首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pseudomonas aeruginosa, an opportunistic pathogen causing various infections, expresses various virulence factors under the control of quorum sensing (QS), a cell density–sensing mechanism. Because the major signal molecules of QS are acyl homoserine lactones (acyl‐HSLs), acyltransferases, the enzymes that act upon acyl group transfer could affect the QS signaling and QS‐related virulence phenotypes. In this study, we overexpressed acyltransferases of P. aeruginosa and screened them for the activity influencing the QS and QS‐related virulence phenotypes. Among seven acyltransferases tested in this study, two acyltransferases, PA3984 (apolipoprotein N‐acyltransferase) and PA2537 (putative acyltransferase), significantly affected both growth of P. aeruginosa and the activity of LasR, a major QS regulator, when overexpressed. These acyltransferases also reduced virulence and swarming motility of P. aeruginosa. The other acyltransferase, PA3646 (UDP‐3‐O‐[3‐hydroxylauroyl] glucosamine N‐acyltransferase), reduced the LasR activity, swarming motility, protease production and virulence without any influence on growth. These effects by PA3646 over‐expression were caused by less production of QS signal. PA3644 (UDP‐N‐acetylglucosamine acyltransferase) enhanced biofilm formation and swarming motility with no effect on the growth and QS activity. These results suggest that acyltransferases may be an important factor regulating the cellular activity about virulence‐related phenotypes.  相似文献   

2.
Pseudomonas aeruginosa is an opportunistic pathogen of immunocompromised hosts. In cystic fibrosis (CF), P. aeruginosa causes acute and chronic lung infections that result in significant morbidity and mortality. P. aeruginosa possesses several traits that contribute to its ability to colonize and persist in acute and chronic infections. These include high resistance to antimicrobials, ability to form biofilms, plethora of virulence products, and metabolic versatility. In P. aeruginosa, a cell-to-cell communication process termed quorum sensing (QS) regulates many of these factors that contribute to its pathogenesis. Recent evidence suggests that the CF lung environment presents a specialized niche for P. aeruginosa. The relationship of P. aeruginosa QS, biofilm formation, and the CF lung environment is discussed.  相似文献   

3.
Device-related infection remains a major barrier to the use of biomaterial implants as life-saving devices. This study aims to examine the effectiveness and mechanism of action of surface attached dihydropyrrolones (DHPs), a quorum sensing (QS) inhibitor, against bacterial colonization. DHPs were covalently attached on glass surfaces via copper-catalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC) click reaction. The covalent attachment of DHP surfaces was confirmed by X-ray photoelectron spectroscopy (XPS) and contact angle measurements, and the antimicrobial efficacy of the DHP coatings was assessed by confocal laser scanning microscopy (CLSM) and image analysis. The results demonstrated that covalently bound DHP compounds are effective in reducing the adhesion by up to 97% (p < 0.05) for both Pseudomonas aeruginosa and Staphylococcus aureus. Furthermore, using the green fluorescent protein (Gfp)-based reporter technology, it is demonstrated that surface attached DHPs were able to repress the expression of a lasB-gfp reporter fusion of P. aeruginosa by 72% (p < 0.001) without affecting cell viability. This demonstrates the ability of the covalently bound QS inhibitor to inhibit QS and suggests the existence of a membrane-based pathway(s) for QS inhibition. Hence, strategies based on incorporation of QS inhibitors such as DHPs represent a potential approach for prevention of device-related infections.  相似文献   

4.
Pseudomonas aeruginosa is an opportunistic pathogen causing severe respiratory infections. The pathogenesis of these infections is multifactorial and the production of many virulence factors is regulated by quorum sensing (QS), a cell-to-cell communication mechanism. The two well defined QS systems in P. aeruginosa, the las and rhl systems, rely on N-acyl homoserine lactone signal molecules, also termed autoinducers. We assessed the activity of QS-dependent virulence factors (including elastase, alkaline protease, pyocyanin and biofilm production) in respiratory isolates of P. aeruginosa and their relationship with antimicrobial susceptibility. We identified sixteen isolates displaying impaired phenotypic activity; among them, eleven isolates were also defective in autoinducer production, and therefore considered QS-deficient. Six of the QS-deficient isolates failed to amplify one or more of the four QS regulatory genes (lasI, lasR, rhlI, rhlR) with PCR: one isolate was negative for rhlR, two isolates were negative for rhlI and rhlR and three isolates were negative for all four genes. The isolates that were negative for virulence factor production were generally less susceptible to the antimicrobials and statistically significant correlations were observed between the lack of elastase production and resistance to piperacillin and ceftazidime; between failure in alkaline protease production and resistance to tobramycin, piperacillin, piperacillin-tazobactam, cefepime, imipenem and ciprofloxacin; and between failure in pyocyanin production and resistance to amikacin, tobramycin, ceftazidime, ciprofloxacin and ofloxacin. The results obtained indicate that, despite the pivotal role of QS in the pathogenesis of P. aeruginosa respiratory infections, QS-deficient strains are still capable of causing infections and tend to be less susceptible to antimicrobials.  相似文献   

