首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
To further improve the mechanical properties of H13 steel at room and high temperatures, its precipitates were regulated based on the Thermo-Calc results. Scanning electron microscope (SEM), electron backscattering diffraction (EBSD), transmission electron microscope (TEM), and X-ray diffraction (XRD) Rietveld refinement were used to study the effect of the intercritical annealing on the microstructure and mechanical properties of H13 steel. The results show that the intercritical annealing at 850~95 °C increased the VC volume fraction from 2.23 to 3.03~3.48%. Increasing the VC volume fraction could inhibit the M7C3 precipitation from 10.01 to 6.63~5.72% during tempering. A large amount of VC also promoted the M23C6 precipitation during tempering at higher dislocation densities. The intercortical annealing simultaneously increased the elongation of H13 steel. An excellent combination (room temperature: ultimate tensile strength (UTS) of 898 MPa and total elongation (TEL) of 19.35%, 650 °C: UTS of 439 MPa, and TEL of 27.80%) could be obtained when intercritical annealing is performed at 900 °C. Meanwhile, after aging at 650 °C for 128 h, the room temperature UTS and TEL decreased by only 31 MPa and 0.52%, respectively.  相似文献   

2.
This research aims to characterize and examine the microstructure and mechanical properties of the newly developed M789 steel, applied in additive manufacturing. The data presented herein will bring about a broader understanding of the processing–microstructure–property–performance relationships in this material based on its chemical composition and heat treatment. Samples were printed using the laser powder bed fusion (LPBF) process and then the solution was annealed at 1000 °C for 1 h, followed by aging at 500 °C for soaking times of 3, 6 and 9 h. The AM components showed a relative density of 99.1%, which arose from processing with the following parameters: laser power of 200 W, laser speed of 340 mm/s, and hatch distance of 120 µm. Optical and electron microscopy observations revealed microstructural defects, typical for LPBF processes, like voids appearing between the melted pools of different sizes with round or creviced geometries, nonmelted powder particle formation inside such cavities, and small spherical porosity that was preferentially located between the molten pools. In addition, in heat-treated conditions, AM maraging steel has combined oxide inclusions of Ti and Al (TiO2:Al2O3) that reside along the grain boundaries and secondary porosities; these may act as preferential zones for crack initiation and may increase the brittleness of the AM steel under aged conditions. Consequently, the elongation of the AM alloy was low (<3%) for both annealed and aged solution conditions. The tensile strength of AM M789 increased from 968 MPa (solution annealed) to 1500–1600 MPa after the aging process due to precipitation within the intermetallic η-phase. A tensile strength and yield point of 1607 ± 26 and 1617 ± 45 MPa were obtained, respectively, after a full heat treatment at 500 °C/6 h. The results show that 3 h aging of solution annealed AM M789 steel achieves satisfactory material properties in industrial practice. Extending the aging time of printed parts to 6 h yields slightly improved properties but may not be worth the effort, while long-term aging (9 h) was shown to even reduce quality.  相似文献   

3.
This paper aims at an in-depth and comprehensive analysis of mechanical and microstructural properties of AISI 316L austenitic stainless steel (W. Nr. 1.4404, CL20ES) produced by laser powder bed fusion (LPBF) additive manufacturing (AM) technology. The experiment in its first part includes an extensive study of the anisotropy of mechanical and microstructural properties in relation to the built orientation and the direction of loading, which showed significant differences in tensile properties among samples. The second part of the experiment is devoted to the influence of the process parameter focus level (FL) on mechanical properties, where a 48% increase in notched toughness was recorded when the level of laser focus was identical to the level of melting. The FL parameter is not normally considered a process parameter; however, it can be intentionally changed in the service settings of the machine or by incorrect machine repair and maintenance. Evaluation of mechanical and microstructural properties was performed using the tensile test, Charpy impact test, Brinell hardness measurement, microhardness matrix measurement, porosity analysis, scanning electron microscopy (SEM), and optical microscopy. Across the whole spectrum of samples, performed analysis confirmed the high quality of LPBF additive manufactured material, which can be compared with conventionally produced material. A very low level of porosity in the range of 0.036 to 0.103% was found. Microstructural investigation of solution annealed (1070 °C) tensile test samples showed an outstanding tendency to recrystallization, grain polygonization, annealing twins formation, and even distribution of carbides in solid solution.  相似文献   

