共查询到20条相似文献,搜索用时 14 毫秒
1.
The melanocortin-4 (MC4) receptor plays a pivotal role in regulating food intake and energy expenditure, and obesity results from mutations that interfere with the MC4 receptor pathway. We investigated the effect of glucocorticoids on endogenous MC4 receptors expressed in GT1-1 cells, an immortalized hypothalamic neuronal cell line. Dexamethasone (Dex) caused a 5- to 10-fold increase in the cAMP response to the MC4 receptor agonist, NDP-alphaMSH. The stimulatory effect of Dex reached a maximum within 24 h and was blocked by the glucocorticoid antagonist RU486. This glucocorticoid effect was specific for the MC4 receptor and not a result of up-regulation of another component of the cAMP cascade, because the response to endogenous beta-adrenergic receptor stimulation was not altered by Dex. Dex also potentiated NDP-alphaMSH-mediated ERK1/2 activation. After 12 h, Dex caused a 3- to 5-fold increase in [125I]NDP-alphaMSH binding, which was maintained for at least 48 h and prevented by RU486. Dex withdrawal caused a rapid return of MC4 receptor concentration to the basal level. Dex-mediated increases in MC4 receptor concentration resulted from a rapid but transient increase in MC4 receptor mRNA. This regulation apparently requires genomic regulatory sequences because Dex did not increase MC4 receptor expression or signaling in CHO cells expressing the MC4 receptor under the control of a cytomegalovirus promoter. We conclude that in GT1-1 hypothalamic neurons, glucocorticoids increase the amplitude of MC4 receptor signaling. This regulation may serve as a control to limit the effects of glucocorticoids on food intake. 相似文献
2.
3.
Mansour M White D Wernette C Dennis J Tao YX Collins R Parker L Morrison E 《Endocrine》2010,37(1):220-230
The leptin-regulated melanocortin (MC) system modulates energy homeostasis and hypothalamic MC neuronal circuits regulate insulin secretion. We therefore hypothesized that MC system components were present in the pancreas. In order to determine the veracity of the hypothesis, we examined c-Fos, melanocortin-4 receptor (Mc4r), and alpha-melanocyte-stimulating hormone (α-MSH) expression levels in nondiabetic (intact leptin receptor signaling) and Zucker diabetic fatty (ZDF; leptin receptor deficiency) rats. We infused rats via the third ventricle with the α-MSH analog Nle4, D-Phe7-α-MSH (NDP-MSH), a Mc4r agonist. Subsequently, both hypothalamic and pancreatic c-Fos and Mc4r mRNAs were upregulated. Likewise, immunohistochemical analysis showed that an increased Mc4r and α-MSH expression in nerves surrounding the pancreatic vasculature and islets. Increases in c-Fos, α-MSH, and Mc4r expression were independent of leptin receptor function. Conversely, serum insulin was significantly reduced by NDP-MSH treatment, an effect which was reversed by the Mc4r specific blocker HS014. Finally, proopiomelanocortin (POMC) mRNA, the precursor of α-MSH, was detected by RT-PCR in pancreatic tissue homogenates. These findings suggest that pancreatic Mc4r and autonomic neurons participate in a communication pathway between the central MC system and pancreatic islets to regulate insulin secretion. 相似文献
4.
