首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The process optimization and structural safety improvement of the in-service repair welding of the X80 pipeline are very important. In this paper, the temperature, microstructure, and stress distribution were analyzed using the combination of TMM (thermal-metallurgical-mechanical) simulations and the corresponding verification experiments. The effects of the sleeve material strength and the fillet weld size were discussed. The results showed that the fillet weld zone was mainly composed of ferrite and bainite when the material of the sleeve pipe was Q345B. Furthermore, the sleeve pipe’s HAZ (heat affected zone) was dominated by lath martensite, lath bainite, and granular bainite. Moreover, granular bainite and a small amount of ferrite were found in the HAZ of the X80 pipe. It was found that, as the fillet weld size increased, the welding residual stress distribution became more uniform. The hoop stress at weld toe reduced from ~860 MPa of case A to ~680 MPa of case E, and the axial stress at weld toe reduced from ~440 MPa of case A to ~380 MPa of case E. From the viewpoint of welding residual stress, fillet weld size was suggested to be larger than 1.4T. The stress concentration and the stress distribution showed a correlation with the cracking behavior. Weld re-solidification ripples on the weld surface and weld ripples between welding passes or near the weld toe could cause stress concentration and the corresponding crack initiation. Furthermore, when the material of the sleeve pipe changed from Q345B to X80, the high-level tensile stress zone was found to be enlarged. The hoop stress at weld toe increased from ~750 to ~800 MPa, and the axial stress at weld toe increased from ~500 to ~600 MPa. After implementing the new sleeve repair welding process where X80 replaces the material of sleeve pipe, the cracking risk in sleeve pipe will improve. From the perspective of the welding residual stress, it was concluded that the fillet weld size reduction and the sleeve material strength improvement are harmful to in-service welded structures’ safety and integrity.  相似文献   

2.
Stainless steels are increasingly used in construction today, especially in harsh environments, in which steel corrosion commonly occurs. Cold-formed stainless steel structures are currently increasing in popularity because of its efficiency in load-bearing capacity and its appealing architectural appearance. Cold-rolling and press-braking are the cold-working processes used in the forming of stainless steel sections. Press braking can produce large cross-sections from thin to thick-walled sections compared to cold-rolling. Cold-forming in press-braked sections significantly affect member behaviour and joints; therefore, they have attained great attention from many researchers to initiate investigations on those effects. This paper examines the behaviour of residual stress distribution of stainless steel press-braked sections by implementing three-dimensional finite element (3D-FE) technique. The study proposed a full finite element procedure to predict the residual stresses starting from coiling-uncoiling to press-braking. This work considered material anisotropy to examine its effect on the residual stress distribution. The technique adopted was compared with different finite element techniques in the literature. This study also provided a parametric study for three corner radius-to-thickness ratios looking at the through-thickness residual stress distribution of four stainless steels (i.e., ferritic, austenitic, duplex, lean duplex) in which have their own chemical composition. In conclusion, the comparison showed that the adopted technique provides a detailed prediction of residual stress distribution. The influence of geometrical aspects is more pronounced than the material properties. Neglecting the material anisotropy shows higher shifting in the neutral axis. The parametric study showed that all stainless steel types have the same stress through-thickness distribution. Moreover, R/t ratios’ effect is insignificant in all transverse residual stress distributions, but a slight change to R/t ratios can affect the longitudinal residual stress distribution.  相似文献   

3.
The laser shock peening (LSP) process using a Q-switched pulsed laser beam for surface modification has been reviewed. The development of the LSP technique and its numerous advantages over the conventional shot peening (SP) such as better surface finish, higher depths of residual stress and uniform distribution of intensity were discussed. Similar comparison with ultrasonic impact peening (UIP)/ultrasonic shot peening (USP) was incorporated, when possible. The generation of shock waves, processing parameters, and characterization of LSP treated specimens were described. Special attention was given to the influence of LSP process parameters on residual stress profiles, material properties and structures. Based on the studies so far, more fundamental understanding is still needed when selecting optimized LSP processing parameters and substrate conditions. A summary of the parametric studies of LSP on different materials has been presented. Furthermore, enhancements in the surface micro and nanohardness, elastic modulus, tensile yield strength and refinement of microstructure which translates to increased fatigue life, fretting fatigue life, stress corrosion cracking (SCC) and corrosion resistance were addressed. However, research gaps related to the inconsistencies in the literature were identified. Current status, developments and challenges of the LSP technique were discussed.  相似文献   