4.
The microstructure evolution and mechanical properties of medium carbon martensitic steel during the warm rolling and annealing process were studied by scanning electron microscope (SEM), electron back scattering diffraction (EBSD), and electronic universal testing machine. The results showed that the microstructure of ferrite matrix with mass dispersive cementite particles was obtained by decomposition of martensitic in medium-carbon martensitic steel after warm rolling. The grain size of ferrite was ~0.53 μm, the yield strength and tensile strength were 951 MPa and 968 MPa, respectively, and the total elongation rate was 11.5% after warm rolling at 600 °C. Additionally, after the next 4 h of annealing, the grain size of ferrite and particle size of cementite increased to ~1.35 μm and ~360 nm and the yield strength and tensile strength decreased to 600 MPa and 645 MPa, respectively, with a total elongation increases of 20.9%. The strength of the material increased with increasing strain rate in tension, and the yield-to-tensile strength ratio increased from 0.92 to 0.94 and maintained good plasticity.  相似文献   

5.
In order to obtain high-performance aluminum alloy parts fabricated by selective laser melting, this paper investigates the relationship between the process parameters and microstructure properties of AlSi10Mg. The appropriate process parameters are obtained: the layer thickness is 0.03 mm, the laser power is 370 W, the scanning speed is 1454 mm/s, and the hatch spacing is 0.16 mm. With these process parameters, the ultimate tensile strength of the as-printed status is 500.7 ± 0.8 MPa, the yield strength is 311.5 ± 5.9 MPa, the elongation is 7.7 ± 0.5%, and the relative density is 99.94%. After annealing treatment at 275 °C for 2 h, the ultimate tensile strength is 310.8 ± 1.3 MPa, the yield strength is 198.0 ± 2.0 MPa, and the elongation is 13.7 ± 0.6%. The mechanical properties are mainly due to the high relative density, supersaturate solid solution, and fine dispersed Si. The supersaturate solid solution and nano-sized Si formed by the high cooling rate of SLM. After annealing treatment, the Si have been granulated and grown significantly. The ultimate tensile strength and yield strength are reduced, and the elongation is significantly improved.  相似文献   

6.
Steel designs with superior mechanical properties have been urgently needed in automotive industries to achieve energy conservation, increase safety, and decrease weight. In this study, the aging process is employed to enhance the yield strength (YS) by tailoring the distribution of V-rich precipitates and to improve ductility by producing high volume fractions of recrystallized ferrite in cold-rolled medium-Mn steel. A reliable method to acquire ultra-high strength (1.0–1.5 GPa), together with ductility (>40%), is proposed via utilizing non-recrystallized austenite and recrystallized ferrite. Similarly to conventional medium-Mn steels, the TRIP effect, along with the mild TWIP effect, is responsible for the main deformation mechanisms during tensile testing. However, the coupled influence of precipitation strengthening, grain refinement strengthening, and dislocation strengthening contributes to an increase in YS. The studied steel, aged at 650 °C for 5 h, demonstrates a YS of 1078 MPa, ultimate tensile strength (UTS) of 1438 MPa, and tensile elongation (TE) of 30%. The studied steel aged at 650 °C for 10 h shows a UTS of 1306 MPa and TE of 42%, resulting in the best product in terms of of UTS and TE, at 55 GPa·%. Such a value surpasses that of the previously reported medium-Mn steels containing equal mass fractions of various microalloying elements.  相似文献   

