calcium response whose pattern was similar to that induced by ACh. Exposure to acrolein did not alter the InsP(3)-induced [Ca(2+)](i) response. These results indicate that the effect of acrolein exposure on Ca(2+) responses in airway smooth muscle is not restricted to activation of the muscarinic cholinoceptor and is due to an enhancement in agonist-induced InsP(3) production. Since acrolein does not modify InsP(3) receptor channel sensitivity, we conclude that acrolein-induced alteration in calcium signaling can be ascribed to its sole effect on InsP(3) production.  相似文献   

7.
An investigation was made of a range of agents capable of elevating tissue cyclic AMP levels, or acting as a stable analogue of cyclic AMP, upon carbachol induced inositol phosphate responses in bovine tracheal smooth muscle slices. Whereas the beta 2 adrenoceptor agonist salbutamol (1 microM) and the membrane permeable analogue of cyclic AMP, 8-bromo-cyclic AMP (1 mM) were without effect upon total [3H]inositol phosphate formation induced by carbachol, 3-iso-butyl-1-methylaxanthine (IBMX) (EC50 140 microM), the high Km, cyclic AMP selective phosphodiesterase inhibitor rolipram (EC50 41 microM) and theophylline (EC50 76 microM) all inhibited the inositol phosphate response to low (1 microM) concentrations of carbachol. IBMX (IC50 13 microM), rolipram (IC50 4.6 microM) and theophylline (IC50 180 microM) all relaxed bovine tracheal muscle strips precontracted with methacholine (1 microM). The adenylate cyclase activator forskolin (1 microM), produced a much smaller (10% inhibition) effect upon inositol phosphate formation induced by carbachol. Carbachol (1 microM-1 mM) did not inhibit forskolin induced [3H]cyclic AMP formation. An inhibitor of the cyclic GMP preferring phosphodiesterase isozyme, M&B 22948 (1-100 microM), was without effect upon either carbachol induced inositol phosphate formation or trachealis tone. It is concluded that IBMX, rolipram and theophylline inhibit carbachol stimulated inositol phosphate formation, possibly through a cyclic AMP independent mechanism.  相似文献   

8.
1. The effect of fluoroaluminate complexes (AlCl3 plus NaF) upon smooth muscle tone, [3H]-inositol phosphate accumulation and [3H]-cyclic AMP accumulation has been investigated in slices of bovine tracheal smooth muscle. 2. Fluoroaluminate (10 microM AlCl3 + various concentrations of NaF) elicited concentration-dependent contractions of bovine tracheal smooth muscle strips at concentrations of NaF in the range 1-10 mM. The resultant contractile response was reversed by isoprenaline (50 nM) and was preserved in calcium-free medium. 3. Fluoroaluminate stimulated [3H]-inositol phosphate formation at concentrations of NaF over 1 mM. The response to 20 mM NaF + 10 microM AlCl3 was 164 +/- 29% of the response to 1 mM histamine. Fluoroaluminate also increased the incorporation of [3H]-myo-inositol into membrane phospholipids. 4. Fluoroaluminate produced a small rise in [3H]-cyclic AMP levels (2.1 fold increase over basal with 20 mM NaF). The response to forskolin (1 microM, 8.6 fold over basal) was reduced by fluoroaluminate in a concentration-dependent manner, but still remained significantly (P less than 0.05) elevated over the response to fluoroaluminate alone. 5. The [3H]-inositol phosphate response to fluoroaluminate was inhibited by salbutamol (maximum inhibition 60%, IC50 = 0.08 microM), forskolin (1 microM, 46% inhibition) and isobutylmethylxanthine (1 mM, 73% inhibition). 6. These data suggest that inhibition of agonist-induced inositol phospholipid turnover by cyclic AMP in this tissue can occur at the post-receptor level.  相似文献   

