首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PURPOSE: To test the null hypothesis that three self-adhesive luting materials had the same microtensile bond strength when used to lute ceramic IPS Empress II disks to the dentin of perfused teeth. MATERIALS AND METHODS: Occlusal enamel and the roots of 9 human third molars were removed and crown segments connected to a perfusion system (30 cm H2O). Nine ceramic disks (IPS Empress II) were prepared, conditioned with 5% HF (20 s), rinsed with water, and air dried. A primer silane agent was applied (Monobond-S) for 60 s and air dried. Teeth were bonded to disks using one of three materials: Multilink System, RelyX Unicem, or Panavia F light. Specimens were vertically sectioned to obtain square bars. Each bar was fixed to a rigid custom-made tensile device and submitted to tensile force until debonding. Microtensile bond strength (microTBS) was given in MPa. Because the means of bonded areas (BA) were different between groups, it was impossible to compare microTBS results directly. Thus, the regression line TBS(MPa) = -2.15 + [19.92 / BA (mm(2))] was calculated to correlate microTBS results and BA. Residuals (difference between the value estimated by the regression line and the actual value) were stored as "distances". ANOVA was performed to examine the statistical significance of differences between means distances of the groups', and the Tamhane's post hoc test was used to locate eventual differences. RESULTS: The number of bars used in the analysis was n = 147. Residuals should not be statistically different if the null hypothesis (represented by the regression line) was credible. ANOVA showed statistically significant differences between the distances of the groups' means (p < 0.00001). Tamhane's post hoc test (p < 0.05) showed that different group means were RelyX < Multilink < Panavia F. CONCLUSION: The null hypothesis was rejected: materials showed different tensile bond strengths. Panavia F obtained highest bonding values, followed by Multilink System. RelyX Unicem, the only material that does not require pretreatment of dentin, achieved the lowest TBS values under these study conditions.  相似文献   

2.
OBJECTIVES: The aim of this study was to evaluate the shear bond strength of different cements to densely sintered zirconia ceramic after aging by thermocycling. METHODS: The following luting cements for bonding ZrO2-TZP (tetragonal zirconia polycrystals) were used in this study: Ketac-Cem, Nexus, Rely X Unicem, Superbond C&B, Panavia F, and Panavia 21. Groups of 30 test specimens were prepared by bonding stainless steel cylinders tribochemically silica-coated with the Rocatec-system to sandblasted ZrO2-TZP ceramic disks (cercon smart ceramics). Prior to testing all bonded specimens were stored in distilled water (37 degrees C) for 48 h and half of them (n=15) were additionally aged by thermocycling (10,000 times). RESULTS: None of the fractures occurred at the interface of the metallic rods. The assemblies failed either at the interface between the ceramic surface and the cements or within the cements. Thermocycling affected the bond strength of all luting cements studied except for both Panavia materials and Rely X Unicem. SIGNIFICANCE: Within the limits of this in vitro study the results showed that-after thermocycling-bond strengths for Ketac-Cem and Nexus were quite low. Nexus in combination with tribochemical silica-coating of ceramic surface produced a higher bond strength. The four adhesive resin cements (Rely X Unicem, Superbond C&B, Panavia F, and Panavia 21) gave superior results. The strongest bond to zirconia was obtained with Panavia 21.  相似文献   

3.
The aim of this study was to determine how resin cement, self-adhesive resin cement, and resin-modified glass ionomer cement affected shear bond strength to dentin. Sixty composite resin disks (3 mm in diameter x 3 mm in length) were prepared and divided into four groups (n = 15): Group 1, composite disk bonded to dentin with composite resin and a bonding agent; Group 2, composite disk bonded to dentin with a self-adhesive resin cement; Group 3, composite disk bonded to dentin with a different self-adhesive resin cement; and Group 4, composite disk bonded to dentin with a resin-modified glass ionomer cement. The composite resin was loaded into a syringe (internal diameter 3 mm), photocured in an oven, and cut into 3 mm slices with a low-speed saw. The samples were bonded to dentin per the manufacturer's instructions. All specimens were stored in distilled water (at 37 degrees C) for 24 hours. The shear bond strength test was conducted using a universal testing machine at a crosshead speed of 0.5 mm/min until failure. Conventional resin cement and a bonding agent exhibited significantly higher shear bond strength values than all other materials tested.  相似文献   