Functional characterization of melanocortin-4 receptor mutations associated with childhood obesity 总被引:5,自引:0,他引:5
The melanocortin-4 receptor (MC4R) is a member of the rhodopsin-like G protein-coupled receptor family. The binding of alpha-MSH to the MC4R leads to increased cAMP production. Recent pharmacological and genetic studies have provided compelling evidence that MC4R is an important regulator of food intake and energy homeostasis. Allelic variants of MC4R were reported in some children with early-onset severe obesity. However, few studies have been performed to confirm that these allelic variants result in an impairment of the receptor's function. In this study, we expressed wild-type and variant MC4Rs in HEK293 cells and systematically studied ligand binding, agonist-stimulated cAMP, and cell surface expression. Six of the 11 mutants examined had either decreased (S58C, N62S, Y157S, C271Y) or no (P78L, G98R) ligand binding, with proportional impairments in [Nle4, d-Phe7]-alpha-MSH-stimulated cAMP production. Confocal microscopy confirmed that the observed decreases in hormone binding by these mutants are associated with decreased cell surface expression due to intracellular retention of the mutants. The other five allelic variants (D37V, P48S, V50M, I170V, N274S) were found to be expressed at the cell surface and to bind agonist and respond with increased cAMP production normally. The data on these latter five variants raise the question as to whether they are indeed causative of the obesity or not and, if so, by what mechanism. Our data, therefore, stress the importance of characterizing the properties of MC4R variants associated with early-onset severe obesity. We further propose a classification scheme for mutant MC4Rs based upon their properties. 相似文献
5.
Andreas Breit Thomas R.H. BüchIngrid Boekhoff Hans Jürgen SolinskiEllen Damm Thomas Gudermann 《Molecular and cellular endocrinology》2011
The melanocortin-4 receptor (MC4R) is a prototypical G protein-coupled receptor (GPCR) that plays a considerable role in controlling appetite and energy homeostasis. Signalling initiated by MC4R is orchestrated by multiple agonists, inverse agonism and by interactions with accessory proteins. The exact molecular events translating MC4R signalling into its physiological role, however, are not fully understood. This review is an attempt to summarize new aspects of MC4R signalling in the context of its recently discovered alternative G protein coupling, and to give a perspective on how future research could improve our knowledge about the intertwining molecular mechanisms that are responsible for the regulation of energy homeostasis by the melanocortin system. 相似文献
6.
Monica Patten Jan Bünemann Bryan Thoma Elisabeth Kr?mer Martin Thoenes Sabine Stübe Clemens Mittmann Thomas Wieland 《Cardiovascular research》2002,53(1):156-164
OBJECTIVE: Endotoxin (LPS)-induced acute cardiac failure during sepsis is associated with alterations in G protein mediated signal transduction. We therefore examined the expression of the G proteins G(i), G(q), and G(s) and of four 'regulators of G protein signaling' (RGS) proteins, RGS1, RGS4, RGS5, and RGS16 in rat hearts. METHODS: For in vivo experiments, Wistar rats were treated with 600 microg/day E. coli LPS, intravenously) and hearts were excised after 6, 24 and 72 h. Cultured neonatal rat cardiomyocytes were treated with 4 microg/ml LPS for 24 and 72 h. Isolated membrane proteins were used for Western blot analysis and for evaluation of phospholipase C (PLC) activity. RGS16 mRNA was detected by RNAse protection. RESULTS: LPS induced G(i) protein 1.4-fold 72 h after in vivo administration of LPS, whereas expression of G(s) and G(q) was unaltered. After 6 h of LPS treatment, RGS16 mRNA was transiently up-regulated 3.7-fold, followed by transient protein induction (24 h: 2.5-fold; 72 h: 1.5-fold). Similarly, RGS4 protein was transiently induced (24 h: 3.1-fold; 72 h: 1.5-fold), whereas expression of RGS1 and RGS5 was not altered. Similar to the LPS-treated rat hearts, RGS16 expression was transiently induced by LPS in cultured neonatal rat cardiomyocytes (24 h: 1.6-fold, 72 h: 0.9-fold). To determine the functional consequences of the RGS protein induction phospholipase C (PLC) activity was analyzed in membranes obtained from solvent and LPS-treated hearts. Basal and endothelin-1-stimulated PLC activity was transiently repressed by LPS with a maximum after 24 h although no apparent changes in PLCbeta1 or endothelin receptor expression could be detected. CONCLUSION: These data suggest that the rapid up-regulation of cardiac RGS4 and RGS16 is associated with a desensitization of endothelin-1 receptor signaling. Up-regulation of these RGS proteins may thus be involved in the early onset of cardiac failure during sepsis. 相似文献
7.