9.
1. The effect on histamine-stimulated [3H]-inositol phosphate accumulation of a range of agents which increase the accumulation, or mimic the actions, of cyclic AMP has been investigated in bovine tracheal smooth muscle. 2. Salbutamol (1 microM), forskolin (1 microM) and vasoactive intestinal peptide (VIP, 1 microM) inhibited the inositol phosphate response to 0.1 mM histamine and increased the accumulation of [3H]-cyclic AMP in [3H]-adenine-labelled slices of bovine tracheal smooth muscle. The effect on inositol phospholipid hydrolysis was mimicked by the membrane permeant analogues of cyclic AMP, dibutrylcyclic AMP (1 mM) and 8-bromo-cyclic AMP (1 mM). 3. In contrast to salbutamol, which was equally effective at producing the two effects, forskolin produced large increases in [3H]-cyclic AMP accumulation (EC50 = 1.2 microM) at much higher concentrations than those required for inhibition of histamine-stimulated [3H]-inositol phosphate accumulation (EC50 = 0.09 microM). However, significant increases in [3H]-cyclic AMP accumulation, of similar magnitude to those obtained with salbutamol and VIP, were observed over the concentration range appropriate for inhibition of the inositol phosphate response to histamine. 4. In the presence of histamine (0.1 mM), isobutylmethylxanthine (IBMX, 1 mM) and rolipram (0.1 mM) both significantly (P less than 0.05) elevated tissue [3H]-cyclic AMP levels. IBMX, rolipram and (to a lesser extent) SKF 94120 significantly (P less than 0.05) reduced histamine-stimulated [3H]-inositol phosphate accumulation by 81%, 68% and 20%, respectively. M&B 22948 was without a significant effect on either [3H]-cyclic AMP or histamine-induced [3H]-inositol phosphate accumulation. 5. Both rolipram and forskolin reduced the increase in incorporation of [3H]-inositol into membrane phospholipids which followed stimulation with histamine. However, a significant inhibition of [3H]-inositol phosphate accumulation could be demonstrated under conditions in which there was no change in the level of [3H]-inositol incorporation.  相似文献   

10.
Alpha-adrenoceptor subtypes in canine tracheal smooth muscle were investigated by radioligand binding and by in vitro responses of muscle strips to electrical field stimulation and exogenous alpha-agonists. [3H]Yohimbine identified a high density of alpha 2-receptors (51.4 +/- 4.9 fmoles/mg of protein; n = 5) in tracheal smooth muscle membranes, whereas [3H]prazosin revealed a low density of alpha 1-receptors (11.1 +/- 2.9 fmoles/mg of protein; n = 5). In peripheral lung membranes, however, alpha 1-receptors predominated (46.8 +/- 7.7 fmoles/mg of protein; n = 4) over alpha 2-receptors (4.1 +/- 1.5 fmoles/mg of protein; n = 4). After pretreatment with atropine and propranolol and precontraction with serotonin or histamine, the contractile response of tracheal smooth muscle to electrical field stimulation was partially inhibited by 0.3 microM prazosin (16%), potently inhibited by 0.3 microM yohimbine (89%), and abolished by a combination of the two drugs. The response to neuronally released norepinephrine is therefore mediated predominantly by alpha 2-receptors. The rank order of potency for adrenergic agonists was clonidine greater than norepinephrine greater than phenylephrine in both competition studies with [3H]yohimbine and in contraction studies, signifying a predominance of postsynaptic alpha 2-receptors. The contractile responses to exogenous norepinephrine, clonidine, and phenylephrine were only weakly inhibited by 0.3 microM prazosin but markedly inhibited by 0.3 microM yohimbine, with a Kb of 1.2 nM, which was similar to the Kd of [3H]yohimbine binding to airway smooth muscle membranes (2.7 nM).  相似文献   