7.
Production of high-quality maraging steel is dependent not only on the production technology but also on the alloying design and heat treatment. In this work, cobalt-free, low nickel, molybdenum-containing maraging steel was produced by melting the raw materials in a vacuum induction melting furnace and then refining with a shielding gas electroslag remelting unit. The critical transformation temperatures of the investigated steel samples were determined experimentally by differential scanning calorimetry (DSC) analysis and theoretically aiding Thermo-Calc software. Types and chemical composition plus volume fraction and starting precipitation temperature of suggested constituents calculated with the aid of Thermo-Calc software. The microstructures of forged steel specimens that were heat-treated under several conditions were evaluated by X-ray diffraction (XRD), optical microscopy (OP), scanning electron microscopy (SEM), and electron backscattering (EBSD), in addition to transmission electron microscopy (TEM). The mechanical properties of the investigated steel specimens were evaluated by measuring the tensile strength properties and micro-hardness, furthermore, estimating their fracture surface using scanning electron microscopy at lower magnification. The metallographic results show that the microstructure of steel in aged conditions includes high-alloyed martensite and nickel-rich phase, in addition to the low-alloyed-retained-austenite, intermetallic compounds, and lavas-phase (MoCr). Furthermore, TEM and EBSD studies emphasized that the produced steel has high dislocation density with nano-sized precipitate with an average size of ~19 ± 1 nm. Moreover, the metallographic results show that the mentioned microstructure enhances the tensile properties by precipitation strengthening and the TRIP phenomenon. The tensile strength results show that the n-value of investigated steel passes two stages and is comparable with the n-value of TRIP-steel. Steel characterized by 2100 MPa ultimate tensile strength and uniform elongation of more than 7% can be produced by the investigated production routine and optimum heat treatment conditions.  相似文献   

8.
Vat photopolymerization additive manufacturing (Vat AM) technologies have found niche industrial use being able to produce personalized parts in moderate quantity. However, Vat AM lacks in its ability to produce parts of satisfactory thermal and mechanical properties for structural applications. The purpose of this investigation was to develop high-performance resins with glass transition temperatures (Tg) above 200 °C for Vat AM, evaluate the properties of the produced thermosets and establish a structure–property relationship of the thermosets produced. Herein, we have developed SLA-type resins that feature bio-derived monomer hesperetin trimethacrylate (HTM) synthesized from the flavonone hesperetin. Diluents 4-acryloyl morpholine, styrene, 4-methyl styrene and 4-tert butylstyrene (tbutylsty) were photocured with HTM as the monomer and all produced thermosets with Tg values above 200 °C. Investigations of suitable crosslinkers urethane dimethacrylate, the vinyl ester CN 151 and Ebecryl 4859 (Eb4859) showed that each crosslinker displayed different benefits when formulated with HTM as the monomer and tbutylSty as the diluent (HTM:crosslinker:tbutylSty with mass ratio 2:1:2). The crosslinker CN 151 produced the thermoset of greatest onset of thermal decomposition temperature (T0) of 352 °C. Eb4859 produced the thermoset of highest tensile strength, 19 ± 7 MPa, amongst the set of varied crosslinkers. The formulation featuring UDM (HTM:UDM:tbutysty) offered ease of processing and was seemingly the easiest to print. Investigations of reactive diluent showed that styrene produced the thermoset of the highest extent of cure and the overall highest tensile strength, 25 ± 5 MPa, while tbutylSty produced the thermoset with the greatest Tan-δ Tg, 231 °C. HTM was synthesized, formulated with diluents, crosslinkers and initiators. The HTM resins were then 3D printed to produce thermosets of Tg values greater than 200 °C. The polymer properties were evaluated and a structure–reactivity relationship was discussed.  相似文献   

9.
A novel multi-step heat treatment process was performed for 0.2C–5Mn steel, and the effect of intercritical annealing (IA) durations on the microstructure evolution and mechanical properties was studied. The results showed that the content of primary reversed austenite (PRA) hardly changed as the IA time increased from 6 h to 50 h, but only less than 10% of PRA remained after being tempered at 200 °C due to the appearance of secondary martensite (SM). The final microstructure contained SM, the primary martensite (PM), and RA, which was protected by the SM so that the transformation-induced plasticity (TRIP) effect was unlikely to occur. Meanwhile, the (Ti, V, Mo)C particle sizes were 14.27, 14.68 and 15.65 nm for the intermediate processes of IA-6 h, IA-12 h, and IA-50 h, respectively. As the IA time increased from 6 h to 50 h, both the dislocation and precipitation strengthening increment decreased. As a result, the best mechanical properties were obtained from the intermediate process of IA-12 h, with a yield strength of 1115.5 MPa, tensile strength of 1573.5 MPa, and −20 °C impact energy of 30.4 J.  相似文献   