4.
目的:评价不同粘接剂及表面处理方法对氧化锆陶瓷与粘接剂的粘接强度的影响.方法:将较大氧化锆瓷片和较小氧化锆瓷片派对,随机分成12组,每组10对.粘接剂选用Ketac Cem Easymix、Rely X luting、Bifix QM和Panavia F,对氧化锆的表面分别喷砂、硅烷化或喷砂联合硅烷化处理,并进行剪切粘接强度测试.结果:在使用Ketac Cem Easymix和Rely X luting时,喷砂提高了粘接强度(P<0.01).在使用Bifix QM和Panavia F时,喷砂、硅烷化或喷砂联合硅烷化处理提高了粘接强度(P<0.01).表面处理相同时,Panavia F与氧化锆的粘接强度高于其它粘接剂(P<0.01).结论:使用Panavia F联合喷砂加硅烷化处理的粘接强度最高.  相似文献   

5.
喷砂对不同粘接剂与氧化锆粘接强度的影响   总被引:1,自引:0,他引:1  
目的研究喷砂对不同粘接剂与氧化锆粘接强度的影响,筛选出比较理想的粘接剂。方法将由ZrO2制成的大瓷片(140个)和小瓷片(140个)随机配对分成14组。对ZrO2的表面分别不作处理和喷砂处理,选用临床常用的7种粘接剂,将较小瓷片粘接在较大瓷片上。置于37℃蒸馏水里保存24h后,进行剪切粘接强度测试,并进行统计学分析。结果喷砂组的粘接强度明显高于非喷砂组(P〈0.01)。PanaviaF、Super-BondC&B与ZrO2的粘接强度明显高于BifixQM与ZrO2的粘接强度(P〈0.01)。结论喷砂能明显提高粘接剂与ZrO2的粘接强度,Panavia F、Super-Bond C&B是比较理想的粘接剂。  相似文献   

6.
Maximum bond strength of dental luting cement to amalgam alloy   总被引:1,自引:0,他引:1  
Although dental amalgam is used frequently under artificial crowns for restoration of severely damaged teeth, there is little information available on the bond between luting cements and this alloy. This study was designed for determination of the strength of the bond between a dental amalgam alloy and three crown-luting cements. Cylinders of dental amalgam were joined in pairs, with use of a zinc-phosphate, a glass-ionomer, and an acrylic-adhesive resin cement. The tensile-fracture stress of 45 samples of each cement was measured with a universal testing machine, and subjected to a Weibull analysis. The fractured surfaces were examined under low magnification with use of a light microscope, and at low and high magnifications with use of a scanning electron microscope, for evaluation of the appearance of the fractured joints. The Weibull analysis demonstrated that the adhesive resin cement provided a stronger and more predictable bond than either the zinc-phosphate or the glass-ionomer cement. The appearance of the fractured surfaces gave no indication of the strength of the joints, a feature that is common to brittle materials. The results suggest that crowns placed on teeth offering a large amalgam-alloy surface could be retained more predictably with an adhesive resin cement.  相似文献   

7.

Objectives

This study examined the effect of saliva contamination on the microtensile bond strength (μTBS) of resin luting cements to dentin.

Methods

For RelyX ARC (ARC, 3M ESPE), dentin surfaces were etched with 32% phosphoric acid. The subgroups were: ARC-control (uncontaminated), ARC-I (saliva contamination, blot-dried), ARC-II (saliva contamination, rinse, blot-dried) and ARC-III (saliva contamination, rinse, re-etch, rinse, blot-dried). For Panavia F 2.0 (PF, Kuraray), the subgroups were: PF-control (uncontaminated), PF-I (saliva contamination, dried), PF-II (saliva contamination, rinse, dried), PF-III (primer, saliva contamination, dried), PF-IV (primer, saliva contamination, dried, primer re-applied) and PF-V (primer, saliva contamination, rinse, dried, primer re-applied). Composite blocks were luted onto dentin using the two cements. Bonded specimens were sectioned into 0.9 mm × 0.9 mm beams for μTBS testing. Representative fractured beams were prepared for fractographic analysis.

