首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
This review discusses the processes of DNA-damage-response and DNA-damage repair in stem and progenitor cells of several tissues. The long life-span of stem cells suggests that they may respond differently to DNA damage than their downstream progeny and, indeed, studies have begun to elucidate the unique stem cell response mechanisms to DNA damage. Because the DNA damage responses in stem cells and progenitor cells are distinctly different, stem and progenitor cells should be considered as two different entities from this point of view. Hematopoietic and mammary stem cells display a unique DNA-damage response, which involves active inhibition of apoptosis, entry into the cell-cycle, symmetric division, partial DNA repair and maintenance of self-renewal. Each of these biological events depends on the up-regulation of the cell-cycle inhibitor p21. Moreover, inhibition of apoptosis and symmetric stem cell division are the consequence of the down-regulation of the tumor suppressor p53, as a direct result of p21 up-regulation. A deeper understanding of these processes is required before these findings can be translated into human anti-aging and anti-cancer therapies. One needs to clarify and dissect the pathways that control p21 regulation in normal and cancer stem cells and define (a) how p21 blocks p53 functions in stem cells and (b) how p21 promotes DNA repair in stem cells. Is this effect dependent on p21s ability to inhibit p53? Such molecular knowledge may pave the way to methods for maintaining short-term tissue reconstitution while retaining long-term cellular and genomic integrity.  相似文献   

2.
Genetic heterogeneity in ataxia-telangiectasia studied by cell fusion.   总被引:15,自引:1,他引:14       下载免费PDF全文
The effect of x-rays on the rate of semiconservative DNA replication was investigated by autoradiography in single cells obtained from normal individuals and from patients having ataxia-telangiectasia (AT). In the five AT cell strains studied, the rate of DNA synthesis was inhibited to a lesser extent that in two normal cell strains. By using this abnormal regulation of DNA replication in AT cells as a marker, an experimental procedure was developed that allowed genetic complementation analysis of AT. After Sendai virus-induced fusion of AT cells, the grains were counted over binucleate cells with both nuclei in S phase. In some cases, the inhibition of DNA synthesis caused by x-rays in the heterodikaryons was more pronounced than that in the parental homodikaryons and was comparable to that in normal binucleate cells, indicating complementation. By using this approach, the five AT cell strains that were investigated could be assigned to three complementation groups. The data suggest that extensive genetic heterogeneity exists in AT.  相似文献   

3.
Malignant transformation in vitro of hamster embryo cells and mouse C3H 10T 1/2 cells by x-rays, ultraviolet light, and chemical carcinogens was inhibited by benzamide and by 3-aminobenzamide at concentrations that are specific for inhibition of poly(ADP-ribose) formation. These compounds slow the ligation stage of repair of x-ray and alkylation damage but not of ultraviolet light damage. At high concentrations they also inhibited de novo synthesis of DNA purines and DNA methylation by S-adenosylmethionine. The suppression of transformation by the benzamides is in striking contrast to their reported effectiveness in enhancing sister chromatid exchange, mutagenesis, and killing in cells exposed to alkylating agents. Our results suggest that mechanisms regulating malignant transformation are different from those regulating DNA repair, sister chromatid exchange, and mutagenesis and may be associated with changes in gene regulation and expression caused by alterations in poly(ADP-ribosyl)ation.  相似文献   

4.
5.
DNA repair was measured in brain and liver cells in terms of their ability to undergo unscheduled DNA synthesis (UDS) in response to u.v. radiation. The proportion of brain cells exhibiting u.v.-induced UDS decreased from 13.4 to 4.2% as hamsters aged from 4–8 days to 38–57 days and then remained at this low level at least to day 551, which is approx. 23 of the maximum life span of this strain of hamster. Repair synthesis in brain cells during this long period was approx. 9.6% of that found in adult lung cells, 22.4% of that found in adult kidney cells and, at most, 50% of that in adult liver cells. This suggests that the postmitotic brain has a low repair capacity compared to other tissues. If this rate of repair is less than the rate at which endogenous DNA damage occurs, then such damage would accumulate and perhaps contribute significantly to normal aging.  相似文献   