Navarro M Cubero I Chen AS Chen HY Knapp DJ Breese GR Marsh DJ Thiele TE 《Alcoholism, clinical and experimental research》2005,29(6):949-957
BACKGROUND: The melanocortin (MC) system is composed of peptides that are cleaved from the polypeptide precursor pro-opiomelanocortin. A growing body of literature suggests that the MC system modulates neurobiological responses to drugs of abuse. Because ethanol has direct effects on central pro-opiomelanocortin activity, it is possible that MC neuropeptides participate in the control of voluntary ethanol consumption. Here we assessed the possibility that MC receptor (MCR) agonists modulate ethanol intake via the MC3 receptor (MC3R) and/or the MC4 receptor (MC4R) and whether the MCR antagonist AgRP-(83-132) controls ethanol consumption. METHODS: Mc3r-deficient (Mc3r) and wild-type (Mc3r) littermate mice were given intraperitoneal (10 mg/kg) and intracerebroventricular (1.0 microg ICV) doses of melanotan II (MTII), a nonselective MCR agonist. To assess the role of MC4R, C57BL/6J mice were given an ICV infusion of the highly selective MC4R agonist cyclo(NH-CH2-CH2-CO-His-d-Phe-Arg-Trp-Glu)-NH2 (1.0 or 3.0 microg). Finally, na?ve C57BL/6J mice were given an ICV infusion of AgRP-(83-132) (0.05 and 1.0 microg). RESULTS: MTII was similarly effective at reducing ethanol drinking in Mc3r-deficient (Mc3r) and wild-type (Mc3r) littermate mice. Furthermore, ICV infusion of the MC4R agonist significantly reduced ethanol drinking, whereas ICV infusion of AgRP-(83-132) significantly increased ethanol drinking in C57BL/6J mice. Neither MTII nor AgRP-(83-132) altered blood ethanol levels at doses that modulated ethanol drinking. CONCLUSIONS: The present results suggest that MC4R, and not MC3R, modulates MCR agonist-induced reduction of ethanol consumption and that ethanol intake is increased by the antagonistic actions of AgRP-(83-132). These findings strengthen the argument that MCR signaling controls ethanol consumption and that compounds directed at MCR may represent promising targets for treating alcohol abuse disorders in addition to obesity. 相似文献
8.
The aim of this study was to investigate the short-term regulation of the ACTH receptor human (h) melanocortin receptor 2 (MC2R) by transfection of a c-Myc-tagged hMC2R in the M3 cell line and assess its membrane expression by indirect immunofluorescence. Stimulation with ACTH induced production of cAMP with EC(50) values ranging from 7.6-11.9 nM in transient and stable transfectants, respectively. Pretreatment with ACTH induced a dose-dependent loss of cAMP production, from 1 pm up to 10 nM. Desensitization was also time dependent, with 70% loss of maximal responsiveness occurring after 15-min pretreatment with 10 nM ACTH, followed by a plateau up to 60 min. The decrease in hMC2R responsiveness was abrogated by individual treatment with protein kinase A (PKA) or protein kinase C inhibitors, H-89 and GF109203X. However, when added simultaneously, receptor responsiveness was raised over the maximal hMC2R activity observed in control cells. ACTH-induced loss of cAMP production was accompanied by receptor sequestration into intracellular vesicles (maximum after 30-min exposure). Cotransfection of M3 cells with the c-Myc-tagged hMC2R and beta-arrestin-2-green fluorescence protein along with sucrose treatment revealed that beta-arrestin-2-green fluorescence protein and c-Myc-hMC2R were redistributed in similar intracellular vesicles through a clathrin-dependent, but caveolae-independent, process. Sucrose pretreatment blocked receptor desensitization, indicating that hMC2R desensitization and internalization are interrelated. Moreover, preincubation with H-89 abrogated hMC2R internalization, whereas GF109203X had no effect. In conclusion, the present results indicate that PKA and protein kinase C act synergistically to induce hMC2R desensitization, but only PKA is essential for receptor internalization, highlighting the complex nature of the short-term regulatory pattern of this receptor. 相似文献
9.