5.
Pseudomonas aeruginosa is an opportunistic human pathogen and a common Gram-negative bacterium in hospital-acquired infections. It causes death in many burn victims, cystic-fibrosis and neutropenic-cancer patients. It is known that P. aeruginosa biofilm maturation and production of cell-associated and extracellular virulence factors such as pyocyanin, elastase and rhamnolipids are under the control of a quorum-sensing (QS) system. Among several proteins involved in the Pseudomonas QS mechanism, LasR and PqsE play an important role in its cascade signaling system. They can cause increases in QS factors, biofilm maturation, and the production of virulence factors. Therefore, inhibition of these proteins can reduce the pathogenicity of P. aeruginosa.According to the structure of corresponding auto-inducers bound to these proteins, in silico calculations were performed with some non-steroidal anti-inflammatory drugs (NSAIDs) to estimate possible interactions and find the co-inhibitors of LasR and PqsE. The results showed that oxicams (Piroxicam and Meloxicam) can interact well with active sites of both proteins with the Ki of 119.43 nM and 4.0 μM for Meloxicam and 201.39 nM and 4.88 μM against LasR and PqsE, respectively.These findings suggested that Piroxicam and Meloxicam can be used as potential inhibitors for control of the P. aeruginosa QS signaling system and biofilm formation, and may be used in the design of multiple inhibitors.  相似文献   

6.
《Research in microbiology》2022,173(3):103917
Stenotrophomonas maltophilia intrinsic resistance to β-lactams is mediated by two chromosomal β-lactamases, L1 and L2, whose induction depends on AmpR. Its quorum sensing (QS) signal, the diffusible signal factor (DSF), has a positive role in biofilm production, virulence and induction of β-lactamases. We hypothesized that AmpR has a role in virulence, biofilm production and QS system. Studies were done on S. maltophilia K279a, K279a ampRFS (ampR deficient mutant) and K279aM11 (constitutively active AmpR mutant). K279a ampRFS showed the highest biofilm biomass, thickness and 3D organization. Conversely, K279aM11 was the least efficient biofilm former strain. qRT-PCR showed that spgM, related to biofilm formation and virulence, was upregulated in K279a ampRFS and downregulated in K279aM11. A constitutively active AmpR led to a reduction of DSF production, while K279a ampRFS was the highest producer. Consequently, qRT-PCR showed that AmpR negatively regulated rpfF expression. K279a ampRFS presented the highest oxidative stress resistance, overexpressed sodA gene and showed the highest virulence in the Galleria mellonella killing assay. This is the first evidence of the function of AmpR as a dual regulator in S. maltophilia with a positive role in β-lactam resistance and a negative role in DSF production, biofilm formation, oxidative stress resistance and virulence.  相似文献   

7.
Many of the virulence factors produced by the opportunistic human pathogen Pseudomonas aeruginosa are quorum‐sensing (QS) regulated. Among these are rhamnolipids, which have been shown to cause lysis of several cellular components of the human immune system, e.g. monocyte‐derived macrophages and polymorphonuclear leukocytes (PMNs). We have previously shown that rhamnolipids produced by P. aeruginosa cause necrotic death of PMNs in vitro. This raises the possibility that rhamnolipids may function as a ‘biofilm shield’in vivo, which contributes significantly to the increased tolerance of P. aeruginosa biofilms to PMNs. In the present study, we demonstrate the importance of the production of rhamnolipids in the establishment and persistence of P. aeruginosa infections, using an in vitro biofilm system, an intraperitoneal foreign‐body model and a pulmonary model of P. aeruginosa infections in mice. Our experimental data showed that a P. aeruginosa strain, unable to produce any detectable rhamnolipids due to an inactivating mutation in the single QS‐controlled rhlA gene, did not induce necrosis of PMNs in vitro and exhibited increased clearance compared with its wild‐type counterpart in vivo. Conclusively, the results support our model that rhamnolipids are key protective agents of P. aeruginosa against PMNs.  相似文献   