4.
The selective laser melting (SLM) forming process of 24CrNiMo alloy steel was optimized by orthogonal experiment. The density and microstructure of the sample were analyzed, and the optimized process parameters were as follows: laser power 300 W, scanning speed 530 mm/s. The 24CrNiMo alloy steel samples were prepared with optimized parameters. The relationship between residual stress and thermal fatigue and the effect of stress-relieving annealing (SR) on residual stress were analyzed. The density of the sample was found to increase at first and then to decrease with the increase of laser power and then to decrease with the increase of scanning speed. Increasing the laser power and scanning speed widened and deepened the weld. Under the optimized process window, the formability of 24CrNiMo alloy steel samples was improved significantly. The residual stress distribution was tensile stress, which had a negative effect on the thermal fatigue properties of the sample. After SR, the residual stress changed to compressive stress, which had a positive effect on the thermal fatigue properties of the samples. Compared with the deposited state, the thermal fatigue cracks were significantly shortened after SR, which was able to further promote the improvement of thermal fatigue performance. The gradient residual stress test showed that the gradient residual stress in the edge region and the central region of the deposited sample had the same trend, and decreased gradually from the surface layer to the base layer.  相似文献   

5.
The surface finish was extensively studied in usual machining processes (turning, milling, and drilling). For these processes, the surface finish is strongly influenced by the cutting feed and the tool nose radius. However, a basic understanding of tool/surface finish interaction and residual stress generation has been lacking. This paper aims to investigate the surface finish and residual stresses under the orthogonal cutting since it can provide this information by avoiding the effect of the tool nose radius. The orthogonal machining of AA7075-T651 alloy through a series of cutting experiments was performed under dry conditions. Surface finish was studied using height and amplitude distribution roughness parameters. SEM and EDS were used to analyze surface damage and built-up edge (BUE) formation. An analysis of the surface topography showed that the surface roughness was sensitive to changes in cutting parameters. It was found that the formation of BUE and the interaction between the tool edge and the iron-rich intermetallic particles play a determinant role in controlling the surface finish during dry orthogonal machining of the AA7075-T651 alloy. Hoop stress was predominantly compressive on the surface and tended to be tensile with increased cutting speed. The reverse occurred for the surface axial stress. The smaller the cutting feed, the greater is the effect of cutting speed on both axial and hoop stresses. By controlling the cutting speed and feed, it is possible to generate a benchmark residual stress state and good surface finish using dry machining.  相似文献   

6.
In order to reduce the residual stress of the GH4169 alloy, the effect and micro-mechanism of the tensile deformation were studied. The residual stress, dislocation density, and distribution of the GH4169 alloy were analyzed by X-ray residual stress tester, X-ray diffractometer (XRD), and electron backscatter diffraction (EBSD). The results show that: with the increase of tensile deformation, the residual stress relief first increases and then decreases. When the tensile deformation is 3%, the reduction rate of residual stress reaches the maximum, which is 90%. The mechanism of residual stress relief by the tensile treatment is that the dislocation group in the alloy is activated by tensile treatment, and the dislocation distribution in the alloy is more uniform by dislocation movement, multiplication, and annihilation so that the residual stress can be eliminated.  相似文献   

