首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
There is a significant unmet need in the treatment of primary biliary cirrhosis (PBC) despite significant data on the effector pathways that lead to biliary duct damage. We focused attention on a murine model of PBC, the dominant negative transforming growth factor β receptor II (Tg) mice. To further define the pathways that lead to biliary pathology in these mice, we developed Tg mice deleted of CD4 cells (CD4−/−Tg).Interestingly, these mice developed more severe cholangitis than control Tg mice. These mice, which lack CD4 cells, manifested increased levels of IFN-γ produced by effector CD8 cells. It appears that increased cholangitis is due to the absence of CD4 Treg cells. Based on these data, we parabiosed CD4−/−Tg mice with established disease at 8–9 weeks of age with C57BL/6 control mice. Such parabiotic “twins” had a significant reduction in autoimmune cholangitis, even though they had established pathology at the time of surgery. We prepared mixed bone marrow chimera mice constructed from CD4−/−Tg and CD8−/− mice and not only was cholangitis improved, but a decrease in terminally differentiated CD8+ T effector cells in the presence of wild type CD4 cells was noted. In conclusion, “correcting” the CD4 T cell subset, even in the presence of pathogenic CD8 T cells, is effective in treating autoimmune cholangitis.  相似文献   

3.
The cytokine milieu is critical for orchestration of lineage development towards effector T cell (Teff) or regulatory T cell (Treg) subsets implicated in the progression of cancer and autoimmune disease. Importantly, the fitness and survival of the Treg subset is dependent on the cytokines Interleukin-2 (IL-2) and transforming growth factor beta (TGF-β). The production of these cytokines is impaired in autoimmunity increasing the probability of Treg conversion to aggressive effector cells in a proinflammatory microenvironment. Therapy using soluble TGF-β and IL-2 administration is hindered by the cytokines' toxic pleiotropic effects and hence bioavailability to CD4+ T cell targets. Thus, there is a clear need for a strategy that rectifies the cytokine milieu in autoimmunity and inflammation leading to enhanced Treg stability, frequency and number. Here we show that inert biodegradable nanoparticles (NP) loaded with TGF-β and IL-2 and targeted to CD4+ cells can induce CD4+ Tregs in-vitro and expand their number in-vivo. The stability of induced Tregs with cytokine-loaded NP was enhanced leading to retention of their suppressive phenotype even in the presence of proinflammatory cytokines. Our results highlight the importance of a nanocarrier-based approach for stabilizing and expanding Tregs essential for cell-immunotherapy of inflammation and autoimmune disease.  相似文献   

4.
The IL-12 family modulates T cell mediated autoimmune diseases and GWAS in PBC have suggested a critical role of IL-12 and its subunits in modulating portal inflammation. We have taken advantage of an aggressive model of portal inflammation and colitis in IL-2Rα−/− mice to study the specific role of IL-12 and, in particular, the immunobiology of p40−/−IL-2Rα−/− mice. Colonies of IL-2Rα+/−, IL-2Rα−/− and p40−/−IL-2Rα−/− mice were studied for the natural history of immunopathology in liver and colon using histology and immunohistochemistry. Further, to focus on mechanisms, liver, spleen and mesenteric lymph node flow cytometry was employed to identify specific phenotypes; cytokine analysis on inflammatory cell populations was compared between groups. Finally, Real-Time PCR was used to focus on the genes involved in hepatic fibrosis. Surprisingly, p40−/−IL-2Rα−/− mice manifest more severe portal inflammation and bile duct damage, including signs of portal hypertension and liver fibrosis, but a significant reduction in colitis. Indeed, p40−/−IL-2Rα−/− mice reveal a profound hepatic CD8+ T cell infiltrate, whose major component are effector memory cells as well as enhanced hepatic Th1 but reduced Th17 responses. These observations were confirmed by Real-Time PCR analysis of fibrosis-related genes in the liver. Distinct from its canonical effects, IL-12p40 plays a critical role in autoimmune cholangitis, including hepatic fibrosis. These data take on striking significance for any proposed human trials that modulate the IL-12p40 pathway in human PBC.  相似文献   