11.
We have, in the accompanying work, demonstrated the coexistence of M2 and M3 muscarinic receptors in the circular smooth muscle of canine colon. In the present study, the effects of muscarinic receptor stimulation on phosphoinositide turnover and adenylate cyclase activity were examined. In myo-[3H]inositol-labeled circular smooth muscle strips, carbachol caused a concentration-dependent (EC50 = 5 microM) increase in [3H]inositol phosphate production. The more M3 receptor-selective muscarinic antagonist pirenzepine (KB = 53 nM) was approximately 60 times more potent than the more M2-selective agent AF-DX 116 (KB = 3 microM) in blocking carbachol-elicited accumulation of [3H]inositol phosphates. The carbachol-stimulated increase in [3H]inositol phosphate accumulation was not affected by pretreatment of the tissue with pertussis toxin (200 ng/ml, 3 hr). Within the first minute, carbachol (100 microM) caused a rapid and transient increase of [3H]inositol 1,4,5-trisphosphate production that oscillated continuously in the presence of agonist (120 min). The accumulation of [3H]inositol 1,3,4-trisphosphate was also extremely rapid, reaching a peak at 15 sec. The accumulation of [3H]inositol monophosphate was delayed and progressively increased over 30 min. [3H]inositol 1,3,4,5-tetrakisphosphate, although not detectable in the first minute, accumulated to significant levels over 30 min in the presence of agonist. Addition of carbachol in the adenylate cyclase assay caused inhibition of forskolin-stimulated [32P]cAMP production and blocked forskolin-stimulated cAMP accumulation in the intact tissue. The inhibitory effects of carbachol on adenylate cyclase were blocked by atropine, AF-DX 116, and 4-diphenylacetoxy-N-methylpiperidine methobromide but were unaffected by the more M3-selective agent pirenzepine (1 microM). Pretreatment of tissues with pertussis toxin completely eliminated M2 receptor-mediated inhibition of adenylate cyclase activity, without altering inositol 1,4,5-trisphosphate accumulation. We conclude that muscarinic receptor stimulation of inositol trisphosphate production is mediated by the M3 receptor coupled to a pertussis toxin-insensitive GTP-binding protein and results in the rapid formation of inositol tetrakisphosphate, whereas inhibition of adenylate cyclase activity is mediated by the M2 subtype of muscarinic receptor coupled to the pertussis toxin-sensitive GTP-binding protein Gi.  相似文献   

12.
1. In the current study, the density and function of ETA and ETB receptors in mouse tracheal airway smooth muscle were determined over the time course of respiratory tract infection with influenza A/PR-8/34 virus. 2. Quantitative autoradiographic studies using [125I]-endothelin-1 revealed that the tracheal airway smooth muscle from control mice contained ETA and ETB sites in the ratio of 49%:51% (+/- 2%, n = 29 mice). Respiratory tract viral infection was associated with increases in the density of ETA sites and decreases in the density of ETB sites at days 1, 2 and 4 post-inoculation which were reversible by day 19. For example, at day 4 post-inoculation, a time when the manifestations of viral infection were at or near their peak, the ratio of ETA:ETB sites was 72%:28% (+/- 4%, n = 6 mice, P < 0.05). In contrast, at day 19 post-inoculation, by which time viral infection had essentially resolved, the ratio of ETA:ETB sites was similar to control (51%:49% (+/- 3%), n = 6 mice). 3. Endothelin-1 was a potent spasmogen in isolated tracheal airway smooth muscle preparations from control mice (ED70 = concentration producing 70% of contraction induced by 10 microM carbachol = 6.3 nM (95% confidence limits, 4.0-10; n = 6 mice)). Neither the ETA receptor-selective antagonist, BQ-123 (3 microM), nor the ETB receptor-selective antagonist, BQ-788 (1 microM) alone had any significant inhibitory effect on endothelin-1-induced contractions of mouse isolated tracheal smooth muscle. However, simultaneous treatment with BQ-123 (3 microM) and BQ-788 (1 microM) resulted in a 10 fold rightward shift in the concentration-effect curve to endothelin-1 (ED70 = 60 nM, (44-90; n = 6 mice, P < 0.05)), indicating that contraction was mediated via both ETA and ETB receptors. 4. Endothelin-1 evoked similar concentration-dependent contractions of tracheal smooth muscle isolated from control and virus-inoculated mice. In the presence of the ETB receptor-selective-antagonist, BQ-788 (1 microM), the potency and maximum response to endothelin-1 were similar in preparations from control and virus-inoculated mice at all time points investigated. However, unlike control responses, endothelin-1-induced contractions in preparations from virus-infected mice were significantly inhibited by the ETA receptor-selective antagonist, BQ-123. For example, at day 4 post-inoculation, the contractile response to 30 nM endothelin-1, in the presence of BQ-123 (3 microM), was only 20 +/- 12% (n = 6 mice, P < 0.05) of that produced in control preparations under similar conditions. However, at day 19 post-inoculation, contraction evoked by 30 nM endothelin-1 in the presence of BQ-123 (3 microM), was similar to that in preparations from control mice. 5. In summary, during the early stages (days 1-8 post-inoculation) of respiratory tract infection with influenza A/PR-8/34 virus, we observed decreases in the density of tracheal airway smooth muscle ETB receptors which were reflected in decreases in ETB receptor-mediated airway smooth muscle contraction. In addition, during the same period of viral infection we observed increases in the density of tracheal airway smooth muscle ETA receptors which were not associated with increased function of the ETA receptor-effector system linked to contraction. Virus-associated modulation of ETA and ETB receptor density and function was reversible with recovery from infection.  相似文献   