6.
During an investigation of the role of ions in growth regulation, it was found that ethylene diamine tetraacetate (EDTA) inhibits DNA synthesis about 10-fold in cultures of chick embryo cells, while ethylene glycol bis(beta-amino ethyl ether)-N,N'-tetraacetate has no effect. RNA synthesis is only slightly inhibited by EDTA, and protein synthesis is unaffected. EDTA is inhibitory to DNA synthesis at a concentration much lower than that of either Ca(++) or Mg(++) present in the growth medium. The inhibition is prevented by the addition of Zn(++) at a much lower concentration than that of the EDTA. Other metal ions are ineffective. The inhibition of DNA synthesis only becomes apparent after more than 6 hr of incubation with EDTA, and descends to its final level by 15 hr. Complete restoration of the original rate of DNA synthesis is achieved within 8-10 hr by the addition of Zn(++). The low rate of DNA synthesis that occurs in a density-inhibited culture, is refractory to further inhibition by EDTA. Rous sarcoma cells are less sensitive to inhibition by EDTA than normal cells, but the sensitivity of both is increased by reducing the concentration of Ca(++) in the medium. DNA synthesis in mouse 3T3 cells is also inhibited by EDTA. It is concluded that Zn(++) is a continuing requirement for DNA synthesis in cultured vertebrate cells, and it is suggested that the availability of Zn(++) within the cell may play a role in the regulation of cell multiplication.  相似文献   

7.
The human decatenation checkpoint   总被引:10,自引:0,他引:10       下载免费PDF全文
Chromatid catenation is actively monitored in human cells, with progression from G(2) to mitosis being inhibited when chromatids are insufficiently decatenated. Mitotic delay was quantified in normal and checkpoint-deficient human cells during treatment with ICRF-193, a topoisomerase II catalytic inhibitor that prevents chromatid decatenation without producing topoisomerase-associated DNA strand breaks. Ataxia telangiectasia (A-T) cells, defective in DNA damage checkpoints, showed normal mitotic delay when treated with ICRF-193. The mitotic delay in response to ICRF-193 was ablated in human fibroblasts expressing an ataxia telangiectasia mutated- and rad3-related (ATR) kinase-inactive ATR allele (ATR(ki)). BRCA1-mutant HCC1937 cells also displayed a defect in ICRF-193-induced mitotic delay, which was corrected by expression of wild-type BRCA1. Phosphorylations of hCds1 or Chk1 and inhibition of Cdk1 kinase activity, which are elements of checkpoints associated with DNA damage or replication, did not occur during ICRF-193-induced mitotic delay. Over-expression of cyclin B1 containing a dominant nuclear localization signal, and inhibition of Crm1-mediated nuclear export, reversed ICRF-193-induced mitotic delay. In combination, these results imply that ATR and BRCA1 enforce the decatenation G(2) checkpoint, which may act to exclude cyclin B1/Cdk1 complexes from the nucleus. Moreover, induction of ATR(ki) produced a 10-fold increase in chromosomal aberrations, further emphasizing the vital role for ATR in genetic stability.  相似文献   