5.
Until recently, little was known about the importance of CD8+ T effectors in promoting and preventing autoimmune disease development. CD8+ T cells can oppose or promote autoimmune disease through activities as suppressor cells and as cytotoxic effectors. Studies in several distinct autoimmune models and data from patient samples are beginning to establish the importance of CD8+ T cells in these diseases and to define the mechanisms by which these cells influence autoimmunity. CD8+ effectors can promote disease via dysregulated secretion of inflammatory cytokines, skewed differentiation profiles and inappropriate apoptosis induction of target cells, and work to block disease by eliminating self-reactive cells and self-antigen sources, or as regulatory T cells. Defining the often major contribution of CD8+ T cells to autoimmune disease and identifying the mechanisms by which they alter the pathogenesis of disease is a rapidly expanding area of study and will add valuable information to our understanding of the kinetics, pathology and biology of autoimmune disease.  相似文献   

6.
Despite presence of circulating retina-specific T cells in healthy individuals, ocular immune privilege usually averts development of autoimmune uveitis. To study the breakdown of immune privilege and development of disease, we generated transgenic (Tg) mice that express a T cell receptor (TCR) specific for interphotoreceptor retinoid-binding protein (IRBP), which serves as an autoimmune target in uveitis induced by immunization. Three lines of TCR Tg mice, with different levels of expression of the transgenic R161 TCR and different proportions of IRBP-specific CD4+ T cells in their peripheral repertoire, were successfully established. Importantly, two of the lines rapidly developed spontaneous uveitis, reaching 100% incidence by 2 and 3 months of age, respectively, whereas the third appeared “poised” and only developed appreciable disease upon immune perturbation. Susceptibility roughly paralleled expression of the R161 TCR. In all three lines, peripheral CD4+ T cells displayed a naïve phenotype, but proliferated in vitro in response to IRBP and elicited uveitis upon adoptive transfer. In contrast, CD4+ T cells infiltrating uveitic eyes mostly showed an effector/memory phenotype, and included Th1, Th17 as well as T regulatory cells that appeared to have been peripherally converted from conventional CD4+ T cells rather than thymically derived. Thus, R161 mice provide a new and valuable model of spontaneous autoimmune disease that circumvents the limitations of active immunization and adjuvants, and allows to study basic mechanisms involved in maintenance and breakdown of immune homeostasis affecting immunologically privileged sites such as the eye.  相似文献   

7.
Eukaryotic Initiation Factor 6 (eIF6) is required for 60S ribosomal subunit biogenesis and efficient initiation of translation. Intriguingly, in both mice and humans, endogenous levels of eIF6 are detrimental as they act as tumor and obesity facilitators, raising the question on the evolutionary pressure that maintains high eIF6 levels. Here we show that, in mice and humans, high levels of eIF6 are required for proper immune functions. First, eIF6 heterozygous (het) mice show an increased mortality during viral infection and a reduction of peripheral blood CD4+ Effector Memory T cells. In human CD4+ T cells, eIF6 levels rapidly increase upon T-cell receptor activation and drive the glycolytic switch and the acquisition of effector functions. Importantly, in CD4+ T cells, eIF6 levels control interferon-γ (IFN−γ) secretion without affecting proliferation. In conclusion, the immune system has a high evolutionary pressure for the maintenance of a dynamic and powerful regulation of the translational machinery.  相似文献   

8.
Celiac disease (CD) is a common CD4+ T cell mediated enteropathy driven by gluten in wheat, rye, and barley. Whilst clinical feeding studies generally support the safety of oats ingestion in CD, the avenin protein from oats can stimulate intestinal gluten-reactive T cells isolated from some CD patients in vitro. Our objective was to establish whether ingestion of oats or other grains toxic in CD stimulate an avenin-specific T cell response in vivo.We fed participants a meal of oats (100 g/day over 3 days) to measure the in vivo polyclonal avenin-specific T cell responses to peptides contained within comprehensive avenin peptide libraries in 73 HLA-DQ2.5+ CD patients. Grain cross-reactivity was investigated using oral challenge with wheat, barley, and rye.Avenin-specific responses were observed in 6/73 HLA-DQ2.5+ CD patients (8%), against four closely related peptides. Oral barley challenge efficiently induced cross-reactive avenin/hordein-specific T cells in most CD patients, whereas wheat or rye challenge did not. In vitro, immunogenic avenin peptides were susceptible to digestive endopeptidases and showed weak HLA-DQ2.5 binding stability.Our findings indicate that CD patients possess T cells capable of responding to immuno-dominant hordein epitopes and homologous avenin peptides ex vivo, but the frequency and consistency of these T cells in blood is substantially higher after oral challenge with barley compared to oats. The low rates of T cell activation after a substantial oats challenge (100 g/d) suggests that doses of oats commonly consumed are insufficient to cause clinical relapse, and supports the safety of oats demonstrated in long-term feeding studies.  相似文献   