7.
With the application of Selective Laser Melting (SLM) technology becoming more and more widespread, it is important to note the process parameters that have a very important effect on the forming quality. Key process parameters such as laser power (P), scan speed (s), and scanning strategy (μ) were investigated by determining the correlation between the microstructure and residual stress in this paper. A total of 10 group 316L specimens were fabricated using SLM for comprehensive analysis. The results show that the key process parameters directly affect the morphology and size of the molten pool in the SLM deposition, and the big molten pool width has a direct effect on the larger grain size and crystal orientation distribution. In addition, the larger grain size and misorientation angle also affect the size of the residual stress. Therefore, better additive manufacturing grain crystallization can be obtained by reasonably adjusting the process parameter combinations. The transfer energy density can synthesize the influence of four key process parameters (P, v, the hatching distance (δ), and the layer thickness (h)). In this study, it is proposed that the accepted energy density will reflect the influence of five key process parameters, including the scanning trajectory (μ), which can reflect the comprehensive effect of process parameters more accurately.  相似文献   

8.
Mechanical surface treatments are needed to perform on components for fatigue life enhancement by introducing beneficial compressive residual stress and material strengthening. In this study, the combined turning with low plasticity burnishing (LPB) surface modification process was performed for the sake of improving mechanical properties of Inconel 718. Firstly, the evolution of microstructure and residual stress after the LPB process were analyzed with the aid of electron backscatter diffraction (EBSD) and X-ray diffraction (XRD), respectively. Secondly, the tensile behavior of treated samples was investigated through tension tests. Finally, the micro-strengthening mechanism of Inconel 718, induced by the LPB process, was revealed. The results show that the peak compressive stress is increased by a factor of 4.2 after the LPB process. The grain refinement induced by the LPB process is attributed to the increase of average misorientation and the formation of high angle grain boundaries (HAGBs). The enhanced yield strength depends on the decreased average spacing and the increased HAGBs.  相似文献   

9.
Hot work tool steels (HWS) are widely used for high performance components as dies and molds in hot forging processes, where extreme process-related mechanical and thermal loads limit tool life. With the functionalizing and modification of tool surfaces with tailored surfaces, a promising approach is given to provide material flow control resulting in the efficient die filling of cavities while reducing the process forces. In terms of fatigue properties, the influence of surface modifications on surface integrity is insufficiently studied. Therefore, the potential of the machining processes of high-feed milling, micromilling and grinding with regard to the implications on the fatigue strength of components made of HWS (AISI H11) hardened to 50 ± 1 HRC was investigated. For this purpose, the machined surfaces were characterized in terms of surface topography and residual stress state to determine the surface integrity. In order to analyze the resulting fatigue behavior as a result of the machining processes, a rotating bending test was performed. The fracture surfaces were investigated using fractographic analysis to define the initiation area and to identify the source of failure. The investigations showed a significant influence of the machining-induced surface integrity and, in particular, the induced residual stress state on the fatigue properties of components made of HWS.  相似文献   

10.
This paper discusses the development of a flow stress model to simulate the AA3104-H19 alloy under the conditions of large plastic deformations characteristic of the beverage can manufacturing process. This study focuses on the first five steps of this process: cupping, redrawing, ironing #1, ironing #2, ironing #3. These are the stages that reduce the thickness of the base material to the maximum, resulting in an effective strain of more than 2.0, unattainable in conventional plastometric tests. To solve this problem, the specific calculation-experimental method for the development of the flow stress model was proposed. Based on the FEM modeling of the technological process, data on the history of deformation and the trajectory of movement of the selected points of the material at all stages of the production were obtained. Microspecimens for the tensile tests were taken from the points of the beverage can wall that were determined in this way. The initial strain of each sample was taken from the FEM simulation. In this way, the tensile curves were obtained for the material points at different stages of the production. The processing of these curves allowed the creation of a flow stress model for large strains, corresponding to production conditions. The tensile tests were performed on a Zwick Z250 machine at room temperature and strain rate of 0.005 s−1. The FEM-based algorithm for the determination of empirical coefficients of the analytical flow stress model is presented. The final flow stress model covers the range of effective strain from 0–2. Validation of the developed model based on the measured beverage can thicknesses showed that a flow stress model was developed that correctly and accurately describes the forming process.  相似文献   