8.
9.
Infection with certain types of human papillomaviruses (HPV) is highly associated with carcinomas of the human uterine cervix. However, HPV infection alone does not appear to be sufficient for the process of malignant transformation, suggesting the requirement of additional cellular events. After DNA damage, normal mammalian cells exhibit G1 cell-cycle arrest and inhibition of replicative DNA synthesis. This mechanism, which requires wild-type p53, presumably allows cells to undertake DNA repair and avoid the fixation of mutations. We directly tested whether the normal response of cervical epithelial cells to DNA damage may be undermined by interactions between the E6 protein expressed by oncogenic HPV types and wild-type p53. We treated primary keratinocytes with the DNA-damaging agent actinomycin D and demonstrated inhibition of replicative DNA synthesis and a significant increase in p53 protein levels. In contrast, inhibition of DNA synthesis and increases in p53 protein did not occur after actinomycin D treatment of keratinocytes immortalized with HPV16 E6/E7 or in cervical carcinoma cell lines containing HPV16, HPV18, or mutant p53 alone. To test the effects of E6 alone on the cellular response to DNA damage, HPV16 E6 was expressed in the carcinoma cell line RKO, resulting in undetectable baseline levels of p53 protein and loss of the G1 arrest that normally occurs in these cells after DNA damage. These findings demonstrate that oncogenic E6 can disrupt an important cellular response to DNA damage mediated by p53 and may contribute to the subsequent accumulation of genetic changes associated with cervical tumorigenesis.  相似文献   

10.
The method of DNA alkaline elution was applied to a study of the formation and resealing of DNA single-strand breaks after irradiation of human fibroblasts with ultraviolet light (UV). The general features of the results were consistent with current concepts of DNA excision repair, in that breaks appeared rapidly after UV, and resealed slowly in normal fibroblasts, whereas breaks did not appear in those cells of patients with xeroderma pigmentosum (XP) that are known to have defects in DNA repair synthesis. The appearance of breaks required a short post-UV incubation, consistent with the expected action of an endonuclease. Cells of the variant form of XP characterized by normal DNA repair synthesis exhibited normal production of breaks after UV, but were slower than normal cells in resealing these breaks. This difference was enhanced by caffeine. A model is proposed to relate this finding with a previously described defect in post-replication repair in these XP variant cells. DNA crosslinking appears to cause an underestimate in the measurement of DNA breakage after UV.  相似文献   

11.
12.
Acute exposure of cells in culture to high NaCl damages DNA and impairs its repair. However, after several hours of cell cycle arrest, cells multiply in the hypertonic medium. Here, we show that, although adapted cells proliferate rapidly and do not become apoptotic, they nevertheless contain numerous DNA breaks, which do not elicit a DNA damage response. Thus, in adapted cells, Mre11 exonuclease is mainly present in the cytoplasm, rather than nucleus, and histone H2AX and chk1 are not phosphorylated, as they normally would be in response to DNA damage. Also, the adapted cells are deficient in repair of luciferase reporter plasmids damaged by UV irradiation. On the other hand, the DNA damage response activates rapidly when the level of NaCl is reduced. Then, Mre11 moves into the nucleus, and H2AX and chk1 become phosphorylated. Renal inner medullary cells in vivo are normally exposed to a variable, but always high, level of NaCl. As with adapted cells in culture, inner medullary cells in normal mice exhibit numerous DNA breaks. These DNA breaks are rapidly repaired when the NaCl level is decreased by injection of the diuretic furosemide. Moreover, repair of DNA breaks induced by ionizing radiation is inhibited in the inner medulla. Histone H2AX does not become phosphorylated, and repair synthesis is not detectable in response to total body irradiation unless NaCl is lowered by furosemide. Thus, both in cell culture and in vivo, although cells adapt to high NaCl, their DNA is damaged and its repair is inhibited.  相似文献   

13.
Sister chromatid exchanges, which may reflect chromosome repair in response to certain types of DNA damage, provide a means of investigating the increased chromosome fragility characteristic of Fanconi's anemia. By a recently developed technique using 33258 Hoechst and 5-bromodeoxyuridine, it was observed that the baseline frequency of sister chromatid exchanges in phytohemagglutinin-stimulated lymphocytes from four males with Fanconi's anemia differed little from that of normal lymphocytes. However, addition of the bifunctional alkylating agent mitomycin C (0.01 or 0.03 mug/ml) to the Fanconi's anemia cells during culture induces less than half of the increase in exchanges found in identically treated normal lymphocytes. This reduced increment in exchanges in accompanied by a partial suppression of mitosis and a marked increase in chromatid breaks and rearrangements. Many of these events occur at sites of incomplete chromatid interchange. The increase in sister chromatid exchanges induced in Fanconi's anemia lymphocytes by the monofunctional alkylating agent ethylmethane sulfonate (0.25 mg/ml) was slightly less than that in normal cells. Lymphocytes from two sets of parents of the patients with Fanconi's anemia exhibited a normal response to alkylating agents, while dermal fibroblasts from two different patients with Fanconi's anemia reacted to mitomycin C with an increase in chromatid breaks, but a nearly normal increment of sister chromatid exchanges. The results suggest that chromosomal breaks and rearrangements in Fanconi's anemia lymphocytes may result from a defect in a form of repair of DNA damage.  相似文献   

