首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Changes in DNA methylation patterns are an important characteristic of human cancer. Tumors have reduced levels of genomic DNA methylation and contain hypermethylated CpG islands, but the full extent and sequence context of DNA hypomethylation and hypermethylation is unknown. Here, we used methylated CpG island recovery assay-assisted high-resolution genomic tiling and CpG island arrays to analyze methylation patterns in lung squamous cell carcinomas and matched normal lung tissue. Normal tissues from different individuals showed overall very similar DNA methylation patterns. Each tumor contained several hundred hypermethylated CpG islands. We identified and confirmed 11 CpG islands that were methylated in 80-100% of the SCC tumors, and many hold promise as effective biomarkers for early detection of lung cancer. In addition, we find that extensive DNA hypomethylation in tumors occurs specifically at repetitive sequences, including short and long interspersed nuclear elements and LTR elements, segmental duplications, and subtelomeric regions, but single-copy sequences rarely become demethylated. The results are consistent with a specific defect in methylation of repetitive DNA sequences in human cancer.  相似文献   

2.
3.
4.
Variation in healthy aging and lifespan is ascribed more to various non-genetic factors than to inherited genetic determinants, and a major goal in aging research is to reveal the epigenetic basis of aging. One approach to this goal is to find genomic sites or regions where DNA methylation correlates with biological age. Using health data from 134 elderly twins, we calculated a frailty index as a quantitative indicator of biological age, and by applying the Infinium HumanMethylation450K BeadChip technology to their leukocyte DNA samples, we obtained quantitative DNA methylation data on genome-wide CpG sites. We analyzed the health and epigenome data by taking two independent associative approaches: the parametric regression-based approach and a non-parametric machine learning approach followed by GO ontology analysis. Our results indicate that DNA methylation at CpG sites in the promoter region of PCDHGA3 is associated with biological age. PCDHGA3 belongs to clustered protocadherin genes, which are all located in a single locus on chromosome 5 in human. Previous studies of the clustered protocadherin genes showed that (1) DNA methylation is associated with age or age-related phenotypes; (2) DNA methylation can modulate gene expression; (3) dysregulated gene expression is associated with various pathologies; and (4) DNA methylation patterns at this locus are associated with adverse lifetime experiences. All these observations suggest that DNA methylation at the clustered protocadherin genes, including PCDHGA3, is a key mediator of healthy aging.  相似文献   

5.
There is a concern that increased paternal age may be associated with altered fertility and an increased incidence of birth defects in man. In previous studies of aged male rats, we have found abnormalities in the fertility and in the embryos sired by older males. Aging in mammals is associated with alterations in the content and patterns of DNA methylation in somatic cells; however, little is known in regard to germ cells. A systematic search for global and gene-specific alterations of DNA methylation in germ cells and liver of male rats was done. Restriction landmark genomic scanning, a method used to determine specific methylation patterns of CpG island sequences, has revealed a region of the ribosomal DNA locus that is preferentially hypermethylated with age in both spermatozoa and liver. In contrast, all single copy CpG island sequences in spermatozoa and in liver remain unaltered with age. We further demonstrate that a large proportion of rat ribosomal DNA is normally methylated and that regional and site-specific differences exist in the patterns of methylation between spermatozoa and liver. We conclude that patterns of ribosomal DNA methylation in spermatozoa are vulnerable to the same age-dependent alterations that we observe in normal aging liver. Failure to maintain normal DNA methylation patterns in male germ cells could be one of the mechanisms underlying age-related abnormalities in fertility and progeny outcome.  相似文献   

