首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multiple sclerosis (MS) is a demyelinating disease of the central nervous system (CNS) while neuromyelitis optica (NMO) is an inflammatory disease of the CNS that selectively affects the optic nerves and spinal cord. In Asians, MS is rare; however, when it appears, the selective and severe involvement of the optic nerves and spinal cord is characteristic. This form, termed opticospinal MS (OSMS), has similar features to the relapsing form of NMO in Western populations. Recently, a specific IgG against NMO, designated NMO-IgG, was discovered, and the relevant antigen was found to be aquaporin-4 (AQP4), one of the major water channel proteins in the CNS. Because NMO-IgG has been reported to be present in 30-60% of OSMS patients, OSMS in Asians has been suggested to be the same entity as NMO.The sensitivity of NMO-IgG/anti-AQP4 antibody for NMO varies from 30% to 80%, while the specificity is 90-100%. Pathological studies on NMO have revealed perivascular immune complex (IgM, IgG and C9neo) deposition and extensive loss of AQP4 in active lesions, where myelin basic protein (MBP) staining was relatively preserved. IgG from NMO-IgG-seropositive NMO patients induces astrocyte death in culture in the presence of complements, and reproduces astrocyte loss in vivo when MBP-specific T cells are co-transferred to cause experimental autoimmune encephalomyelitis. It is thus postulated that the complement-activating anti-AQP4 antibody plays a pivotal role in the development of NMO lesions through astrocyte necrosis, and that demyelination is a secondary event.However, in autopsied cases of NMO, we and others found that some demonstrated selective AQP4 loss while others showed preservation of AQP4, even in the acute lesions. We also found that, in some MS lesions, AQP4 was lost extensively far beyond the areas of myelin loss. In the CSF, proinflammatory cytokines such as IL-17, IL-8, IFNγ, and G-CSF are markedly elevated in OSMS patients, irrespective of the presence or absence of anti-AQP4 antibody. In OSMS and NMO patients, T cells reactive to myelin proteins show intra- and inter-molecular epitope spreading, suggesting that T cells are already stimulated with myelin antigens in vivo. These findings suggest that mechanism of NMO and OSMS in Asians is heterogeneous, anti-AQP4 antibody-related and -unrelated, and that not only anti-AQP4 antibody but also myelin-autoreactive Th17 or Th1 cells may also play a role in triggering CNS inflammation. Possible mechanisms for NMO and OSMS are discussed in this review.  相似文献   

2.
There is a growing body of evidence implicating complement and, in particular, the terminal pathway (membrane attack complex; MAC) in inducing demyelination in multiple sclerosis and experimental allergic encephalomyelitis. In this paper, we examined the disease course and pathological changes in mice deficient in the major regulator of MAC assembly, CD59a, during the course of acute experimental allergic encephalomyelitis induced by immunisation with recombinant myelin oligodendrocyte glycoprotein. Disease incidence and severity were significantly increased in CD59a-deficient mice. The extent of inflammation, demyelination and axonal injury were assessed in spinal cord cross-sections from CD59a-deficient and control mice, and all these parameters were enhanced in the absence of CD59a. Areas of myelin loss and axonal damage in CD59a-deficient mice were associated with deposits of MAC, firmly implicating MAC as a cause of the observed injury. These findings are relevant to some types of human demyelination, where abundant deposits of MAC are found in association with pathology.  相似文献   

3.
目的:评价多肽C16/血管生成素1(Ang1)联合胎盘来源间充质干细胞(PDMSCs)治疗大鼠视神经脊髓炎(NMO)的效果.方法:分离培养大鼠PDMSCs,通过脑室及脊髓蛛网膜下腔注射水通道蛋白4(APQ4)抗体与人补体C5蛋白诱导大鼠NMO模型,将大鼠分为5组,即正常组、NMO模型组、PDMSCs组、C16/Ang1...  相似文献   

4.

Background

Studies of neuromyelitis optica (NMO), an autoimmune disease of the central nervous system (CNS), have demonstrated that autoantibodies against the water channel aquaporin-4 (AQP4) induce astrocyte damage through complement-dependent cytotoxicity (CDC). In developing experimental models of NMO using cells, tissues or animals from mice, co-administration of AQP4-IgG and normal human serum, which serves as the source of human complement (HC), is required. The sensitivity of mouse CNS cells to HC and CDC in these models is not known.