14.
Fibroblasts isolated from long-lived hypopituitary dwarf mice are resistant to many cell stresses, including ultraviolet (UV) light and methyl methane sulfonate (MMS), which induce cell death by producing DNA damage. Here we report that cells from Snell dwarf mice recover more rapidly than controls from the inhibition of RNA synthesis induced by UV damage. Recovery of messenger RNA (mRNA) synthesis in particular is more rapid in dwarf cells, suggesting enhanced repair of the actively transcribing genes in dwarf-derived cells. At early time points, there was no difference in the repair of cyclobutane pyrimidine dimers (CPD) or 6-4 photoproducts (6-4PP) in the whole genome, nor was there any significant difference in the repair of UV lesions in specific genes. However, at later time points we found that more lesions had been removed from the genome of dwarf-derived cells. We have also found that cells from dwarf mice express higher levels of the nucleotide excision repair proteins XPC and CSA, suggesting a causal link to enhanced DNA repair. Overall, these data suggest a mechanism for the UV resistance of Snell dwarf-derived fibroblasts that could contribute to the delay of aging and neoplasia in these mice.  相似文献   

15.
Colon carcinoma was implanted into the mesenterium of syngeneic BD IX rats, and 10 weeks later the animals were fasted for 48 h and refed. Control animals were kept fasted for an additional 24-h period. DNA synthesis was measured in mucosal scrapings from the normal colon and in the tumor before and after refeeding. Autoradiography was used to determine the epithelial DNA synthesis index (labeling index) in the progenitor cells from normal colon mucosa, in the adenocarcinoma cells from the tumor, and in the tumor lymphocytes. DNA synthesis increased over control values in the normal mucosa in situ (p less than 0.01), and in the implanted tumor (p less than 0.05) at 16 h after refeeding. The labeling index also increased over control values in the progenitor cells from normal mucosa (p less than 0.01), and in the adenocarcinoma cells from the tumor (p less than 0.01) at 16 h after refeeding. No increase in labeling index was observed in the tumor lymphocytes. These data suggest that cell proliferation in normal colon epithelium as well as in colon adenocarcinoma cells may be stimulated by a common physiological factor released after feeding.  相似文献   

16.
人衰老二倍体成纤维细胞对烷化剂损伤的应答   总被引:3,自引:0,他引:3  
目的 观察衰老的人胚肺二倍体成纤维细胞 (2BS)对烷化剂甲磺酸甲酯 (MMS)诱导的DNA损伤的应答。 方法 以体外培养的不同代龄的人胚肺 2BS为对象 ,以MMS诱导DNA损伤 ,以年轻细胞 (<30代 )为对照 ,观察衰老细胞 (>5 5代 )经MMS处理后的细胞形态、增殖特性、细胞周期的改变 ,并分别检测 gadd4 5、p2 1和p5 3等基因转录水平的表达变化 ,同时以非程序性DNA合成(UDS)和单细胞凝胶电泳试验测定DNA修复能力。 结果 经MMS诱导DNA损伤后 ,衰老细胞的细胞形态、生长曲线和细胞周期的变化均不及年轻细胞明显 ;gadd4 5、p2 1和 p5 3等基因的可诱导性表达均低于年轻细胞 ;同时 ,衰老细胞总的及单个细胞的修复能力较年轻细胞明显下降。 结论 衰老 2BS细胞对MMS诱导的DNA损伤后的细胞应答变化能力下降 ,且其修复能力的减退可能与基因的可诱导性表达下降有关。  相似文献   