10.
The aim of this study was to develop a new Al–Mg–Si–Zr alloy with a high magnesium content to achieve a wide range of mechanical properties using heat treatment and at a lower cost. Additive manufacturing was conducted using a powder bed fusion process with various scan speeds to change the volumetric energy density and establish optimal process conditions. In addition, mechanical properties were evaluated using heat treatment under various conditions. The characterization of the microstructure was conducted by scanning electron microscopy with electron backscatter diffraction and transmission electron microscopy. The mechanical properties were determined by tensile tests. The as-built specimen showed a yield strength of 447.9 ± 3.6 MPa, a tensile strength of 493.4 ± 6.7 MPa, and an elongation of 9.6 ± 1.1%. Moreover, the mechanical properties could be adjusted according to various heat treatment conditions. Specifically, under the HT1 (low-temperature artificial aging) condition, the ultimate tensile strength increased to 503.2 ± 1.1 MPa, and under the HT2 (high-temperature artificial aging) condition, the yield strength increased to 467 ± 1.3 MPa. It was confirmed that the maximum elongation (14.3 ± 0.8%) was exhibited with the HT3 (soft annealing) heat treatment.  相似文献   

11.
The vacuum hot-rolled SUS314/Q235 stainless steel clad plate has many drawbacks including serious interface alloy element diffusion, stainless steel cladding’s sensitization, and carbon steel substrate’s low strength. In this study, the comprehensive properties were systematically adjusted by changing the thickness of the Ni interlayer (0, 100, 200 μm) and the quenching temperature (1000~1150 °C). The results showed that the Ni interlayer can obviously hinder the diffusion of carbon element, so as to achieve the purpose of eliminating the decarburized layer and reducing the carbon content of the carburized layer. Meanwhile, the perfect metallurgical bonding between the substrate and cladding can be obtained, effectively improving the stainless steel clad plate’s tensile shear strength and comprehensive mechanical properties, and significantly reduce the brittleness of the carburized layer. As the quenching temperature increases, the grains coarsening of carbon steel and stainless steel became more and more serious, and the sensitization phenomenon and the thickness of the carburized layer are gradually decreased. The stainless steel clad plate (Ni layer thickness of 100 μm) quenched at 1050 °C had the best comprehensive mechanical properties. Herein, the interface shear strength, tensile strength and the fracture elongation reached 360.5 MPa, 867 MPa and 16.10%, respectively, achieving strengthening and toughening aim. This is attributed to the disappearance of the sensitization phenomenon, the grain refinement and the lower interface residual stress.  相似文献   

12.
In the present study, we propose a hybrid manufacturing route to produce high-quality Ti6Al4V parts, combining additive powder laser directed energy deposition (L-DED) for manufacturing of preforms, with subsequent hot forging as a thermomechanical processing (TMP) step. After L-DED, the material was hot formed at two different temperatures (930 °C and 1070 °C) and subsequently heat-treated for stress relief annealing. Tensile tests were performed on small sub-samples, taking into account different sample orientations with respect to the L-DED build direction and resulting in very good tensile strengths and ductility properties, similar or superior to the forged material. The resulting microstructure consists of very fine grained, partially globularized alpha grains, with a mean diameter ~0.8–2.3 µm, within a beta phase matrix, constituting between 2 and 9% of the sample. After forging in the sub-beta transus temperature range, the typical L-DED microstructure was no longer discernible and the anisotropy in tensile properties, common in additive manufacturing (AM), was significantly reduced. However, forging in the super-beta transus temperature range resulted in remaining anisotropies in the mechanical properties as well as an inferior tensile strength and ductility of the material. It was shown, that by combining L-DED with thermomechanical processing in the sub-beta transus temperature range of Ti6Al4V, a suitable microstructure and desirable mechanical properties for many applications can be obtained, with the advantage of reducing the material waste.  相似文献   