Methods

We used HC and recombinant monoclonal antibodies (rAbs) against AQP4 to investigate CDC on mouse neurons, astrocytes, differentiated oligodendrocytes (OLs), and oligodendrocyte progenitors (OPCs) in the context of purified monocultures, neuroglial mixed cultures, and organotypic cerebellar slices.

Results

We found that murine neurons, OLs, and OPCs were sensitive to HC in monocultures. In mixed murine neuroglial cultures, HC-mediated toxicity to neurons and OLs was reduced; however, astrocyte damage induced by an AQP-specific rAb #53 and HC increased neuronal and oligodendroglial loss. OPCs were resistant to HC toxicity in neuroglial mixed cultures. In mouse cerebellar slices, damage to neurons and OLs following rAb #53-mediated CDC was further reduced, but in contrast to neuroglial mixed cultures, astrocyte damage sensitized OPCs to complement damage. Finally, we established that some injury to neurons, OLs, and OPCs in cell and slice cultures resulted from the activation of HC by anti-tissue antibodies to mouse cells.

Conclusions

Murine neurons and oligodendroglia demonstrate variable sensitivity to activated complement based on their differentiation and culture conditions. In organotypic cultures, the protection of neurons, OLs, and OPCs against CDC is eliminated by targeted astrocyte destruction. The activation of human complement proteins on mouse CNS cells necessitates caution when interpreting the results of mouse experimental models of NMO using HC.
  相似文献   

5.
Neuromyelitis optica (NMO) is a severe, debilitating human disease that predominantly features immunopathology in the optic nerves and the spinal cord. An IgG1 autoantibody (NMO-IgG) that binds aquaporin 4 (AQP4) has been identified in the sera of a significant number of NMO patients, as well as in patients with two related neurologic conditions, bilateral optic neuritis (ON), and longitudinal extensive transverse myelitis (LETM), that are generally considered to lie within the NMO spectrum of diseases. NMO-IgG is not the only autoantibody found in NMO patient sera, but the correlation of pathology in central nervous system (CNS) with tissues that normally express high levels of AQP4 suggests NMO-IgG might be pathogenic. If this is the case, it is important to identify and understand the mechanism(s) whereby an immune response is induced against AQP4. This review focuses on open questions about the "events" that need to be understood to determine if AQP4 and NMO-IgG are involved in the pathogenesis of NMO. These questions include: 1) How might AQP4-specific T and B cells be primed by either CNS AQP4 or peripheral pools of AQP4? 2) Do the different AQP4-expressing tissues and perhaps the membrane structural organization of AQP4 influence NMO-IgG binding efficacy and thus pathogenesis? 3) Does prior infection, genetic predisposition, or underlying immune dysregulation contribute to a confluence of events which lead to NMO in select individuals? A small animal model of NMO is essential to demonstrate whether AQP4 is indeed the incipient autoantigen capable of inducing NMO-IgG formation and NMO. If the NMO model is consistent with the human disease, it can be used to examine how changes in AQP4 expression and blood-brain barrier (BBB) integrity, both of which can be regulated by CNS inflammation, contribute to inductive events for anti-AQP4-specific immune response. In this review, we identify reagents and experimental questions that need to be developed and addressed to enhance our understanding of the pathogenesis of NMO. Finally, dysregulation of tolerance associated with autoimmune disease appears to have a role in NMO. Animal models would allow manipulation of hormone levels, B cell growth factors, and other elements known to increase the penetrance of autoimmune disease. Thus an AQP4 animal model would provide a means to manipulate events which are now associated with NMO and thus demonstrate what set of events or multiplicity of events can push the anti-AQP4 response to be pathogenic.  相似文献   

6.
Neuromyelitis optica (NMO) is an inflammatory demyelinating disease of the central nervous system in which anti-aquaporin-4 (AQP4) autoantibodies (AQP4-IgG) cause damage to astrocytes by complement-dependent cytotoxicity (CDC). Various approaches have been attempted to produce NMO lesions in rodents, some involving genetically modified mice with altered immune cell function. Here, we found that mouse serum strongly inhibits complement from multiple species, preventing AQP4-IgG-dependent CDC. Effects of mouse serum on complement activation were tested in CDC assays in which AQP4-expressing cells were incubated with AQP4-IgG and complement from different species. Biochemical assays and mass spectrometry were used to characterize complement inhibitor(s) in mouse serum. Sera from different strains of mice produced almost no AQP4-IgG-dependent CDC compared with human, rat and guinea pig sera. Remarkably, addition of mouse serum prevented AQP4-IgG-dependent CDC caused by human, rat or guinea pig serum, with 50% inhibition at <5% mouse serum. Hemolysis assays indicated that the inhibitor(s) in mouse serum target the classical and not the alternative complement pathway. We found that the complement inhibitor(s) in mouse serum were contained in a serum fraction purified with protein-A resin; however, the inhibitor was not IgG as determined using serum from IgG-deficient mice. Mass spectrometry on the protein A-purified fraction produced several inhibitor candidates. The low intrinsic complement activity of mouse serum and the presence of complement inhibitor(s) limit the utility of mouse models to study disorders, such as NMO, involving the classical complement pathway.  相似文献   