6.
7.
8.
9.
The modulation of DNA-protein interactions by methylation of protein-binding sites in DNA and the occurrence in genomic imprinting, X chromosome inactivation, and fragile X syndrome of different methylation patterns in DNA of different chromosomal origin have underlined the need to establish methylation patterns in individual strands of particular genomic sequences. We report a genomic sequencing method that provides positive identification of 5-methylcytosine residues and yields strand-specific sequences of individual molecules in genomic DNA. The method utilizes bisulfite-induced modification of genomic DNA, under conditions whereby cytosine is converted to uracil, but 5-methylcytosine remains nonreactive. The sequence under investigation is then amplified by PCR with two sets of strand-specific primers to yield a pair of fragments, one from each strand, in which all uracil and thymine residues have been amplified as thymine and only 5-methylcytosine residues have been amplified as cytosine. The PCR products can be sequenced directly to provide a strand-specific average sequence for the population of molecules or can be cloned and sequenced to provide methylation maps of single DNA molecules. We tested the method by defining the methylation status within single DNA strands of two closely spaced CpG dinucleotides in the promoter of the human kininogen gene. During the analysis, we encountered in sperm DNA an unusual methylation pattern, which suggests that the high methylation level of single-copy sequences in sperm may be locally modulated by binding of protein factors in germ-line cells.  相似文献   

10.
Loss of genomic material from chromosomal band 13q14.3 is the most common genetic imbalance in B-cell chronic lymphocytic leukemia (B-CLL) and mantle cell lymphoma, pointing to the involvement of this region in a tumor suppressor mechanism. From the minimally deleted region, 3 candidate genes have been isolated, RFP2, BCMS, and BCMSUN. DNA sequence analyses have failed to detect small mutations in any of these genes, suggesting a different pathomechanism, most likely haploinsufficiency. We, therefore, tested B-CLL patients for epigenetic aberrations by measuring expression of genes from 13q14.3 and methylation of their promotor region. RB1, CLLD7, KPNA3, CLLD6, and RFP2 were down-regulated in B-CLL patients as compared with B cells of healthy donors, with RFP2 showing the most pronounced loss of expression. To test whether this loss of gene expression is associated with methylation of CpG islands in the respective promotor regions, we performed methylation-sensitive quantitative polymerase chain reaction analyses and bisulfite sequencing on DNA from B-CLL patients. No difference in the methylation patterns could be detected in any CpG island of the minimally deleted region. Down-regulation of genes within chromosomal band 13q14.3 in B-CLL is in line with the concept of haploinsufficiency, but this tumor-specific phenomenon is not associated with DNA methylation.  相似文献   

11.
Global loss of DNA methylation has been known for decades as an epigenomic aberration associated with carcinogenesis and cancer progression. Loss of DNA methylation affects predominantly repetitive elements, which encompass >50% of the CpG dinucleotides present in the human genome. Because of the lack of an effective approach, no studies have been conducted to reveal such genome-wide methylation changes at a single-base resolution. To precisely determine the CpG sites with methylation loss during progression of pediatric intracranial ependymomas, we exploited a high-throughput bisulfite sequencing approach that simultaneously generates methylation profiles for thousands of Alu elements and their flanking sequences. Comparison of the methylation profiles of normal and tumor tissues revealed that the methylation status of the majority of CpG sites adjacent to or within Alu repeats remain unaltered, while a small set of CpG sites gain or lose methylation in ependymomas. Compared to the CpG sites with stable methylation level between normal control and ependymomas, the differentially methylated CpG sites are enriched in the sequences with low CpG density in the flanking regions of Alu repeats, rather than within the Alu sequences themselves. In addition, the CpG sites that are hypermethylated in ependymomas are proximal to CpG islands, whereas those that are hypomethylated are overrepresented in intergenic regions. Lastly, aberrant methylation of several genomic loci was confirmed to be associated with the aggressive primary tumors and the relapsed ependymomas.  相似文献   