8.
9.
Pseudomonas aeruginosa is an opportunistic pathogen that can, like other bacterial species, exist in antimicrobial resistant sessile biofilms and as free-swimming, planktonic cells. Specific virulence factors are typically associated with each lifestyle and several two component response regulators have been shown to reciprocally regulate transition between biofilm-associated chronic, and free-swimming acute infections. Quorum sensing (QS) signal molecules belonging to the las and rhl systems are known to regulate virulence gene expression by P. aeruginosa. However the impact of a recently described family of novel quorum sensing signals produced by the Pseudomonas Quinolone Signal (PQS) biosynthetic pathway, on the transition between these modes of infection is less clear. Using clonal isolates from a patient developing ventilator-associated pneumonia, we demonstrated that clinical observations were mirrored by an in vitro temporal shift in isolate phenotype from a non-secreting, to a Type III cytotoxin secreting (TTSS) phenotype and further, that this phenotypic change was PQS-dependent. While intracellular type III cytotoxin levels were unaffected by PQS concentration, cytotoxin secretion was dependent on this signal molecule. Elevated PQS concentrations were associated with inhibition of cytotoxin secretion coincident with expression of virulence factors such as elastase and pyoverdin. In contrast, low concentrations or the inability to biosynthesize PQS resulted in a reversal of this phenotype. These data suggest that expression of specific P. aeruginosa virulence factors appears to be reciprocally regulated and that an additional level of PQS-dependent post-translational control, specifically governing type III cytotoxin secretion, exists in this species.  相似文献   

10.
Pseudomonas aeruginosa chronic lung infections are the leading cause of mortality in cystic fibrosis patients, a serious problem which is notably due to the numerous P. aeruginosa virulence factors, to its ability to form biofilms and to resist the effects of most antibiotics. Production of virulence factors and biofilm formation by P. aeruginosa is highly coordinated through complex regulatory systems. We recently found that CzcRS, the zinc and cadmium-specific two-component system is not only involved in metal resistance, but also in virulence and carbapenem antibiotic resistance in P. aeruginosa. Interestingly, zinc has been shown to be enriched in the lung secretions of cystic fibrosis patients. In this study, we investigated whether zinc might favor P. aeruginosa pathogenicity using an artificial sputum medium to mimic the cystic fibrosis lung environment. Our results show that zinc supplementation triggers a dual P. aeruginosa response: (i) it exacerbates pathogenicity by a CzcRS two-component system-dependent mechanism and (ii) it stimulates biofilm formation by a CzcRS-independent mechanism. Furthermore, P. aeruginosa cells embedded in these biofilms exhibited increased resistance to carbapenems. We identified a novel Zn-sensitive regulatory circuit controlling the expression of the OprD porin and modifying the carbapenem resistance profile. Altogether our data demonstrated that zinc levels in the sputum of cystic fibrosis patients might aggravate P. aeruginosa infection. Targeting zinc levels in sputum would be a valuable strategy to curb the increasing burden of P. aeruginosa infections in cystic fibrosis patients.  相似文献   

11.
Virulence factors regulated by quorum sensing (QS) play a critical role in the pathogenesis of an opportunistic human pathogen, Pseudomonas aeruginosa in causing infections to the host. Hence, in the present work, the anti‐virulence potential of the medicinal plant extracts and their derived phytochemicals from Myrtaceae family was evaluated against P. aeruginosa. In the preliminary screening of the tested medicinal plant extracts, Syzygium jambos and Syzygium antisepticum demonstrated a maximum inhibition in QS‐dependent violacein pigment production by Chromobacterium violaceum DMST 21761. These extracts demonstrated an inhibitory activity over a virulence factor, pyoverdin, production by P. aeruginosa ATCC 27853. Gas chromatography–mass spectrometric (GC‐MS) analysis revealed the presence of 23 and 12 phytochemicals from the extracts of S. jambos and S. antisepticum respectively. Three top‐ranking phytochemicals, including phytol, ethyl linoleate and methyl linolenate, selected on the basis of docking score in molecular docking studies lowered virulence factors such as pyoverdin production, protease and haemolytic activities of P. aeruginosa to a significant level. In addition, the phytochemicals reduced rhamnolipid production by the organism. The work demonstrated an importance of plant‐derived compounds as anti‐virulence drugs to conquer P. aeruginosa virulence towards the host.  相似文献   