13.
Alloy 21-6-9 is an austenitic stainless steel with high strength, thermal stability at high temperatures, and retained toughness at cryogenic temperatures. This type of steel has been used for aerospace applications for decades, using traditional manufacturing processes. However, limited research has been conducted on this alloy manufactured using laser powder-bed fusion (LPBF). Therefore, in this work, a design of experiment (DOE) was performed to obtain optimized process parameters with regard to low porosity. Once the optimized parameters were established, horizontal and vertical blanks were built to investigate the mechanical properties and potential anisotropic behavior. As this alloy is exposed to elevated temperatures in industrial applications, the effect of elevated temperatures (room temperature and 750 °C) on the tensile properties was investigated. In this work, it was shown that alloy 21-6-9 could be built successfully using LPBF, with good properties and a density of 99.7%, having an ultimate tensile strength of 825 MPa, with an elongation of 41%, and without any significant anisotropic behavior.  相似文献   

14.
Due to the advantages of relatively low cost, increased energy efficiency, increased deposition rate, and the capacity to create medium to large scale components, wire + arc additive manufacturing (WAAM) has gained growing interest. Super martensitic stainless steel (SMSS) combines outstanding strength, ductility, and corrosion resistance, making it a great option for WAAM. In the present work, an SMSS component was successfully produced by WAAM. Additionally, the influence of post-manufactured heat treatment on the microstructural characteristics and mechanical properties of SMSS components was systematically examined. A microstructural analysis of the as-printed and heat-treated samples revealed the formation of typical martensite and a small amount of retained austenite. However, the sample heat-treated by solutionizing at 1050 °C for 1 h followed by aging at 400 °C for 2 h exhibited a finer martensitic structure with an effective grain size of 5.6 μm compared to as-printed sample, leading to an increase in ultimate tensile strength from 1054 ± 6 MPa to 1141 ± 3 MPa with a concomitant increase in elongation from 7.8 ± 0.4% to 12.6 ± 0.2%. Additionally, the fracture morphology of the solution + aging sample demonstrated a more uniform distribution and greater mean size of dimples, indicating better ductility.  相似文献   

15.
This work investigates the effect of layer thickness on the microstructure and mechanical properties of M300 maraging steel produced by Laser Engineered Net Shaping (LENS®) technique. The microstructure was characterized using light microscopy (LM) and scanning electron microscopy (SEM). The mechanical properties were characterized by tensile tests and microhardness measurements. The porosity and mechanical properties were found to be highly dependent on the layer thickness. Increasing the layer thickness increased the porosity of the manufactured parts while degrading their mechanical properties. Moreover, etched samples revealed a fine cellular dendritic microstructure; decreasing the layer thickness caused the microstructure to become fine-grained. Tests showed that for samples manufactured with the chosen laser power, a layer thickness of more than 0.75 mm is too high to maintain the structural integrity of the deposited material.  相似文献   

16.
Requirements for mechanical properties of steels are constantly increasing, and the combination of quenching and tempering is the method generally chosen for achieving high strength in medium carbon steels. This study examines the influence of various silicon contents from 1.06 to 2.49 wt% and the addition of copper (1.47 wt%) on the behavior of 1.7102 steel starting with the as-quenched state and ending with the tempered condition at the temperature of 500 °C. The microstructure was characterized by SEM and TEM, the phase composition and dislocation density were studied by XRD analysis, and mechanical properties were assessed by tensile and hardness testing, whereas tempered martensite embrittlement was assessed using Charpy impact test and the activation energy of carbide precipitation was determined by dilatometry. The benefit of copper consists in the improvement of reduction of area by tempering between 150 and 300 °C. The increase in strength due to copper precipitation occurs upon tempering at 500 °C, where strength is generally low due to a drop in dislocation density and changes in microstructure. The increasing content of silicon raises strength and dislocation density in steels, but the plastic properties of steel are limited. It was found that the silicon content of 1.5 wt% is optimum for the materials under study.  相似文献   