11.
The surface residual stress after machining, especially for finishing, has a vital influence on the shape stability and fatigue life of components. The current study focuses on proposing an original empirical equation to predict turned surface residual stress for Inconel 718 material, taking tool parameters into consideration. The tool cutting-edge angle, rake angle, and inclination angle are introduced for the first time in the equation based on the Inconel 718 material turning experiments and finite element simulations. In this study, the reliability of simulation parameters’ setting is firstly calibrated by comparing the residual stresses and chips of the experiments and simulations. The changing trends of turned forces, temperatures of lathe tool nose, and surface residual stress with turning parameters are analyzed. Then, the predictive equation of surface residual stress is proposed considering relationships between the back-rake angle, the side-rake angle, and the tool cutting-edge angle, rake angle, and inclination angle. Moreover, the genetic algorithm optimizes the objective function to obtain the undetermined coefficients in the prediction equation. Finally, the predicted accuracy of the surface residual stress is proven by comparing the experimental, simulation, and prediction values. The results indicate that the predictive equation of surface residual stress has a good accuracy in predicting turned surface residual stress for Inconel 718 materials. The correlation coefficient, R, and absolute average error between the predicted and the simulated value are 0.9624 and 13.40%, respectively. In the range of cutting parameters studied and experimental errors, this study provides an accurate predictive equation of turned surface residual stress for Inconel 718 materials.  相似文献   

12.
Pultruded fiber-reinforced polymer composites are susceptible to microstructural nonuniformity such as variability in fiber volume fraction (Vf), which can have a profound effect on process-induced residual stress. Until now, this effect of non-uniform Vf distribution has been hardly addressed in the process models. In the present study, we characterized the Vf distribution and accompanying nonuniformity in a unidirectional fiber-reinforced pultruded profile using optical light microscopy. The identified nonuniformity in Vf was subsequently implemented in a mesoscale thermal–chemical–mechanical process model, developed explicitly for the pultrusion process. In our process model, the constitutive material behavior was defined locally with respect to the corresponding fiber volume fraction value in different-sized representative volume elements. The effect of nonuniformity on the temperature and cure degree evolution, and residual stress was analyzed in depth. The results show that the nonuniformity in fiber volume fraction across the cross-section increased the absolute magnitude of the predicted residual stress, leading to a more scattered residual stress distribution. The observed Vf gradient promotes tensile residual stress at the core and compressive residual stress at the outer regions. Consequently, it is concluded that it is essential to take the effects of nonuniformity in fiber distribution into account for residual stress estimations, and the proposed numerical framework was found to be an efficient tool to study this aspect.  相似文献   

13.
The present work seeks to extend the level of understanding of the stress field evolution during direct laser deposition (DLD) of a 3.2 mm thick multilayer wall of Ti-6Al-4V alloy by theoretical and experimental studies. The process conditions were close to the conditions used to produce large-sized structures by the DLD method, resulting in specimens having the same thermal history. A simulation procedure based on the implicit finite element method was developed for the theoretical study of the stress field evolution. The accuracy of the simulation was significantly improved by using experimentally obtained temperature-dependent mechanical properties of the DLD-processed Ti-6Al-4V alloy. The residual stress field in the buildup was experimentally measured by neutron diffraction. The stress-free lattice parameter, which is decisive for the measured stresses, was determined using both a plane stress approach and a force-momentum balance. The influence of the inhomogeneity of the residual stress field on the accuracy of the experimental measurement and the validation of the simulation procedure are analyzed and discussed. Based on the numerical results it was found that the non-uniformity of the through-thickness stress distribution reaches a maximum in the central cross-section, while at the buildup ends the stresses are distributed almost uniformly. The components of the principal stresses are tensile at the buildup ends near the substrate. Furthermore, the calculated equivalent plastic strain reaches 5.9% near the buildup end, where the deposited layers are completed, while the plastic strain is practically equal to the experimentally measured ductility of the DLD-processed alloy, which is 6.2%. The experimentally measured residual stresses obtained by the force-momentum balance and the plane stress approach differ slightly from each other.  相似文献   