7.
The expression of CD59 in normal human nervous tissue.   总被引:2,自引:0,他引:2       下载免费PDF全文
C Vedeler  E Ulvestad  L Bjrge  G Conti  K Williams  S Mrk    R Matre 《Immunology》1994,82(4):542-547
The expression of CD59, a complement regulator of the formation and function of the terminal cytolytic membrane attack complex, was studied in human normal nervous tissue by immunohistochemical markers using two monoclonal antibodies 1F5 and MEM43. CD59 was present on Schwann cells, neurons and endothelial cells in the peripheral nervous system (PNS), and on Schwann cells in culture. In the central nervous system (CNS) CD59 was found predominantly on endothelial cells. There was also a diffuse staining of white and grey matter of the spinal cord and brain, presumably of microglia, oligodendrocytes, astrocytes and neurons, as these cells were CD59 positive in culture. Furthermore, CD59 was detected in the cerebrospinal fluid (CSF) of healthy individuals. CD59 in the PNS and CNS was glycosyl-phosphatidylinositol linked and had a molecular weight of 19,000-25,000. The presence of CD59 on various cells of the nervous system and in the CSF suggests that regulation of complement activation by this protein is important in neural host defence mechanisms.  相似文献   

8.
Mesenchymal stem cells (MSCs) have demonstrated a measurable therapeutic effect following transplantation into animal models of spinal cord injury. However, the mechanism(s) by which transplanted cells promote nerve regeneration and/or functional recovery remains indeterminate. Several studies have suggested that MSCs promote tissue repair via secretion of trophic factors, but delineating the effect of such factors is difficult due to the complexity of the in vivo systems. Therefore, we developed an organotypic spinal cord slice culture system that can be sustained for sufficient periods of time in vitro to evaluate nerve regeneration as an ex vivo model of spinal cord injury. Using this model, we demonstrate that treatment of lumbar slices of spinal cord with lysolecithin induced a significant degree of cell death and demyelination of nerve fibers, but that these effects were ameliorated to a significant extent following co-culture of slices with human MSCs (hMSCs). The results indicate that transplanted hMSCs alter the tissue microenvironment in a way that promotes survival of endogenous cells, including injured neurons, immature oligodendrocytes and oligodendrocyte progenitor cells. This ex vivo culture system represents a useful tool to further dissect the mechanism(s) by which MSCs promote regeneration of injured nervous tissue.  相似文献   

9.
The authors established several swine endothelial cell (SEC) lines expressing human CD59 by transfection of cDNA, and assessed the function of the transfectant molecules in comparison with those of membrane cofactor protein (MCP) and decay-accelerating factor (DAF) in an in vitro hyperacute rejection model of swine to human discordant xenograft. At the usual expression rate, DAF and MCP protected SEC from human complement mediated cell lysis, but CD59 did not block human complement attack on SEC. However, CD59 protects SEC from cell lysis when sufficiently expressed as in human umbilical vein (HUVEC). The authors examined why CD59 needed so many molecules to protect human complement-mediated SEC lysis and found that SEC underwent lysis by human C5b-8. The degree of C5b-8 step lysis of SEC was approximately 70% of the total activity (C5b-9). Additionally, CD59 protected human complement activation less efficiently at the C5b-8 step than at the C9-step. Therefore, to overcome human complement mediated SEC lysis, C8 activity must be inhibited by dense expression of CD59.  相似文献   