9.
Inflammatory mechanisms play a key role in the pathogenesis of type 1 and type 2 diabetes. IL6, a pleiotropic cytokine with impact on immune and non-immune cell types, has been proposed to be involved in the events causing both forms of diabetes and to play a key role in experimental insulin-dependent diabetes development. The aim of this study was to investigate how beta-cell specific overexpression of IL-6 influences diabetes development. We developed two lines of rat insulin promoter (RIP)-lymphocytic choriomeningitis virus (LCMV) mice that also co-express IL6 in their beta-cells. Expression of the viral nucleoprotein (NP), which has a predominantly intracellular localization, together with IL6 led to hyperglycemia, which was associated with a loss of GLUT-2 expression in the pancreatic beta-cells and infiltration of CD11b+ cells, but not T cells, in the pancreas. In contrast, overexpression of the LCMV glycoprotein (GP), which can localize to the surface, with IL-6 did not lead to spontaneous diabetes, but accelerated virus-induced diabetes by increasing autoantigen-specific CD8+ T cell responses and reducing the regulatory T cell fraction, leading to increased pancreatic infiltration by CD4+ and CD8+ T cells as well as CD11b+ and CD11c+ cells. The production of IL-6 in beta-cells acts prodiabetic, underscoring the potential benefit of targeting IL6 in diabetes.  相似文献   

10.
Thymic CD4+ FoxP3+ regulatory T (Treg) cells are critical for the development of immunological tolerance and immune homeostasis and requires contributions of both thymic dendritic and epithelial cells. Although B cells have been reported to be present within the thymus, there has not hitherto been a definition of their role in immune cell development and, in particular, whether or how they contribute to the Treg cellular thymic compartment. Herein, using both phenotypic and functional approaches, we demonstrate that thymic B cells contribute to the maintenance of thymic Treg cells and, using an in vitro culture system, demonstrate that thymic B cells contribute to the size of the thymic Treg compartment via cell–cell MHC II contact and the involvement of two independent co-stimulatory pathways that include interactions between the CD40/CD80/CD86 co-stimulatory molecules. Our data also suggest that thymic B cells promote the generation of thymic Treg cell precursors (pre-Treg cells), but not the conversion of FoxP3+ Treg cells from pre-Treg cells. In addition, thymic B cells directly promote the proliferation of thymic Treg cells that is MHC II contact dependent with a minimal if any role for co-stimulatory molecules including CD40/CD80/CD86. Both pathways are independent of TGFβ. In conclusion, we rigorously define the critical role of thymic B cells in the development of thymic Treg cells from non-Treg to precursor stage and in the proliferation of mature thymic Treg cells.  相似文献   

11.
Annexin-A1 (Anx-A1) is an endogenous anti-inflammatory molecule and while described as a repressor of innate immune responses, the role of Anx-A1 in adaptive immunity, and in particular in T helper (Th) cell responses, remains controversial. We have used a T-cell mediated mouse model of retinal autoimmune disease to unravel the role of Anx-A1 in the development of autoreactive Th cell responses and pathology. RBP1–20-immunized C57BL/6 Anx-A1−/− mice exhibit significantly enhanced retinal inflammation and pathology as a result of an uncontrolled proliferation and activation of Th17 cells. This is associated with a limited capacity to induce SOCS3, resulting in un-restricted phosphorylation of STAT3. RBP1–20-specific CD4+ cells from immunized Anx-A1−/− animals generated high levels of Th17 cells-associated cytokines. Following disease induction, daily systemic administration of human recombinant Anx-A1 (hrAnx-A1), during the afferent phase of disease, restrained autoreactive CD4+ cell proliferation, reduced expression of pro-inflammatory cytokines IL-17, IFN-γ and IL-6 and attenuated autoimmune retinal inflammatory disease. Furthermore, in man, Anx-A1 serum levels when measured in active uveitis patient sera were low and associated with the detection of IgM and IgG anti-Anx-A1 antibodies when compared to healthy individuals. This data supports Anx-A1 as an early and critical regulator of Th17 cell driven autoimmune diseases such as uveitis.  相似文献   