17.
The effect of azidothymidine (Zidovudine, AZT) on pyrimidine (thymidine, deoxyuridine, and thymidine triphosphate) incorporation into DNA in folate- and/or vitamin B12-deficient and normal human bone marrow cells was studied to investigate whether such vitamin deficiency affects susceptibility to AZT-induced hematologic toxicity. Bone marrow cells from 12 patients were studied: 5 had folate and/or vitamin B12 deficiency; 7 controls included 5 with anemia related to chronic disease and 2 with iron deficiency. At 0.2 microM AZT (3 hr, 37 degrees C), the approximate pharmacologic serum trough level, pyrimidine incorporation into DNA was suppressed by 12 to 19% in folate- and/or vitamin B12-deficient cells and by 16 to 23% in normal cells. At 2.0 microM AZT (3 hr, 37 degrees C), the approximate pharmacologic serum peak level, this was suppressed by 15 to 40% in folate- and/or vitamin B12-deficient cells and by 32 to 47% in controls. Deoxyuridine incorporation into DNA was inhibited significantly greater than thymidine at 2.0 microM AZT (3 hr, 37 degrees C) in both groups. Inhibition of deoxyuridine incorporation was not reversed with methyltetrahydrofolate or vitamin B12. There tended to be less striking suppression by AZT of deoxyuridine incorporation into DNA in bone marrow cells from vitamin B12-deficient patients, which was made more striking by adding vitamin B12. This suggests that some of what passes for "AZT damage" to bone marrow cells may in fact be coincident deficiency of vitamin B12. AZT inhibition of DNA synthesis in 3 hr bone marrow cultures is relatively consistent in a variety of hematologic disorders. As approximately two-thirds of AIDS patients appear to be in negative balance with respect to folate and/or vitamin B12, the fact that AZT-induced inhibition of pyrimidine incorporation into DNA is occurring in cells which may be megaloblastic, i.e., in a state of impaired DNA synthesis, suggests that these cells may be more susceptible to AZT toxicity. The data also support the notion that AZT inhibition results predominantly from termination of DNA chain elongation. Whether folate or vitamin B12 supplementation may partially overcome apparent "AZT inhibition" of DNA synthesis (hematologic toxicity) and whether the benefit of such therapy exceeds the risk will require further study.  相似文献   

18.
Cells cultured from most patients suffering from the sunlight-sensitive hereditary disorder xeroderma pigmentosum are defective in the ability to excise ultraviolet light (UV)-induced pyrimidine dimers from their DNA. There is, however, one class of these patients whose cells are completely normal in this excision repair process. We have found that these cells have an abnormality in the manner in which DNA is synthesized after UV-irradiation. The time taken to convert initially low-molecular-weight DNA synthesized in UV-irradiated cells into high-molecular-weight DNA similar in size to that in untreated cells is much greater in these variants than in normal cells. Furthermore, this slow conversion of low to high-molecular-weight newly synthesized DNA is drastically inhibited by caffeine, which has no effect in normal cells. Two cell lines from classes of xeroderma pigmentosum that are defective in excision-repair show intermediate effects, with regard to both the time taken to convert newly synthesized DNA to high molecular weight and the inhibition of this process by caffeine.  相似文献   