14.
Experimental analyses of depth distributions of phase-specific residual stresses after deep rolling were carried out by means of laboratory X-ray diffraction and neutron diffraction for the two duplex steels X2CrNiMoN22-5-3 and X3CrNiMoN27-5-2, which differ significantly in their ferrite to austenite ratios. The aim of the investigation was to elucidate to which extent comparable results can be achieved with the destructive and the non-destructive approach and how the process induced phase-specific micro residual stresses influence the determination of the phase- and {hkl}-specific reference value d0, required for evaluation of neutron strain scanning experiments. A further focus of the work was the applicability of correction approaches that were developed originally for single-phase materials for accounting for spurious strains during through surface neutron scanning experiments on coarse two-phase materials. The depth distributions of macro residual stresses were separated from the phase-specific micro residual stresses. In this regard, complementary residual stress analysis was carried out by means of incremental hole drilling. The results indicate that meaningful macro residual stress depth distributions can be determined non-destructively by means of neutron diffraction for depths starting at about 150–200 µm. Furthermore, it was shown that the correction of the instrumental surface effects, which are intrinsic for surface neutron strain scanning, through neutron ray-tracing simulation is applicable to multiphase materials and yields reliable results. However, phase-specific micro residual stresses determined by means of neutron diffraction show significant deviations to data determined by means of lab X-ray stress analysis according to the well-known sin2ψ-method.  相似文献   

15.
To predict the final geometry in thermo-mechanical processes, the use of modeling tools is of great importance. One important part of the modeling process is to describe the response correctly. A previously published mechanism-based flow stress model has been further developed and adapted for the nickel-based superalloys, alloy 625, and alloy 718. The updates include the implementation of a solid solution strengthening model and a model for high temperature plasticity. This type of material model is appropriate in simulations of manufacturing processes where the material undergoes large variations in strain rates and temperatures. The model also inherently captures stress relaxation. The flow stress model has been calibrated using compression strain rate data ranging from 0.01 to 1 s−1 with a temperature span from room temperature up to near the melting temperature. Deformation mechanism maps are also constructed which shows when the different mechanisms are dominating. After the model has been calibrated, it is validated using stress relaxation tests. From the parameter optimization, it is seen that many of the parameters are very similar for alloy 625 and alloy 718, although it is two different materials. The modeled and measured stress relaxation are in good agreement.  相似文献   

16.
A prediction model of the welding process of Ti-6Al-4V titanium alloy was established by using the finite element method, which was used to evaluate the phase composition, residual stress and deformation of the welded joints of Ti-6Al-4V sheets with different processes (including tungsten inert gas welding, TIG, and laser beam welding, LBW). The Ti-6Al-4V structures of TIG welding and LBW are widely used in marine engineering. In order to quantitatively study the effects of different welding processes (including TIG welding and LBW) on the microstructure evolution, macro residual stress and deformation of Ti6Al4V titanium alloy sheets during welding, a unified prediction model considering solid-state phase transformation was established based on the ABAQUS subroutine. In this paper, LBW and TIG welding experiments of 1.6 mm thick Ti-6Al-4V titanium alloy sheets were designed. The microstructure distribution of the welded joints observed in the experiment was consistent with the phase composition predicted by the model, and the hardness measurement experiment could also verify the phase composition and proportion. From the residual stress measured by experiment and the residual stress and deformation calculated by finite element simulation of LBW and TIG weldments, it is concluded that the effect of phase transformation on residual stress is mainly in the weld area, which has an effect on the distribution of tensile and compressive stress in the weld area. The overall deformation of the welded joint is mainly related to the welding process, and the phase transformation only affects the local volume change of the weld seam. Importantly, the phase composition and residual stress, which are scalar fields, calculated by the established model can be introduced into the numerical analysis of structural fracture failure as input influence factors.  相似文献   