12.
Lupus is a systemic autoimmune disease characterized by anti-nuclear antibodies in humans and genetically susceptible NZB/W mice that can cause immune complex glomerulonephritis. T cells contribute to lupus pathogenesis by secreting pro-inflammatory cytokines such as IL-17, and by interacting with B cells and secreting helper factors such as IL-21 that promote production of IgG autoantibodies. In the current study, we determined whether purified NKT cells or far more numerous conventional non-NKT cells in the spleen of NZB/W female mice secrete IL-17 and/or IL-21 after TCR activation in vitro, and provide help for spontaneous IgG autoantibody production by purified splenic CD19+ B cells. Whereas invariant NKT cells secreted large amounts of IL-17 and IL-21, and helped B cells, non-NKT cells did not. The subset of IL-17 secreting NZB/W NKT cells expressed the Ly108loCD4NK1.1 phenotype, whereas the IL-21 secreting subset expressed the Ly108hiCD4+NK1.1 phenotype and helped B cells secrete a variety of IgG anti-nuclear antibodies. α-galactocylceramide enhanced the helper activity of NZB/W and B6.Sle1b NKT cells for IgG autoantibody secretion by syngeneic B cells. In conclusion, different subsets of iNKT cells from mice with genetic susceptibility to lupus can contribute to pathogenesis by secreting pro-inflammatory cytokines and helping autoantibody production.  相似文献   

13.
CD1d-restricted invariant natural killer T (iNKT) cells are innate-like T cells that share phenotypic characteristics of both NK and conventional T cells (Tconv). Although iNKT cells have been well characterized in mice and humans, functional CD1d and CD1d-restricted iNKT cells are not universally expressed in mammals. Swine express iNKT cells that can be detected using α-galactosylceramide (α-GalCer)-loaded CD1d tetramers. In the present study, we characterized iNKT cells from the blood, spleen, lymph node, lung and liver of commercial mixed-breed pigs, and compared their phenotype to NK cells and Tconv. The principal findings are that pig iNKT cells are CD8α and CD44 positive and CD11b and Nkp46 negative. Most are also negative for the CD4 co-receptor, which is used to distinguish functionally distinct mouse and human iNKT cells subsets. The frequency of IFN-γ-producing CD8αbright iNKT cells was 3–4-fold higher than CD8αdull iNKT cells, suggesting that CD8α expression identifies iNKT cells with a unique functional role in immune responses. Finally, large variability was detected among pigs in interactions between iNKT cells and monocytes when iNKT cells were activated with α-GalCer, which raises a cautionary note about manipulating iNKT cells for immunotherapy. Collectively, our study provides important phenotypic and functional information about porcine iNKT cells that will be useful for understanding how iNKT cells contribute to immune responses in swine, with potential implications for human health.  相似文献   

14.
The origins of autoimmunity are not yet understood despite significant advances in immunology. The trafficking of maternal cells to the offspring represents the very first immunological event in foetal life and is reinforced during lactation. The persistence of maternal cells in offspring's tissues and circulation has been associated with several autoimmune disorders. However a direct causal effect has never been demonstrated. Maternal T cells specifically targeting foetal insulin producing cells have been shown to generate islet inflammation without directly participating in this process. Our objective was to evaluate if alloreactive maternal cells could directly trigger a graft-versus host like reaction or indirectly influence the development of the offspring's regulatory T cells favouring autoimmunity. We adopted a breeding strategy comparing genetically identical offspring from either strongly alloreactive transgenic mothers compared to immunodeficient mothers. We detected maternal alloreactive T cells in the offspring and early signs of inflammation in small intestine of 6 weeks old offspring. Interestingly, CD4+ Foxp3+ regulatory T cell frequency was diminished in mesenteric lymph nodes from eight months old offspring born of alloreactive mothers compared to offspring of immunodeficient mothers. Our study favours a hypothesis where highly alloreactive maternal cell microchimerism indirectly predisposes offspring to autoimmunity.  相似文献   