Results

For ARC, salivary contamination of etched dentin (ARC-I) significantly lowered bond strength (p = 0.001). Rinsing saliva off with water (ARC-II) restored bond strength to control level. Re-etching dentin surface after rinsing (ARC-III) resulted in the lowest bond strength (p < 0.001). For PF, salivary contamination of dentin before (PF-I) and after application of primer (PF-III and PF-IV) significantly lowered bond strength (p < 0.001). Rinsing saliva off with water and re-application of primer (PF-II and PF-V) improved bond strength.

Conclusion

Saliva contamination during luting deteriorated the bond quality of resin cements. Decontamination by rinsing with water was most effective in restoring the bond strength of RelyX ARC. Decontamination by water-rinsing and primer re-application after rinsing improved the bond strength of Panavia F 2.0.  相似文献   

8.
The purpose of this study was to evaluate the adhesive performance of luting cements to a noble metal alloy treated with metal conditioners. Cast disk specimens made of a noble metal alloy were gritblasted with alumina followed by no treatment or priming with two different types of metal conditioner. A mold was placed on the metal surface and filled with luting cement. Ten samples per test group were stored in 37 degrees C distilled water for 24 hours, then shear tested at a cross-head speed of 1.0 mm/minute. ANOVA and Tukey's HSD tests (alpha=0.05) were done. The mean bond strength of resin-modified glass ionomer cement increased significantly with metal conditioner application compared to the controls, indicating the efficacy of the tested metal conditioners in improving bond strength. Based on the results of this study, it seemed to be a useful method to incorporate a functional monomer into resin cements so as to improve the bond strength to a noble metal alloy.  相似文献   

9.
This study examined the effects of using two different burs for dentin surface preparation on the microtensile bond strength (microTBS) of three resin luting cements. Flat, deep dentin surfaces from 45 extracted human third molars were divided into three groups (n = 15) according to bur type: (i) diamond bur and (ii) tungsten carbide bur. The controls were abraded with #600-grit SiC paper. Both burs operated in a high-speed handpiece under water-cooling. Composite blocks were luted onto the dentin using one of three cements: RelyX ARC (ARC, 3M ESPE), Panavia F2.0 (PF, Kuraray) and RelyX Unicem (UN, 3M ESPE) following the manufacturers' instructions. For ARC, the dentin surface was treated with 32% phosphoric acid. The bonded specimens were stored at 37 degrees C for 24 hours and sectioned into 0.9 x 0.9 mm beams for microTBS testing. The data were analyzed using the two-way ANOVA and Student-Newman-Keuls tests. Representative fractured beams from each group were prepared for fractographic analysis under SEM. Two-way ANOVA revealed that the effects of "dentin surface preparation" and "luting cement" were statistically significant (p < 0.001); however, the interaction of these two factors was not significant (p > 0.05). ARC showed no significant difference in microTBS among the three differently prepared dentin surfaces. The microTBS of PF and UN was significantly lower when bonding to dentin prepared with a diamond bur (p < 0.05), compared to the control. For Panavia F2.0, higher bond strengths were achieved on the dentin surface prepared with a tungsten carbide bur. Proper bur selection is essential to optimizing the dentin adhesion of self-etch resin luting cements.  相似文献   