13.
1. Bovine tracheal smooth muscle cells were established in culture to study agonist-induced phosphoinositide (PI) hydrolysis in this tissue. 2. Bradykinin (0.1 nM-10 microM) evoked a concentration-dependent increase (log EC50 (M) = -9.4 +/- 0.2; n = 8) in the accumulation of total [3H]-inositol phosphates in cultured tracheal smooth muscle cells whereas the selective B1 receptor agonist des-Arg9-bradykinin (10 microM) was significantly less effective (16% of bradykinin maximal response; relative potency = 0.2 with respect to bradykinin = 100). 3. The bradykinin-induced increase in PI hydrolysis was unaffected by the B1 receptor antagonist des-Arg9[Leu8]-bradykinin (1 nM-1 microM) but showed marked attenuation in the presence of the B2 receptor antagonists D-Arg,[Hyp3,D-Phe7]-bradykinin (10 nM-10 microM) or D-Arg[Hyp3,Thi5,8,D-Phe7]-bradykinin (10 nM-10 microM). The estimated KB values obtained for these two compounds, assuming competitive antagonism, were 40 +/- 14 nM and 8.6 +/- 2.8 nM for D-Arg,[Hyp3,D-Phe7]-bradykinin and D-Arg[Hyp3,Thi5,8,D-Phe7]-bradykinin respectively. 4. We conclude that bradykinin B2 receptors are expressed in cultured bovine tracheal smooth muscle cells and are coupled to PI hydrolysis mechanisms.  相似文献   

14.
1. The aim of the study was to characterize the effects of hypoxia on agonist-stimulated phospholipase D (PLD) and phospholipase C activity of sheep pulmonary artery cultured smooth muscle cells. 2. Endothelin-1 (ET-1), 5-hydroxytryptamine (5-HT) and the protein kinase C (PKC) activator tetradecanoylphorbol acetate (TPA), stimulated a time- and concentration-dependent increase in [3H]-phosphatidylbutanol accumulation. This was abolished by pretreatment of the cells with the PKC inhibitor, Ro-318220, suggesting that agonist-stimulated phospholipase D activity is dependent upon the activation of PKC. 3. Hypoxia (PO2 20 mmHg for 30 min) stimulated basal [3H]-phosphatidylbutanol accumulation by approximately 2 fold and this activity was abolished by preincubation of the cells with 10 microM Ro-318220. 4. In cells preincubated in low O2 containing medium for 30 min, the subsequent agonist-stimulated accumulation of [3H]-phosphatidylbutanol was reduced. However, the decrease in stimulation was greater for ET-1 and 5-HT than for TPA. 5. ET-1 and TPA stimulated a time-dependent increase in protein kinase C- mediated psuedosubstrate phosphorylation. Following preincubation for 30 min in low O2 containing media, basal pseudosubstrate phosphorylation increased whilst the fold stimulation by TPA and ET-1 decreased. 6. In cells preincubated in low O2 containing medium, ET-1-stimulated [3H]-inositol phosphate accumulation was reduced by approximately 30-40%. This reduction was reversed by preincubation of the cells with Ro-318220. 7. These results suggest a role for PKC in the effects of hypoxia on PLD in pulmonary artery smooth muscle cells.  相似文献   