15.
Programmed cell death 1 (PD-1) is an inhibitory molecule expressed by activated T cells. Its ligands (PD-L1 and -L2; PD-Ls) are expressed not only by a variety of leukocytes but also by stromal cells. To assess the role of PD-1 in CD8 T cell-mediated diseases, we used PD-1-knockout (KO) OVA-specific T cell-receptor transgenic (Tg) CD8 T cells (OT-I cells) in a murine model of mucocutaneous graft-versus-host disease (GVHD). We found that mice expressing OVA on epidermal keratinocytes (K14-mOVA mice) developed markedly enhanced GVHD-like disease after transfer of PD-1-KO OT-I cells as compared to those mice transferred with wild-type OT-I cells. In addition, K14-mOVA × OT-I double Tg (DTg) mice do not develop GVHD-like disease after adoptive transfer of OT-I cells, while transfer of PD-1-KO OT-I cells caused GVHD-like disease in a Fas/Fas-L independent manner. These results suggest that PD-1/PD-Ls-interactions have stronger inhibitory effects on pathogenic CD8 T cells than does Fas/Fas-L-interactions. Keratinocytes from K14-mOVA mice with GVHD-like skin lesions express PD-L1, while those from mice without the disease do not. These findings reflect the fact that primary keratinocytes express PD-L1 when stimulated by interferon-γ in vitro. When co-cultured with K14-mOVA keratinocytes for 2 days, PD-1-KO OT-I cells exhibited enhanced proliferation and activation compared to wild-type OT-I cells. In addition, knockdown of 50% PD-L1 expression on the keratinocytes with transfection of PD-L1-siRNA enhanced OT-I cell proliferation. In aggregate, our data strongly suggest that PD-L1, expressed on activated target keratinocytes presenting autoantigens, regulates autoaggressive CD8 T cells, and inhibits the development of mucocutaneous autoimmune diseases.  相似文献   

16.
Tolerogenic dendritic cells (tDCs) have the potential to control the outcome of autoimmunity by modulating the immune response. The aim of this study was to uncover the tolerance efficacy attributed to beta-2-glycoprotein-I (β2GPI) tDCs or β2GPI domain-I (D-I) and domain-V (D-V)-tDCs in mice with antiphospholipid syndrome (APS). tDCs were pulsed with β2GPI or D-I or D-V derivatives. Our results revealed that β2GPI related tDCs phenotype includes CD80high, CD86high CD40high MHC class IIhigh. The miRNA profiling encompass miRNA 23bhigh, miRNA 142-3plow and miRNA 221low. In addition the β2GPI related tDCs showed reduced secretion of IL-1β, IL-12 and IL-23. D-I tDCs treatment was more efficient than β2GPI tDCs in inducing of tolerance in APS mice, manifested by lowered titers of anti- β2GPI antibodies (Abs) and reduced percentage of fetal loss. Tolerance induction was accompanied by poor T cell response to β2GPI, high numbers of CD4 + CD25 + FOXP3 + T-regulatory cells (Treg), reduced levels of IFNγ, IL-17 and increased expression of IL-10 and TGFβ. Tolerance was successfully transferred by Treg cells from the tolerized mice to β2GPI immunized mice. We conclude that predominantly D-I-tDCs and β2GPI tDCs have the potential to attenuate experimental APS by induction of Treg cells, reduction of anti- β2GPI Abs titers and increased expression of anti-inflammatory cytokines. We suggest that β2-GPI-D-I-tDCs may offer a novel approach for developing therapy for APS patients.  相似文献   