10.
Summary Remyelination of ethidium bromide induced areas of demyelination in the adult rat spinal cord is normally carried out by Schwann cells. When CNS cultures containing large numbers of oligodendrocytes, oligodendrocyte precursors and type-1 astrocytes were injected into such lesions 3 days after the injection of ethidium bromide, remyelination was carried out by oligodendrocytes. When cultures deficient in type-1 astrocytes, prepared by shaking off and subculturing top-dwelling cells, were used there was only a modest increase in the extent of oligodendrocyte remyelination over that seen in uninjected lesions; the majority of axons being remyelinated by Schwann cells. To prove that these Schwann cells were mainly locally derived, shaken cultures were injected into lesions prepared in areas of the spinal cord locally X-irradiated with 40 Grays to inhibit host repair. In these animals the extent of oligodendrocyte remyelination achieved was similar to that seen when unshaken cultures (rich in type-1 astrocytes) were injected into lesions made in non-irradiated tissue. These results indicate that type-1 astrocytes control Schwann cell remyelination of CNS axons.  相似文献   

11.
Brain oedema is a major clinical problem produced by CNS diseases (e.g. stroke, brain tumour, brain abscess) and systemic diseases that secondarily affect the CNS (e.g. hyponatraemia, liver failure). The swollen brain is compressed against the surrounding dura and skull, which causes the intracranial pressure to rise, leading to brain ischaemia, herniation, and ultimately death. A water channel protein, aquaporin-4 (AQP4), is found in astrocyte foot processes (blood–brain border), the glia limitans (subarachnoid cerebrospinal fluid—brain border) and ependyma (ventricular cerebrospinal fluid—brain border). Experiments using mice lacking AQP4 or alpha syntrophin (which secondarily downregulate AQP4) showed that AQP4 facilitates oedema formation in diseases causing cytotoxic (cell swelling) oedema such as cerebral ischaemia, hyponatraemia and meningitis. In contrast, AQP4 facilitates oedema elimination in diseases causing vasogenic (vessel leak) oedema and therefore AQP4 deletion aggravates brain oedema produced by brain tumour and brain abscess. AQP4 is also important in spinal cord oedema. AQP4 deletion was associated with less cord oedema and improved outcome after compression spinal cord injury in mice. Here we consider the possible routes of oedema formation and elimination in the injured cord and speculate about the role of AQP4. Finally we discuss the role of AQP4 in neuromyelitis optica (NMO), an inflammatory demyelinating disease that produces oedema in the spinal cord and optic nerves. NMO patients have circulating AQP4 IgG autoantibody, which is now used for diagnosing NMO. We speculate how NMO-IgG might produce CNS inflammation, demyelination and oedema. Since AQP4 plays a key role in the pathogenesis of CNS oedema, we conclude that AQP4 inhibitors and activators may reduce CNS oedema in many diseases.  相似文献   

12.
Neuromyelitis optica spectrum disorders (NMOSD) is a heterogeneous group of neuroinflammatory conditions associated with demyelination primarily in spinal cord and optic nerve, and to a lesser extent in brain. Most NMOSD patients are seropositive for IgG autoantibodies against aquaporin‐4 (AQP4‐IgG), the principal water channel in astrocytes. There has been interest in establishing experimental animal models of seropositive NMOSD (herein referred to as NMO) in order to elucidate NMO pathogenesis mechanisms and to evaluate drug candidates. An important outcome of early NMO animal models was evidence for a pathogenic role of AQP4‐IgG. However, available animal models of NMO, based largely on passive transfer to rodents of AQP4‐IgG or transfer of AQP4‐sensitized T cells, often together with pro‐inflammatory maneuvers, only partially recapitulate the clinical and pathological features of human NMO, and are inherently biased toward humoral or cellular immune mechanisms. This review summarizes current progress and shortcomings in experimental animal models of seropositive NMOSD, and opines on the import of advancing animal models.  相似文献   

13.
The complement regulatory protein CD59 controls cell survival by the inhibition of C5b-9 formation on the cell membrane. Loss of CD59 increases the susceptibility of cells to complement-mediated damage and lysis. Deposition of IgM can induce complement activation with subsequent cell death. We have previously demonstrated the presence of CD59 on human NT2-N neurons. In this study, we investigated the functional role of CD59 for NT2-N cell survival after IgM-mediated complement activation. Complement activation was induced on NT2-N neurons with human serum following incubation with the IgM monoclonal antibody A2B5 reacting with a neuronal cell membrane epitope. Deposition of C1q and C5b-9 was detected on the cell membrane and sC5b-9 in the culture supernatant. Specific inhibition of complement was obtained by the C3 inhibitor compstatin, and by anti-C5/C5a MoAb. CD59 was blocked by the MoAb BRIC 229. Membrane damage of propidium iodide-stained NT2-N cells was confirmed by immunofluorescence microscopy and degeneration of neuronal processes was shown with crystal violet staining. A2B5, but not the irrelevant control IgM antibody, induced complement activation on NT2-N neurons after incubation with a human serum, as detected by the deposition of C1q. A marked membrane deposition of C5b-9 on NT2-N neurons with accompanying cell death and axonal degeneration was found after the blocking of CD59 with MoAb BRIC 229 but not with an isotype-matched control antibody. Compstatin and anti-C5 monoclonal antibodies which blocked C5 activation efficiently inhibited complement activation. In conclusion, CD59 is essential for protecting human NT2-N neurons against complement-mediated damage, which is known to occur in a number of clinical conditions including stroke.  相似文献   