19.
Protection from reactive oxygen species (ROS) and from mitochondrial oxidative damage is well known to be necessary to longevity. The relevance of mitochondrial DNA (mtDNA) to aging is suggested by the fact that the two most commonly measured forms of mtDNA damage, deletions and the oxidatively induced lesion 8-oxo-dG, increase with age. The rate of increase is species-specific and correlates with maximum lifespan. It is less clear that failure or inadequacies in the protection from reactive oxygen species (ROS) and from mitochondrial oxidative damage are sufficient to explain senescence. DNA containing 8-oxo-dG is repaired by mitochondria, and the high ratio of mitochondrial to nuclear levels of 8-oxo-dG previously reported are now suspected to be due to methodological difficulties. Furthermore, MnSOD −/+ mice incur higher than wild type levels of oxidative damage, but do not display an aging phenotype. Together, these findings suggest that oxidative damage to mitochondria is lower than previously thought, and that higher levels can be tolerated without physiological consequence. A great deal of work remains before it will be known whether mitochondrial oxidative damage is a “clock” which controls the rate of aging. The increased level of 8-oxo-dG seen with age in isolated mitochondria needs explanation. It could be that a subset of cells lose the ability to protect or repair mitochondria, resulting in their incurring disproportionate levels of damage. Such an uneven distribution could exceed the reserve capacity of these cells and have serious physiological consequences. Measurements of damage need to focus more on distribution, both within tissues and within cells. In addition, study must be given to the incidence and repair of other DNA lesions, and to the possibility that repair varies from species to species, tissue to tissue, and young to old.  相似文献   

20.
Ether-permeabilized (nucleotide-permeable) Escherichia coli cells respond to alkylating and arylalkylating carcinogens with DNA excision repair, as assessed by their stimulation of DNA repair synthesis. In the present work, we have investigated whether DNA repair synthesis in ether-treated E. coli cells can serve as a general indicator to monitor the DNA-binding of carcinogens, mutagens and antitumor agents. Therefore, a standard assay was developed and comparative analyses were performed on 11 ultimate carcinogens, 10 proximate carcinogens, 2 tumor promoters, 6 mutagens, and 12 antitumor agents. All ultimate carcinogens (alkylating, acylating, arylalkylating agents) and mutagens (e.g., hydrogeen peroxide, acridine derivatives) caused DNA excision repair in wild type cells as measured by [3H] dTMP incorporation and simultaneously inhibited replicative DNA synthesis to various extents. Control experiments with the mutant cells uvrA and uvrB were performed to determine whether the pyrimidine-dimer-specific UV-endonuclease was involved in the removal of DNA damage. This was found to be true for the ultimate carcinogens (Ac)2 ONFln, mitomycin C, and for very reactive alkylating carcinogens. None of the ultimate carcinogens induced repair polymerization in mutant cells lacking the 5'-3' exonucleolytic activity of DNA polymerase I. Proximate carcinogens, such as Me2NNO, 4-nitroquinoline-1-oxide and aflatoxins, did not induce excision repair in the standard assay, probably because of the inability of E. coli to perform the activation steps necessary for covalent DNA-binding. However, Me2NNO, when pretreated with Udenfriend's hydroxylating mixture, gave rise to a low level of repair polymerization in ether-treated cells. Intercalating mutagens, such as quinacrine and ethidum bromide, inhibited replicative DNA synthesis. However, they were not found to be repair-inducers. THE TUMOR PROMOters TPA and phorbol-12,13-didecanoate did not cause excision repair, even when applied at high concentrations, nor did they inhibit repair synthesis stimulated by MeNOUr or (Ac)2 ONFln. The antitumor agents may be classified into two groups on the basis of the influence they exert on DNA synthesis: members of the first group (involving BCNU and bleomycin) stimulate repair polymerization and, in addition, inhibit DNA replication. These compounds are known to bind covalently to DNA. The second group of drugs (including adriamycin and cis-Pt(II)diammine complexes) inhibits DNA replication without stimulating repair synthesis. The predominant DNA-interaction of these compounds is known to be a non-covalent (i.e., intercalative, electrostatic) binding. Our experiments show that the ether-permeabilized E. coli cell can be successfully used to test ultimate carcinogens, mutagens and antitumor agents for repair-inducing and replication-inhibiting activity. The standard test might be extended to pre- and proximate carcinogens, provided these can be suitably activated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号