12.
Many bacterial species use their intercellular signaling mechanism called quorum sensing (QS), which is found to be implicated in various factors including bacterial pathogenicity and food spoilage. Interrupting the bacterial communication is an attractive strategy to develop novel QS-based antibacterial drugs. Present study is aimed to investigate the quorum sensing inhibitory activity of Syzygium cumini and its anti-biofilm property against opportunistic pathogen using a biosensor strain Chromobacterium violaceum CV026. Ethanol extract of S. cumini was investigated for its anti-QS activity, and the possible active component was identified by docking with LasR receptor protein. Based on docking analysis, methanol extract was enriched for its total anthocyanin (STA) and its effect on QS regulated phenotypes was assessed. STA specifically inhibited the violacein production in C. violaceum; biofilm formation and EPS production in Klebsiella pneumoniae up to 82, 79.94 and 64.29% respectively. Synergistic activity of conventional antibiotics with STA enhanced the susceptibility of K. pneumoniae up to 58.45%. Molecular docking analysis of active components attributes the QSI activity of S. cumini to malvidin. Malvidin exhibited highest ligand binding with LasR receptor protein with docking score more than −7. Effect of malvidin to interrupt the QS regulated phenotypes was also assessed, and it was found to reduce the violacein production, biofilm formation and EPS production of K. pneumoniae in a concentration-dependent manner. These findings suggest that S. cumini can be used as novel QS-based antibacterial/anti-biofilm agent to manage food-borne pathogens and to increase food safety.  相似文献   

13.
Burkholderia cepacia complex strains are opportunistic pathogens causing life-threatening infections in cystic fibrosis patients. B. cepacia complex strains are resistant to many antimicrobial agents and commonly produce biofilms in vitro and in vivo. This contributes to their virulence and makes Burkholderia infections difficult to treat. Recently, the quorum sensing (QS) system of Burkholderia spp. has been found to affect their biofilm-forming ability, making it an attractive target for antimicrobial therapy. However, detailed information about the anti-biofilm effect of these compounds is still lacking. In the present study, we evaluated the anti-biofilm effect of several known QS inhibitors. The effect on Burkholderia spp. biofilm formation was examined using crystal violet, resazurin and SYTO9 staining, confocal laser scanning microscopy as well as plating. When used at subinhibitory concentrations, several compounds interfered with biofilm formation by Burkholderia spp. Our results suggest that the QS inhibitors affect later stages of biofilm formation and detachment.  相似文献   

14.
15.
Avian pathogenic Escherichia coli (APEC) causes avian colibacillosis, the most significant infectious bacterial disease of poultry worldwide. LuxS, the product of the luxS gene, mediates the quorum sensing (QS) mechanism. This involves the production of autoinducer-2 (AI-2), which regulates important physiological traits and a variety of adaptive processes in different bacteria. In this study, a luxS gene deleted APEC mutant strain, ΔDE17, was constructed using strain DE17. Analysis of bioluminescence indicated that deletion of the luxS gene abolished the production of the QS signal AI-2 in the bacteria. Further studies showed that deletion of the luxS gene in DE17 reduced the bacterial virulence by 31.5-fold in ducklings, based on the measurement of the 50% lethal dose. The mutant strain reduced significantly the abilities of adherence and invasion, by 50.0% and 40.7% respectively, compared with the wild strain DE17. The mutant strain also showed reduced survival in vivo: the bacterial loads of the mutant strain in infected liver, spleen and blood were 46.4-fold, 5.2-fold, and 3.7-fold reduced, respectively, compared with the wild-type strain DE17. Real-time polymerase chain reaction (PCR) demonstrated further that the mRNA levels of the virulence-related genes iucD, fyuA, vat, ompA, iss, fimC and tsh were significantly decreased in the mutant strain ΔDE17, when compared with DE17 (p < 0.05). In addition, the deletion of the luxS gene reduced the motility of the bacterium. This study suggests that the luxS gene functions in the pathogenesis of diseases caused by avian pathogenic E. coli.  相似文献   