14.
Neuromyelitis optica (NMO) is an inflammatory demyelinating disease that principally targets the optic nerves and spinal cord and often leads to severe disability and occasionally life threatening respiratory failure. Although its clinical manifestations overlap with those of multiple sclerosis (MS), in established cases these two conditions can be distinguished on the basis of clinical, radiological, and routine spinal fluid studies. The diagnosis in early cases or limited forms of NMO is difficult. We recently discovered a unique IgG autoantibody (NMO-IgG) that is highly specific to patients with NMO and thus a valuable diagnostic aid. Its antigen, aquaporin-4 (AQP4), is the central nervous system's predominant water channel protein. This antibody has not yet been proven to be pathogenic, but several facts suggest that it might be, including the similarity of the immunohistochemical pattern of NMO-(AQP4) IgG binding to mouse CNS tissues to the pattern of immune complex deposition in autopsied patients' spinal cord tissue. The spectrum of diseases identified by NMO-IgG is broader than has previously been recognized clinically and includes incomplete forms of NMO, such as recurrent transverse myelitis without optic neuritis and recurrent optic neuritis without myelitis.  相似文献   

15.
Activation of the complement system on the cell surface results in the insertion of pore forming membrane attack complexes (MAC, C5b-9). In order to protect themselves from the complement attack, the cells express several regulatory molecules, including the terminal complex regulator CD59 that inhibits assembly of the large MACs by inhibiting the insertion of additional C9 molecules into the C5b-9 complex. Using the whole cell patch clamp method, we were able to measure accumulation of homologous MACs in the membrane of CD59 human B-cells, which formed non-selective ion channels with a total conductance of 360 ± 24 pS as measured at the beginning of the steady-state phase of the inward currents. C5b-8 and small-size MAC (MAC containing only a single C9) can also form ion channels. Nevertheless, in CD59+ human B-cells in spite of small-size MAC formation, an ion current could not be detected. In addition, restoring CD59 to the membrane of the CD59 cells inhibited the serum-evoked inward current. The ion channels formed by the small-size MAC were therefore sealed, indicating that CD59 directly interfered with the pore formation of C5b-8 as well as that of small-size C5b-9. These results offer an explanation as to why CD59-expressing cells are not leaky in spite of a buildup of homologous C5b-8 and small-size MAC. Our experiments also confirmed that ion channel inhibition by CD59 is subject to homologous restriction and that CD59 cannot block the conductivity of MAC when generated by xenogenic (rabbit) serum.  相似文献   

16.
We have earlier shown that cerebrospinal fluid (CSF) of amyotrophic lateral sclerosis (ALS) patients’ produces selective degeneration of motor neurons, both in vitro as well as in vivo. The present study further evaluates the effect of ALS–CSF on the astrocytes in embryonic rat spinal cord cultures. We quantified the number of flat and process-bearing astrocytes in spinal cord cultures exposed to ALS–CSF and compared them against controls. In addition, GFAP and S100β expression were quantified by Western blot and measurement of immunofluorescence intensity respectively. We found higher number of process-bearing astrocytes in the cultures exposed to ALS–CSF. Both these proteins increased significantly in cultures exposed to ALS–CSF. Our results provide evidence that astroglia respond to toxic factor(s) present in ALS–CSF by undergoing morphological transformation from flat to process bearing which is further confirmed by elevated expression of GFAP and S100β. The above changes could possibly alter the microenvironment hastening the motor neuron degeneration.  相似文献   