17.
We evaluated the therapeutic efficacy and mechanisms of action of both mouse and human B7-H4 Immunoglobulin fusion proteins (mB7-H4Ig; hB7-H4Ig) in treating EAE. The present data show that mB7-H4Ig both directly and indirectly (via increasing Treg function) inhibited CD4+ T-cell proliferation and differentiation in both Th1- and Th17-cell promoting conditions while inducing production of IL-10. B7-H4Ig treatment effectively ameliorated progression of both relapsing (R-EAE) and chronic EAE correlating with decreased numbers of activated CD4+ T-cells within the CNS and spleen, and a concurrent increase in number and function of Tregs. The functional requirement for Treg activation in treating EAE was demonstrated by a loss of therapeutic efficacy of hB7-H4Ig in R-EAE following inactivation of Treg function either by anti-CD25 treatment or blockade of IL-10. Significant to the eventual translation of this treatment into clinical practice, hB7-H4Ig similarly inhibited the in vitro differentiation of naïve human CD4+ T-cells in both Th1- and Th17-promoting conditions, while promoting the production of IL-10. B7-H4Ig thus regulates pro-inflammatory T-cell responses by a unique dual mechanism of action and demonstrates significant promise as a therapeutic for autoimmune diseases, including MS.  相似文献   

18.
Autoimmune hepatitis type 2 (AIH-2) is a severe autoimmune liver disease with unknown etiology. We recently developed the CYP2D6 mouse model for AIH-2, in which mice are challenged with an adenovirus (Ad-2D6) expressing human cytochrome P450 2D6 (hCYP2D6), the major autoantigen in AIH-2. Such mice develop chronic hepatitis with cellular infiltrations and generation of hCYP2D6-specific antibodies and T cells. Importantly, the CYP2D6 model represents the only model displaying chronic fibrosis allowing for a detailed investigation of the mechanisms of chronic autoimmune-mediated liver fibrogenesis. We found that hCYP2D6-dependent chronic activation of hepatic stellate cells (HSC) resulted in an increased extracellular matrix deposition and elevated expression of α-smooth muscle actin predominantly in and underneath the liver capsule. The route of Ad-2D6 infection dramatically influenced the activation and trafficking of inflammatory monocytes, NK cells and hCYP2D6-specific T cells. Intraperitoneal Ad-2D6 infection caused subcapsular fibrosis and persistent clustering of inflammatory monocytes. In contrast, intravenous infection caused an accumulation of hCYP2D6-specific CD4 T cells throughout the liver parenchyma and induced a strong NK cell response preventing chronic HSC activation and fibrosis. In summary, we found that the location of the initial site of inflammation and autoantigen expression caused a differential cellular trafficking and activation and thereby determined the outcome of AIH-2-like hepatic damage and fibrosis.  相似文献   

19.
Islet-reactive memory CD4+ T cells are an essential feature of type 1 diabetes (T1D) as they are involved in both spontaneous disease and in its recurrence after islet transplantation. Expansion and enrichment of memory T cells have also been shown in the peripheral blood of diabetic patients. Here, using high-throughput sequencing, we investigated the clonal diversity of the TCRβ repertoire of memory CD4+ T cells in the pancreatic lymph nodes (PaLN) of non-obese diabetic (NOD) mice and examined their clonal overlap with islet-infiltrating memory CD4 T cells. Both prediabetic and diabetic NOD mice exhibited a restricted TCRβ repertoire dominated by clones expressing TRBV13-2, TRBV13-1 or TRBV5 gene segments. There is a limited degree of TCRβ overlap between the memory CD4 repertoire of PaLN and pancreas as well as between the prediabetic and diabetic group. However, public TCRβ clonotypes were identified across several individual animals, some of them with sequences similar to the TCRs from the islet-reactive T cells suggesting their antigen-driven expansion. Moreover, the majority of the public clonotypes expressed TRBV13-2 (Vβ8.2) gene segment. Nasal vaccination with an immunodominat peptide derived from the TCR Vβ8.2 chain led to protection from diabetes, suggesting a critical role for Vβ8.2+ CD4+ memory T cells in T1D. These results suggest that memory CD4+ T cells bearing limited dominant TRBV genes contribute to the autoimmune diabetes and can be potentially targeted for intervention in diabetes. Furthermore, our results have important implications for the identification of public T cell clonotypes as potential novel targets for immune manipulation in human T1D.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号