12.
13.
14.
Predicting aberrant CpG island methylation   总被引:15,自引:0,他引:15       下载免费PDF全文
Epigenetic silencing associated with aberrant methylation of promoter region CpG islands is one mechanism leading to loss of tumor suppressor function in human cancer. Profiling of CpG island methylation indicates that some genes are more frequently methylated than others, and that each tumor type is associated with a unique set of methylated genes. However, little is known about why certain genes succumb to this aberrant event. To address this question, we used Restriction Landmark Genome Scanning to analyze the susceptibility of 1,749 unselected CpG islands to de novo methylation driven by overexpression of DNA cytosine-5-methyltransferase 1 (DNMT1). We found that although the overall incidence of CpG island methylation was increased in cells overexpressing DNMT1, not all loci were equally affected. The majority of CpG islands (69.9%) were resistant to de novo methylation, regardless of DNMT1 overexpression. In contrast, we identified a subset of methylation-prone CpG islands (3.8%) that were consistently hypermethylated in multiple DNMT1 overexpressing clones. Methylation-prone and methylation-resistant CpG islands were not significantly different with respect to size, C+G content, CpG frequency, chromosomal location, or promoter association. We used DNA pattern recognition and supervised learning techniques to derive a classification function based on the frequency of seven novel sequence patterns that was capable of discriminating methylation-prone from methylation-resistant CpG islands with 82% accuracy. The data indicate that CpG islands differ in their intrinsic susceptibility to de novo methylation, and suggest that the propensity for a CpG island to become aberrantly methylated can be predicted based on its sequence context.  相似文献   

15.
Comprehensive analysis of CpG islands in human chromosomes 21 and 22   总被引:32,自引:0,他引:32  
CpG islands are useful markers for genes in organisms containing 5-methylcytosine in their genomes. In addition, CpG islands located in the promoter regions of genes can play important roles in gene silencing during processes such as X-chromosome inactivation, imprinting, and silencing of intragenomic parasites. The generally accepted definition of what constitutes a CpG island was proposed in 1987 by Gardiner-Garden and Frommer [Gardiner-Garden, M. & Frommer, M. (1987) J. Mol. Biol. 196, 261-282] as being a 200-bp stretch of DNA with a C+G content of 50% and an observed CpG/expected CpG in excess of 0.6. Any definition of a CpG island is somewhat arbitrary, and this one, which was derived before the sequencing of mammalian genomes, will include many sequences that are not necessarily associated with controlling regions of genes but rather are associated with intragenomic parasites. We have therefore used the complete genomic sequences of human chromosomes 21 and 22 to examine the properties of CpG islands in different sequence classes by using a search algorithm that we have developed. Regions of DNA of greater than 500 bp with a G+C equal to or greater than 55% and observed CpG/expected CpG of 0.65 were more likely to be associated with the 5' regions of genes and this definition excluded most Alu-repetitive elements. We also used genome sequences to show strong CpG suppression in the human genome and slight suppression in Drosophila melanogaster and Saccharomyces cerevisiae. This finding is compatible with the recent detection of 5-methylcytosine in Drosophila, and might suggest that S. cerevisiae has, or once had, CpG methylation.  相似文献   

16.
17.
Early studies proposed that DNA methylation could have a role in regulating gene expression during development [Riggs, A.D. (1975) Cytogenet. Cell Genet. 14, 9-25]. However, some studies of DNA methylation in known tissue-specific genes during development do not support a major role for DNA methylation. In the results presented here, tissue-specific differentially methylated regions (TDMs) were first identified, and then expression of genes associated with these regions correlated with methylation status. Restriction landmark genomic scanning (RLGS) was used in conjunction with virtual RLGS to identify 150 TDMs [Matsuyama, T., Kimura, M.T., Koike, K., Abe, T., Nakao, T., Asami, T., Ebisuzaki, T., Held, W.A., Yoshida, S. & Nagase, H. (2003) Nucleic Acids Res. 31, 4490-4496]. Analysis of 14 TDMs by methylation-specific PCR and by bisulfite genomic sequencing confirms that the regions identified by RLGS are differentially methylated in a tissue-specific manner. The results indicate that 5% or more of the CpG islands are TDMs, disputing the general notion that all CpG islands are unmethylated. Some of the TDMs are within 5' promoter CpG islands of genes, which exhibit a tissue-specific expression pattern that is consistent with methylation status and a role in tissue differentiation.  相似文献   