17.
In this paper, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray stress meter (XRSA), atom probe tomography (APT), hardness, and tensile tests were used to study the effect of tempering temperature on the microstructure and properties of Fe-9Ni-2Cu steel. The results show that after the quenched samples were tempered at 460 °C for 2 h, the hardness values increased from 373 to 397 HV, and elongation also increased from 13% to 16%. With the tempering temperature increasing from 460 to 660 °C, the hardness firstly decreases from 397 to 353 HV and then increases to 377 HV, while the elongation increases to 17% and then decreases to 11%. The variation of the mechanical properties greatly depends on the evolution of the Cu-rich phase and carbides. The precipitation strengthening of the Cu-rich phase and carbides leads to the increase of hardness, but when the precipitate is coarsened, the precipitation strengthening weakens, and then, the hardness increases. When the tempering temperature is 560 °C, a large amount of stable reverse transformation austenite was formed with a content of 7.1%, while the tensile strength reached the lowest value of 1022 MPa and the elongation reached the maximum value of 17%.  相似文献   

18.
The present work describes the influence of different temperatures on mechanical properties and microstructure of additively manufactured high-strength 1.2709 maraging steel. For this purpose, samples produced by selective laser melting technology were used in their as-printed as well as their heat-treated state. Both samples were than exposed to temperatures ranging between 100 °C to 900 °C with a total dwell time of 2 h followed by water-cooling. The microhardness of the as-printed material reached its maximum (561 ± 6 HV0.1) at 500 °C, which corresponded to the microstructural changes. However, the heat-treated material retained its initial mechanical properties up to 500 °C. As the temperature increased, the microhardness of both the materials reduced, reaching their minimum at 900 °C. This phenomenon was accompanied by a change in the microstructure by forming coarse-grained martensite. This also resulted in a significant decrease in the ultimate tensile strength and an increase in the plasticity. TEM analysis confirmed the formation of Ni3Mo intermetallic phases in the as-printed material when exposed to a temperature of 500 °C. It was found that the same phase was present in the heat-treated sample and it remained stable up to a temperature of 500 °C.  相似文献   

19.
The significant growth of Additive Manufacturing (AM), visible over the last ten years, has driven an increase in demand for small gradation metallic powders of a size lower than 100 µm. Until now, most affordable powders for AM have been produced using gas atomization. Recently, a new, alternative method of powder production based on ultrasonic atomization with melting by electric arc has appeared. This paper summarizes the preliminary research results of AM samples made of two AISI 316L steel powder batches, one of which was obtained during Ultrasonic Atomization (UA) and the other during Plasma Arc Gas Atomization (PAGA). The comparison starts from powder particle statistical distribution, chemical composition analysis, density, and flowability measurements. After powder analysis, test samples were produced using AM to observe the differences in microstructure, porosity, and hardness. Finally, the test campaign covered an analysis of mechanical properties, including tensile testing with Digital Image Correlation (DIC) and Charpy’s impact tests. A comparative study of parts made of ultrasonic and gas atomization powders confirms the likelihood that both methods can deliver material of similar properties.  相似文献   

20.
Continuous cooling transformation (CCT) diagrams are widely used when heat treating steels and represent which type of phase will occur in a material as it is cooled at different cooling rates. CCT diagrams are constructed on the basis of dilatometry measurements on relatively small testing samples (cylindrical shape with diameter of 4mm and length of 11 mm in this study). The main aim of this work was to demonstrate the possibility of evaluating the tensile test properties using mini-tensile tests from miniature volumes (1.4 × 10−7 m3 for one sample) subsequent to determination of the CCT diagram and to extend a standard CCT diagram with information about strength, ductility and the estimated value of the work-hardening coefficient. Mini-tensile tests (MTT) were recently developed due to the low availability of experimental material and have already been successfully used for local mechanical property characterization of metals. CCT diagrams were constructed for 42CrMo4 steel prepared by the laser-directed energy deposition (L-DED) process, for commercially available 42CrMo4 steel conventionally manufactured (for comparison of traditional processing and AM preparation) and for H13 tool steel deposited by the selective laser melting (SLM) process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号