17.
18.
PROBLEM : Human endometrium expresses complement components, receptors, and regulatory proteins, many of which appear to be expressed in a hormone-dependent manner. Whether terminal complement components are also present in the endometrium is unknown. CD59, a broadly expressed protein that blocks association of C9 with C8 in the membrane attack complex, is localized in reproductive tissue to human spermatozoa, seminal plasma, amniotic fluid, and placenta. The present study examines human endometrium for the presence of CD59 and terminal complement proteins. METHOD : Endometrial biopsies were obtained from six normal women from various phases of the menstrual cycle and analyzed by immunohistochemistry, using MEM-43 anti-human CD59 and anti-human SC5b-9 murine monoclonal antibodies and the immunoperoxidase technique. RESULTS : Both CD59 protein and SC5b-9 (C9 neoantigen) were demonstrated to be present in endometrial glandular epithelium throughout the menstrual cycle. No specific staining was demonstrated in the stromal compartment. CONCLUSION : CD59 protein and terminal complement proteins are expressed in glandular epithelial cells of normal human endometrium, in both proliferative and luteal phases, suggesting that expression is not hormonally dependent. These analyses further support the presence of a functionally active complement system in normal human endometrium.  相似文献   

19.
Binding of human and rat CD59 to the terminal complement complexes.   总被引:1,自引:1,他引:1       下载免费PDF全文
T Lehto  B P Morgan    S Meri 《Immunology》1997,90(1):121-128
CD59-antigen (protectin) is a widely distributed glycolipid-anchored inhibitor of complement lysis. CD59 interacts with complement components C8 and C9 during assembly of the membrane attack complex (MAC). To evaluate species specificity of these interactions we have in the present study examined cross-species binding of isolated human and rat CD59 to the terminal complement components C8 and C9. By using primarily soluble CD59 isolated from urine (CD59U) potentially non-specific binding interactions of the phospholipid portion of the membrane forms of CD59 could be avoided. Sucrose density gradient ultracentrifugation analysis showed that human CD59U bound to both human and rat C8 in the SC5b-8 complexes. Similar binding occurred when rat CD59U was used. The degree of binding did not significantly differ between the heterologous and homologous CD59-C8 combinations. C9 from both species inhibited the binding of CD59 to soluble SC5b-8. In ligand blotting analysis human and rat CD59U bound to human and rat C8 alpha gamma-subunit and C9. Binding of human and rat CD59U was stronger to human than rat C9. In plate binding assays the erythrocyte form of CD59 (CD59E) bound to both human and rat C8. Binding of CD59E to heterologous C9 was considerably weaker than to homologous C9. Our results imply that the reciprocal binding sites between C8 and CD59 and to a lesser degree between CD59 and C9 are conserved between human and rat. Interactions of CD59 with the terminal C components are thus species selective but not 'homologously restricted'.  相似文献   

20.
Increased inflammation in the cerebral meninges is associated with extensive subpial cortical grey matter pathology in the forebrain and a more severe disease course in a substantial proportion of secondary progressive multiple sclerosis (SPMS) cases. It is not known whether this relationship extends to spinal cord pathology. We assessed the contribution of meningeal and parenchymal immune infiltrates to spinal cord pathology in SPMS cases characterized in the presence (F+) or absence (F−) of lymphoid‐like structures in the forebrain meninges. Transverse cryosections of cervical, thoracic and lumbar cord of 22 SPMS and five control cases were analyzed for CD20+ B cells, CD4+ and CD8+ T cells, microglia/macrophages (IBA‐1+), demyelination (myelin oligodendrocyte glycoprotein+) and axon density (neurofilament‐H+). Lymphoid‐like structures containing follicular dendritic cell networks and dividing B cells were seen in the spinal meninges of 3 out of 11 F+ SPMS cases. CD4+ and CD20+ cell counts were increased in F+ SPMS compared to F− SPMS and controls, whilst axon loss was greatest in motor and sensory tracts of the F+ SPMS cases (P < 0.01). The density of CD20+ B cells of the spinal leptomeninges correlated with CD4+ T cells and total B and T cells of the meninges; with the density of white matter perivascular CD20+ and CD4+ lymphocytes (P < 0.05); with white matter lesion area (P < 0.05); and the extent of axon loss (P < 0.05) in F+ SPMS cases only. We show that the presence of lymphoid‐like structures in the forebrain is associated with a profound spinal cord pathology and local B cell rich meningeal inflammation associates with the extent of cord pathology. Our work supports a principal role for B cells in sustaining inflammation and tissue injury throughout the CNS in the progressive disease stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号