16.
Pseudomonas aeruginosa is an opportunistic human pathogen responsible for causing a huge variety of acute and chronic infections with significant levels of morbidity and mortality. Its success as a pathogen comes from its genetic/metabolic plasticity, intrinsic/acquired antimicrobial resistance, capacity to form biofilm and expression of numerous virulence factors. Herein, we have analyzed the genetic variability, antimicrobial susceptibility as well as the production of metallo-β-lactamases (MBLs) and virulence attributes (elastase, pyocyanin and biofilm) in 96 strains of P. aeruginosa isolated from different anatomical sites of patients attended at Brazilian hospitals. Our results revealed a great genetic variability, in which 86 distinct RAPD types (89.6% of polymorphisms) were detected. Regarding the susceptibility profile, 48 strains (50%) were resistant to the antimicrobials, as follows: 22.92% to the three tested antibiotics, 12.5% to both imipenem and meropenem, 11.46% to ceftazidime only, 2.08% to imipenem only and 1.04% to both ceftazidime and meropenem. Out of the 34 clinical strains of P. aeruginosa resistant to both imipenem and meropenem, 25 (73.53%) were MBL producers by phenotypic method while 12 (35.29%) were PCR positive for the MBL gene SPM-1. All P. aeruginosa strains produced pyocyanin, elastase and biofilm, although in different levels. Some associations were demonstrated among the susceptibility and/or production of these virulence traits with the anatomical site of strain isolation. For instance, almost all strains isolated from urine (85.71%) were resistant to the three antibiotics, while the vast majority of strains isolated from rectum (95%) and mouth (66.67%) were susceptible to all tested antibiotics. Urine isolates produced the highest pyocyanin concentration (20.15 ± 5.65 μg/ml), while strains isolated from pleural secretion and mouth produced elevated elastase activity (1441.43 ± 303.08 FAU) and biofilm formation (OD590 0.676 ± 0.32), respectively. Also, MBL-positive strains produced robust biofilm compared to MBL-negative strains. Collectively, the production of site-dependent virulence factors can be highlighted as potential therapeutic targets for the treatment of infections caused by heterogeneous and resistant strains of P. aeruginosa.  相似文献   

17.
Pseudomonas aeruginosa is one of the most common pathogens in nosocomial infections. Many studies have documented the role of quorum‐sensing (QS) systems in antibiotic tolerance of P. aeruginosa. N‐acyl homoserine lactones (AHLs) serve as QS signalling molecules and can be a target for modulating bacterial pathogenicity. In this study, nosocomial isolates of P. aeruginosa were characterized for the presence of different types of QS signalling molecules. AHLs were solvent extracted and quantified by determination of β‐galactosidase activity using the Escherichia coli MG4 reporter strain. Further characterization was performed by analytical thin layer chromatography coupled with detection using the Agrobacterium tumefaciens A136 biosensor strain. All P. aeruginosa isolates produced AHLs, but there were differences in the quantity and nature of AHLs. We identified AHLs belonging to C4‐homoserine lactone (HSL), C6‐HSL, C8‐HSL, C10‐HSL and C12‐HSL. AHL profiling of P. aeruginosa isolates showed differences in the amounts and types of AHLs, suggesting differences in the virulence factors and the potential for infection. Our results may be investigated further using animal model systems.  相似文献   

18.
Pseudomonas aeruginosa, an opportunistic pathogen release N-3-oxo-dodecanoyl-l-homoserine lactone (3-oxo-C12HSL) and N-butyryl-l-homoserine lactone (C4-HSL) quorum sensing (QS) molecules to regulate various virulence factors responsible for infection in the host. 3-oxo-C12 HSL not only regulates the bacterial gene expression but also modulates the host cell system. Thus, it is pertinent to evaluate the effect of these QS molecules on blood platelets which is responsible for the maintenance of hemostasis and thrombus formation. Here, in the present study, we showed that 3-oxo-C12 HSL activates platelets in a dose-dependent manner and induces intracellular calcium-mediated reactive oxygen species (ROS) release, whereas no such effect was observed with C4-HSL. 3-oxo-C12 HSL stimulated ROS release was mediated by NADPH oxidase. Results confirmed the involvement of phospholipase C (PLC) and IP3 receptor behind intracellular calcium-mediated ROS generation. The impact of 3-oxo-C12 HSL on platelet activation suggests that it could interfere and alter the normal function of platelet in individuals infected with P. aeruginosa.  相似文献   

19.
The virulence and fitness in vivo of the major human pathogen Staphylococcus aureus are associated with a cell-to-cell signaling mechanism known as quorum sensing (QS). QS coordinates the production of virulence factors via the production and sensing of autoinducing peptide (AIP) signal molecules by the agr locus. Here we show, in a wax moth larva virulence model, that (i) QS in S. aureus is a cooperative social trait that provides a benefit to the local population of cells, (ii) agr mutants, which do not produce or respond to QS signal, are able to exploit the benefits provided by the QS of others (“cheat”), allowing them to increase in frequency when in mixed populations with cooperators, (iii) these social interactions between cells determine virulence, with the host mortality rate being negatively correlated to the percentage of agr mutants (“cheats”) in a population, and (iv) a higher within-host relatedness (lower strain diversity) selects for QS and hence higher virulence. Our results provide an explanation for why agr mutants show reduced virulence in animal models but can be isolated from infections of humans. More generally, by providing the first evidence that QS is a cooperative social behavior in a Gram-positive bacterium, our results suggest convergent, and potentially widespread, evolution for signaling to coordinate cooperation in bacteria.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号