10.
The goal of this study was to test the influence of the type and oxidation treatment of dental casting alloys on the tensile bond strength of luting cements. Also, the influence of film thickness of luting cements on the tensile bond strength of different dental casting alloys was examined. Four different luting cements (zinc phosphate, polycarboxylate, glass ionomer and adhesive resin cements) and four different dental casting alloys (Au-Ag-Cu, Ag-Pd, hardened Ag-Pd and Ni-Cr alloys) were used. Cylindrical alloy rods for the tensile bond strength test were casted, and then, top surfaces of the rods were cemented with each luting cement to the bottom surfaces of other rods, using the film thickness adjustment apparatus. The film thickness of luting cement was adjusted to 20, 30, 50, 75 or 100 microns. The tensile bond strengths of each cement to different casting alloys at each film thickness were measured one day after the rods had been cemented. The tensile bond strength of the zinc phosphate cement could not be determined in this study due to the separation of the alloy rods cemented with the zinc phosphate cement in water before the tensile test. The tensile bond strength to the adhesive resin cement to any alloy showed the greatest strength; however, that of the glass ionomer cement to any alloy was the lowest strength among the cements examined. The Ni-Cr alloy had the highest bond strength of any luting cement, compared to other alloys. The tensile bond strengths of luting cements significantly decreased with the increase in film thickness of cement layer. The adhesive resin cement had the greatest bond strength, and the glass ionomer cement was the lowest bond strength at any film thickness. The oxidation treatment significantly increased the bond strength of the adhesive resin cement to both Au-Ag-Cu and Ag-Pd alloys. The tensile bond strength of the adhesive resin cement was most dependent upon the film thickness of cement layer, and that of the polycarboxylate cement was least dependent upon the film thickness of cement layer among the cements examined. In addition, the oxidation treatment for precious alloys could be a factor contributing to the increase in the bond strength of the adhesive resin cement.  相似文献   

11.
目的探讨不同表面处理和不同粘结剂对氧化锆粘结强度的影响。方法将氧化锆分别制成直径为12.0mm和4.0mm的瓷片,各120个,分别随机分成12组。粘结剂选用磷酸锌粘结剂、聚羧酸锌粘结剂、BifixQM和Super-Bond CB。对氧化锆的表面分别进行不处理、喷砂、硅烷化、先喷砂后硅烷化处理。用上述4种粘结剂将4.0mm瓷片粘结在12.0mm瓷片上,置于37℃蒸馏水中保存24h后,进行剪切粘结强度测试。结果粘结剂相同时,不同表面处理时的粘结强度有显著统计学差异(P0.01),由小到大依次为不处理喷砂硅烷化先喷砂后硅烷化处理;表面处理相同时,不同粘结剂之间的粘结强度有显著统计学差异(P0.01),由小到大依次为磷酸锌粘结剂聚羧酸锌粘结剂Bifix QMSuper-Bond CB。结论粘结剂相同时,表面处理提高了粘结强度。Super-Bond CB的粘结强度比较理想。使用Super-Bond CB时,喷砂后硅烷化处理是一种比较理想的表面处理方法。  相似文献   

12.
目的 探讨不同表面处理和不同粘结剂对氧化锆粘结强度的影响.方法 将氧化锆分别制成直径为12.0mm和4.0mm的瓷片,各120个,分别随机分成12组.粘结剂选用磷酸锌粘结剂、聚羧酸锌粘结剂、Bifix QM和Super-Bond C&B.对氧化锆的表面分别进行不处理、喷砂、硅烷化、先喷砂后硅烷化处理.用上述4种粘结剂将4.0mm瓷片粘结在12.0mm瓷片上,置于37℃蒸馏水中保存24h后,进行剪切粘结强度测试.结果 粘结剂相同时,不同表面处理时的粘结强度有显著统计学差异(P<0.01),由小到大依次为不处理<喷砂<硅烷化<先喷砂后硅烷化处理;表面处理相同时,不同粘结剂之间的粘结强度有显著统计学差异(P<0.01),由小到大依次为磷酸锌粘结剂<聚羧酸锌粘结剂<Bifix QM<Super-Bond C&B.结论 粘结剂相同时,表面处理提高了粘结强度.Super-Bond C&B的粘结强度比较理想.使用Super-Bond C&B时,喷砂后硅烷化处理是一种比较理想的表面处理方法.  相似文献   