18.
De novo methylation of CpG islands is a common phenomenon in human cancer, but the mechanisms of cancer-associated DNA methylation are not known. We have used tiling arrays in combination with the methylated CpG island recovery assay to investigate methylation of CpG islands genome-wide and at high resolution. We find that all four HOX gene clusters on chromosomes 2, 7, 12, and 17 are preferential targets for DNA methylation in cancer cell lines and in early-stage lung cancer. CpG islands associated with many other homeobox genes, such as SIX, LHX, PAX, DLX, and Engrailed, were highly methylated as well. Altogether, more than half (104 of 192) of all CpG island-associated homeobox genes in the lung cancer cell line A549 were methylated. Analysis of paralogous HOX genes showed that not all paralogues undergo cancer-associated methylation simultaneously. The HOXA cluster was analyzed in greater detail. Comparison with ENCODE-derived data shows that lack of methylation at CpG-rich sequences correlates with presence of the active chromatin mark, histone H3 lysine-4 methylation in the HOXA region. Methylation analysis of HOXA genes in primary squamous cell carcinomas of the lung led to the identification of the HOXA7- and HOXA9-associated CpG islands as frequent methylation targets in stage 1 tumors. Homeobox genes are potentially useful as DNA methylation markers for early diagnosis of the disease. The finding of widespread methylation of homeobox genes lends support to the hypothesis that a substantial fraction of genes methylated in human cancer are targets of the Polycomb complex.  相似文献   

19.
Polycythaemia vera (PV) is a myeloproliferative disorder (MPD) thought to result from transformation of a haemopoietic stem cell. Transforming growth factor beta1 (TGF-beta1) is a negative regulator of haemopoietic stem cells, an effect mediated by direct binding to TGF-beta receptor II (TGF-beta RII). Reduced levels of TGF-beta RII mRNA or protein have been reported in several MPDs including PV, suggesting a role for TGF-beta RII in PV. No mutational analysis of the TGF-beta RII gene has yet been performed in PV. To investigate whether genetic or epigenetic alteration of the TGF-beta RII gene contributes to the pathogenesis of PV, we performed mutation and methylation analysis in 15 PV patients. The promoter, all seven exons and all intron/exon junctions were studied using single-strand conformation polymorphism (SSCP) and heteroduplex analysis (HA). In total, three single nucleotide polymorphisms (SNPs) were identified. These were located in the promoter, intron 2 and exon 5. No acquired mutations were detected in any patient sample. We also present a novel method, termed methylation-specific strand extension (MSSE), for the detection of methylated CpG dinucleotides. The combination of bisulphite modification and MSSE permits rapid analysis of the methylation status of CpG dinucleotides in multiple samples. We analysed the methylation status of the promoter and of a CpG island within exon 1 in 15 PV patients. No aberrant methylation was detected in either of these regions. These data demonstrate that neither mutation nor abnormal methylation of the TGF-beta RII gene is associated with the pathogenesis of PV. Furthermore, MSSE is a rapid and robust approach for assessing the methylation status of a given genomic region.  相似文献   

20.
Epigenetic inheritance, the transmission of gene expression states from parent to daughter cells, often involves methylation of DNA. In eukaryotes, cytosine methylation is a frequent component of epigenetic mechanisms. Failure to transmit faithfully a methylated or an unmethylated state of cytosine can lead to altered phenotypes in plants and animals. A central unresolved question in epigenetics concerns the mechanisms by which a locus maintains, or changes, its state of cytosine methylation. We developed "hairpin-bisulfite PCR" to analyze these mechanisms. This method reveals the extent of methylation symmetry between the complementary strands of individual DNA molecules. Using hairpin-bisulfite PCR, we determined the fidelity of methylation transmission in the CpG island of the FMR1 gene in human lymphocytes. For the hypermethylated CpG island of this gene, characteristic of inactive-X alleles, we estimate a maintenance methylation efficiency of approximately 0.96 per site per cell division. For de novo methylation efficiency (E(d)), remarkably different estimates were obtained for the hypermethylated CpG island (E(d) = 0.17), compared with the hypomethylated island on the active-X chromosome (E(d) < 0.01). These results clarify the mechanisms by which the alternative hypomethylated and hypermethylated states of CpG islands are stably maintained through many cell divisions. We also analyzed a region of human L1 transposable elements. These L1 data provide accurate methylation patterns for the complementary strand of each repeat sequence analyzed. Hairpin-bisulfite PCR will be a powerful tool in studying other processes for which genetic or epigenetic information differs on the two complementary strands of DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号