15.
The mitogenic effects of endothelin isopeptides and the selective ETA receptor antagonist BQ123 were evaluated in rat aortic vascular smooth muscle cells. Endothelin-1 (ET-1) and endothelin-3 (ET-3) produced concentration-dependent increases in [3H]thymidine incorporation (EC50 = 0.1 and 25 nM, respectively). The ETB-selective agonist sarafotoxin 6c did not produce significant effects on [3H]thymidine incorporation. BQ123 produced selective and concentration-dependent inhibition of ET-1-mediated [3H]thymidine incorporation. These data demonstrate that ET-1-mediated mitogenesis in vascular smooth muscle is mediated by ETA receptors.  相似文献   

16.
1. Preincubation of guinea-pig tracheal smooth muscle with leukotriene E4 (LTE4) in vitro increased its subsequent responsiveness to histamine. 2. LTE4 pretreatment of guinea-pig tracheal strips did not affect the subsequent responsiveness to either the contractile agents, carbachol and KCl, or to the relaxant beta-adrenoceptor agonist, isoprenaline. 3. LTE4-induced airway histamine hyperresponsiveness was blocked by indomethacin (5 microM), GR32191 (3 microM), atropine (1 microM) and tetrodotoxin (1 microM). 4. U46619, a stable thromboxane A2-analogue, at a non-contractile concentration of 4 nM, increased tracheal smooth muscle sensitivity to histamine. 5. Both LTE4 and U46619 pretreatment increased the contractile response of tracheal smooth muscle to electrical field stimulation. 6. Preincubation of human bronchial spirals with LTE4 in vitro increased its subsequent responsiveness to histamine. 7. LTE4-induced histamine hyperresponsiveness of human bronchus was inhibited by GR32191 (3 microM) and atropine (1 microM). 8. It is proposed that LTE4 induces guinea-pig airway smooth muscle hyperresponsiveness to histamine via a facilitation of cholinergic neurotransmission, which is dependent upon the secondary generation of prostanoid mediator(s) acting on TP-receptors situated on cholinergic nerve terminals. In addition, it is suggested that LTE4 may induce histamine hyperresponsiveness of human bronchus in vitro by a similar mechanism as to that seen in guinea-pig central airway smooth muscle.  相似文献   