17.
Residual stress may influence the mechanical behavior and durability of drawn materials. Thus, this study develops a multiple reduction die (MRD) that can reduce residual stress during the drawing process. The MRD set consists of several die tips, die cases, and lubricating equipment. All the die tips of the MRD were disposed of simultaneously. Finite element analysis of the drawing process was performed according to the reduction ratio of each die tip, and the variables in drawing process with the MRD were optimized using a deep neural network to minimize the residual stress. Experiments on the drawing process with the conventional die and MRD were performed to evaluate the residual stress and verify the effectiveness of the MRD. The results of X-ray diffraction measurements indicated that the axial and hoop residual stresses on the surface were dramatically reduced.  相似文献   

18.
Surface integrity induced by finishing processes significantly affects the functional performance of machined components. In this work, three kinds of finishing processes, i.e., precision hard turning, conventional grinding, and sequential grinding and honing, were used for the finish machining of AISI 52100 bearing steel rings. The surface integrity induced by these finishing processes was studied via SEM investigations and residual stress measurements. To investigate rolling contact fatigue performance, contact fatigue tests were performed on a twin-disc testing machine. As the main results, the SEM observations show that precision hard turning and grinding introduce microstructural alterations. Indeed, in precision hard turning, a fine white layer (<1 μm) is observed on the top surface, followed by a thermally affected zone in the subsurface, and in grinding only, a white layer with 5 μm thickness is observed. However, no microstructural changes are found after sequential grinding and honing processes. White layers induced by precision hard turning and grinding possess compressive residual stresses. Grinding and sequential grinding and honing processes generate similar residual stress distributions, which are maximum and compressive at the machined surface and tensile at the subsurface depth of 15 μm. Precision hard turning generates a “hook”-shaped residual stress profile with maximum compressive value at the subsurface depth and thus contributes as a prenominal factor to the obtainment of the longest fatigue life with respect to other finishing processes. Due to the high quality of surface roughness (Ra = 0.05 μm), honing post grinding improves the fatigue life of bearing rings by 2.6 times in comparison with grinding. Subsurface compressive residual stresses, as well as low surface roughness, are key parameters for extending bearing fatigue life.  相似文献   

19.
Shot peening is one of the most favored surface treatment processes mostly applied on large-scale engineering components to enhance their fatigue performance. Due to the stochastic nature and the mutual interactions of process parameters and the partially contradictory effects caused on the component’s surface (increase in residual stress, work-hardening, and increase in roughness), there is demand for capable and user-friendly simulation models to support the responsible engineers in developing optimal shot-peening processes. The present paper contains a user-friendly Finite Element Method-based 2D model covering all major process parameters. Its novelty and scientific breakthrough lie in its capability to consider various size distributions and elastoplastic material properties of the shots. Therewith, the model is capable to provide insight into the influence of every individual process parameter and their interactions. Despite certain restrictions arising from its 2D nature, the model can be accurately applied for qualitative or comparative studies and processes’ assessments to select the most promising one(s) for the further experimental investigations. The model is applied to a high-strength steel grade used for automotive leaf springs considering real shot size distributions. The results reveal that the increase in shot velocity and the impact angle increase the extent of the residual stresses but also the surface roughness. The usage of elastoplastic material properties for the shots has been proved crucial to obtain physically reasonable results regarding the component’s behavior.  相似文献   

20.
The effect of surface integrity on the hot fatigue performance of Ti2AlNb alloy was investigated. A turning process was used to prepare the standard specimens for hot fatigue tests. The surface integrity characterization and axial fatigue tests were performed. The results show that the influence of surface roughness on the hot fatigue performance of the Ti2AlNb alloy is a secondary factor. The compressive residual stress and enhanced microhardness in the surface layer has a significant effect on the hot fatigue life and they are dominant in the hot fatigue behavior of the Ti2AlNb alloy. Through the investigation on the characteristics of the fatigue fractures, the fatigue propagation process was significantly suppressed because of the strong residual compressive stress and microhardness distribution on the surface layer of the Ti2AlNb specimen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号