13.
14.
表面处理对粘结剂与氧化锆粘结强度的影响   总被引:1,自引:0,他引:1  
目的:评价出比较理想的粘结剂和ZrO2表面处理方法。方法:将由ZrO2制成的较大瓷片(120个)和较小瓷片(120个),随机派对分成12组。对ZrO2的表面分别不作处理、喷砂、硅烷化,先喷砂后硅烷化处理。用Bifix QM、Super-BondC&B和Panavia F三种树脂粘结剂将较小瓷片粘结在较大瓷片上。置于37℃蒸馏水里保存24h后,进行剪切粘结强度测试。结果:3种表面处理都提高了粘结强度(P〈0.01),其中,先喷砂后硅烷化处理对粘结强度提高得最明显(P〈0.01)。Panavia F、Super-Bond C&B与ZrO2的粘结强度明显高于BifixQM与ZrO2的粘结强度(P〈0.01)。结论:先喷砂后硅烷化处理是一种比较理想的表面处理方法,Panavia F、Super-Bond C&B是比较理想的树脂粘结剂。  相似文献   

15.
目的研究3种粘接材料与氧化锆陶瓷材料的初期及耐久粘接抗剪切强度。方法将预烧结氧化锆陶瓷片试件喷砂后分为3组,每组20个,分别采用玻璃离子水门汀(GIC组)、Panavia F 2.0树脂粘接剂(PF组)、Clearfil SA Luting树脂粘接剂(SAC组)与核树脂块粘接,每组随机选取10个试件进行冷热循环实验(10 000次,5~55℃),用计算机控制万能材料试验机测定其粘接抗剪切强度。结果未经冷热循环处理的GIC组、PF组、SAC组试件的粘接抗剪切强度值分别为(21.98±1.78)MPa、(30.26±1.73)MPa、(28.63±2.02)MPa,GIC组试件的粘接抗剪切强度低于其他两组(P<0.01),PF组与SAC组的试件相比差异无统计学意义(P>0.05);而冷热循环后,GIC组、PF组、SAC组试件的粘接抗剪切强度值分别为(10.72±2.03)MPa、(28.50±1.54)MPa、(27.02±1.79)MPa,GIC组试件经冷热循环后,其粘接抗剪切强度值明显下降(P<0.05),而其他两组试件经冷热循环后其粘接抗剪切强度值无明显改变(P>0.05)。结论使用玻璃离子可获得较好的初期粘接抗剪切强度,但耐久粘接强度欠佳;含磷酸酯单体的树脂粘接剂可使氧化锆陶瓷获得良好的初期粘接抗剪切强度及耐久粘接抗剪切强度;自粘接型树脂粘接剂操作简便,粘接抗剪切强度与自酸蚀型树脂粘接剂相当,且粘接效果持久。  相似文献   

16.
目的:探讨适合牙科氧化锆陶瓷的黏结材料。方法:将烧结后的氧化锆陶瓷片分为4组,每组16片,分别采用RelyXTM ARC、PanaviaTM F、RelyXTM Luting、Fuji plus4种黏结材料与喷砂后的氧化锆陶瓷片黏结,水浴24h和水浴30d后,测试其黏结剪切强度,数据用SAS6.12软件进行统计学分析,黏结断面用扫描电镜观察。结果:PanaviaTMF树脂黏结材料黏结强度最好,分别为(34.7±3.44)MPa(水浴24h)、(31.5±3.44)MPa(水浴30d),与其他组黏结强度差别有统计学意义(P<0.01)。RelyXTM Luting,Fuji plus2种树脂改良型玻璃离子可以获得较好的初期(水浴24h)黏结强度,分别为(15.5±2.71)MPa和(16.0±1.77)MPa,但水浴30d后明显下降至(6.80±1.24)MPa和(3.38±2.32)MPa,P<0.05。结论:含有MDP磷酸单体的树脂黏结材料可以使牙科氧化锆陶瓷获得最好的黏结效果,使用树脂改良型玻璃离子可以产生较好的初期黏结强度,但黏结效果不能持久。  相似文献   