17.
1. The purpose of the present experiments was to elucidate the differences in actions of two K+ channel openers, KC 128 and levcromakalim, on the carbachol-induced contraction, membrane potential and 86Rb+ efflux of the dog tracheal and bronchial smooth muscles. Furthermore, we compared the effects of these agents on guinea-pig and human airway smooth muscles. 2. In the dog tracheal and bronchial smooth muscle tissues, levcromakalim induced a concentration-dependent relaxation of the carbachol-induced contraction. The IC50 values were 0.35 microM (pIC50: 6.46 +/- 0.10, n = 9) and 0.55 microM (pIC50: 6.26 +/- 0.07, n = 5), respectively. KC 128 relaxed bronchial smooth muscles precontracted by carbachol with an IC50 value of 0.19 microM (pIC50: 6.73 +/- 0.10, n = 7). However, KC 128 had almost no effect on the contraction evoked by carbachol in the trachea (IC50 > 10 microM). The relaxations induced by levcromakalim and KC 128 were antagonized by glyburide (0.03-1 microM) but not by charybdotoxin (100 nM). 3. Levcromakalim (1 microM) hyperpolarized the membrane of both dog tracheal and bronchial smooth muscle cells, whereas KC 128 (1 microM) hyperpolarized the membrane of bronchial but not of tracheal smooth muscle cells. 4. Levcromakalim (10 microM) increased 86Rb+ efflux rate from both tracheal and bronchial smooth muscle tissues but KC 128 (10 microM) increased 86Rb+ efflux rate only from bronchial and not tracheal smooth muscle tissues. Glyburide (1 microM) prevented the hyperpolarization and the 86Rb+ efflux induced by these agents at the same concentration as observed for mechanical responses.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
1. The ability of BRL 38227 and nitrendipine to affect muscarinic agonist and histamine-stimulated [3H]-inositol phosphate accumulation in slices of bovine tracheal smooth muscle has been studied and compared with the established inhibitory effects of isoprenaline on this pathway. 2. Pre-addition of BRL 38227 (5 microM), nitrendipine (1 microM) or isoprenaline (10 microM) significantly inhibited the subsequent inositol phosphate response to histamine at all concentrations studied (10- 1000 microM). BRL 38227 and nitrendipine also significantly inhibited the [3H]-inositol phosphate response to low (1 microM), but not high (100 microM) concentrations of carbachol. Isoprenaline had no effect at any concentration of carbachol studied. 3. Nitrendipine (IC50 = 95 nM) and BRL 38227 (IC50 = 322 nM) caused concentration-related inhibitions of the inositol phosphate response to histamine (100 microM). Similar maximal inhibitions were caused by each agent (55-58%). Inhibitory effect of BRL 38227 was reduced in potency (IC50 = 5.5 microM), but not magnitude, in the presence of glibenclamide (0.5 microM). 4. Time-course studies comparing the effects of BRL 38227 addition 15 min before, and 10 min after histamine challenge showed that for pre-addition a distinct (less than 2 min) lag occurred following histamine addition before the inhibitory effect of BRL 38227 was manifest. In contrast, when BRL 38227 was added 10 min after histamine, an inhibitory effect was immediately apparent. 5. Further evidence for an initial, 'protected' phase of inositol phosphate accumulation was provided by the finding that BRL 38227 pre-addition had no effect on the early (0-300 s) time-course of inositol 1,4,5-trisphosphate mass accumulation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Selegiline is widely used for Parkinson's disease and sometimes for Alzheimer's disease. It is reported to affect intracellular Ca(2+) concentration. Since intracellular Ca(2+) is partly regulated by phosphatidylinositol (PI) response and is important for smooth muscle contraction, selegiline may affect airway smooth muscle tension. We examined the effects of selegiline on acetylcholine (ACh)- and KCl-induced contractile and PI responses in rat trachea. The trachea was cut into 3-mm-wide ring segments or 1-mm-wide slices. ACh (3 microM, 50% effective dose) or KCl (40 mM) was added, and ring relaxation was induced by the addition of selegiline. Tracheal slices were incubated with [(3)H]myo-inositol and 3 microM ACh in the presence of selegiline, and [(3)H]inositol monophosphate (IP(1)) was measured. Selegiline dose-dependently attenuated ACh- and KCl-induced tracheal ring contractions. Fifty-percent inhibitory doses (ID50) of selegiline against ACh- and KCl-induced contraction were 120 +/- 30 microM and 80 +/- 20 microM, respectively. Basal and ACh-induced IP(1) accumulation were 2.20 +/- 0.20 Bq and 7.88 +/- 0.23 Bq, respectively, and selegiline at a dose of 1000 microM attenuated ACh-induced IP(1) accumulation (5.44 +/- 0.30 Bq). These results suggest that selegiline inhibits contractile responses through the inhibition of voltage-operated Ca(2+) channels and the PI response.  相似文献   

20.
Droperidol attenuates airway smooth muscle contraction. However, the intracellular mechanisms involved in the droperidol-induced attenuation of airway smooth muscle contraction are not fully understood. We examined the effects of droperidol on contractile and phosphatidylinositol responses of the rat trachea. Droperidol dose dependently attenuated carbachol (CCh) induced tracheal ring contractions. The IC(50) of droperidol on CCh-induced tracheal ring contraction was 13 +/- 2 micromol/l. Droperidol attenuated CCh and aluminum fluoride stimulated inositol monophosphate accumulation. These results suggest that droperidol inhibits G protein coupled phospholipase C, resulting in attenuation of CCh-induced phosphatidylinositol response and subsequent attenuation of contractions of the rat trachea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号