17.
OBJECTIVES: To investigate the Microtensile bond strength (microTBS) and failure mode of resin cements bonded to composite and ceramic CAD/CAM blocks following various surface treatments. METHODS: Paradigm composite blocks and Cerec Vitablocs received three surface treatments following the control treatment of surface grinding with 600 SiC grit. (1) Application of adhesive resin (Adh), (2) etching with hydrofluoric acid and silanization (HF+S) or (3) combination of the previous two treatments (HF+S+Adh). Three resin cements (Tetric Flow, Nexus 2, RelyX ARC) were applied to these surfaces and built-up in layers. After 24 h water storage at 37 degrees C, the non-trimming version of microTBS test was used to produce 1 mm(2) microbars. The Microbars were subjected to a tensile load using a modified testing device. The broken specimens were examined with a stereomicroscope and SEM to determine the failure mode. RESULTS: All control and adhesive treated groups of the ceramic substrate showed premature debonding during cutting. The overall mean microTBS for the three resin cements bonded to ceramic following HF+S and HF+S+Adh surface treatment, was 27 and 29.2 MPa and for the resin cements bonded to composite substrate was 42.3 and 54.2 MPa, respectively. The mode of failure was 98% adhesive with composite as a substrate and 68% mixed failures with ceramic as a substrate. CLINICAL SIGNIFICANCE: CAD/CAM restorations fabricated from processed composite blocks may have advantage over the ceramic blocks with regard to the higher bond strength with resin cements.  相似文献   

18.
19.
氧化锆陶瓷与三种树脂粘接剂粘接剪切强度比较   总被引:2,自引:0,他引:2  
目的探讨适合牙科氧化锆陶瓷的粘接材料。方法将烧结后的氧化锆陶瓷片分为3组,每组32片,分别采用三种自酸蚀粘接剂RelyX Unicem、PanaviaTM F、Superbond C﹠B与喷砂后的氧化锆陶瓷片粘接,水浴24h和水浴30d后,测试其粘接剪切强度。数据用SAS9.12软件进行统计学分析,粘接断面用扫描电镜观察。结果 PanaviaTMF树脂粘接材料粘接强度最好,分别为(31.36±3.49)MPa(水浴24h)、(29.52±3.44)MPa(水浴30d)。Superbond C﹠B能够取得较好的初期粘接强度(31.85±3.61)MPa(水浴24h),但水浴30d后明显下降至(21.32±2.58)MPa,P〈0.05。RelyX Unicem的初期(水浴24h)粘接强度最小为(13.29±3.05)MPa,P〈0.0001,但水浴30d后粘接强度为(12.06±2.28)MPa,未见明显降低,P(0.05。结论含有MDP磷酸单体的树脂粘接材料可以使牙科氧化锆陶瓷获得最好的粘接效果。使用不含无机填料的化学固化型纯树脂粘接剂可以取得较好的初期粘接强度但长期效果欠佳。一步法自酸蚀树脂粘接剂虽然没有很高的初期粘接强度,但粘接效果尚能持久。  相似文献   

20.
PURPOSE: To examine the influence of temporary cements on the strength of the bond formed between resin-based luting agents and dentin. METHODS: An acrylic resin plate was luted to bovine dentin using one of three temporary cements; HY-Bond Temporary Cement Hard (HYB), Freegenol Temporary Pack (FTP), or Neodyne T (NDT). The control group (CON) was not treated with cement. Following the removal of the temporary cement, each dentin substrate was bonded to a silane-treated ceramic material (IPS Empress) with one of four luting agents; Super-Bond C&B (SCB), Panavia F (PAF), Nexus II (NEX), or Fuji Luting S (FLS). The specimens were immersed in water for 24 hours and the strength of the bond to shearing forces was determined. RESULTS: The bond strengths (in MPa), with statistical categories shown in parentheses were: HYB (25.7, a), CON (23.5, a, b), FTP (19.8, b, c), and NDT (16.8, c, d) for the SCB system; FTP (13.8, d, e), CON (12.9, d, e), NDT (10.6, e, f), and HYB (7.8, f, g, h) for the PAF system; FTP (9.2, e, f, g), CON (7.9, f, g, h), HYB (7.7, f, g, h), NDT (7.1, f, g, h) for the NEX agent; and FTP (5.2, g, h, i), CON (3.7, h, i), NDT (3.0, h, i), HYB (1.6, i) for the FLS agent, (P< 0.05).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号