Obesity-induced inflammation in white adipose tissue is attenuated by loss of melanocortin-3 receptor signaling 总被引:1,自引:0,他引:1
Metabolic syndrome, a complex of highly debilitating disorders that includes insulin resistance, hypertension, and dyslipidemia, is associated with the development of obesity in humans as well as rodent models. White adipose tissue (WAT) inflammation, caused in part by macrophage infiltration, and fat accumulation in the liver are both linked to development of the metabolic syndrome. Despite large increases in body fat, melanocortin 3-receptor (MC3-R)-deficient mice do not get fatty liver disease or severe insulin resistance. This is in contrast to obese melanocortin 4-receptor (MC4-R)-deficient mice and diet-induced obese (DIO) mice, which show increased adiposity, fatty liver disease, and insulin resistance. We hypothesized that defects in the inflammatory response to obesity may underlie the protection from metabolic syndrome seen in MC3-R null mice. MC4-R mice fed a chow diet show increased proinflammatory gene expression and macrophage infiltration in WAT, as do wild-type (WT) DIO mice. In contrast, MC3-R-deficient mice fed a normal chow diet show neither of these inflammatory changes, despite their elevated adiposity and a comparable degree of adipocyte hypertrophy to the MC4-R null and DIO mice. Furthermore, even when challenged with high-fat chow for 4 wk, a period of time shown to induce an inflammatory response in WAT of WT animals, MC3-R nulls showed an attenuated up-regulation in both monocyte chemoattractant protein-1 (MCP-1) and TNFalpha mRNA in WAT compared with WT high-fat-fed animals. 相似文献
10.
Follicle-stimulating hormone receptor (FSHR) and luteinizing hormone receptor (LHR) belong to the super-family of G protein-coupled
receptors (GPCR); GPCRs are negatively regulated by RGS ("regulators of G protein signaling") proteins. In this study we evaluated
the effects of RGS3 and RGS10 on FSHR and LHR ligand binding and effector coupling. FSHR and LHR ligand binding were unchanged
in the presence of RGS3 or RGS10. However, signaling by FSHR and LHR was diminished by RGS3 but not by RGS10. This constitutes
the first demonstration of an interaction between RGS proteins and LH and FSH signaling pathways and identifies a mechanism
for negative regulation of RGS3 on FSHR and LHR signaling. 相似文献
11.
<正>Objective To investigate the regulation of melatonin(MT)on Toll-like receptor 4(TLR4)signaling in diabetic db/db mice kidneys.Methods The 48 10-weekold male db/db mice were randomly divided into db/db group,db/db+MT 50μg/kg group,db/db+MT 100 相似文献
12.
Contractile reserve during submaximal beta-adrenergic stimulation is attenuated in patients and swine with hibernating myocardium. We tested the hypothesis that this arises as a regional adaptive response in beta-adrenergic adenylyl cyclase coupling. Pigs (n=8) were studied 3 months after instrumentation with a left anterior descending artery (LAD) stenosis when flow (LAD, 0.7+/-0.2 versus 1.2+/-0.1 mL/min per gram in normal remote; P<0.05) and wall thickening (LAD, 15.5 [corrected]+/-3.2% versus 40.0+/-5.5% in remote; P<0.05) were reduced in the absence of infarction. Whereas basal cAMP production was normal (LAD, 87+/-18 versus 91+/-19 pmol/mg per minute; P=NS), responses to isoproterenol were blunted (LAD, 83+/-6 versus 146+/-25 pmol/mg per minute in remote; P<0.05). beta-receptor density and subtype were unchanged, but there was a reduction in the number of high-affinity binding sites (LAD, 40+/-4% versus 53+/-7% in normal remote; P<0.05). The Gialpha2/Gsalpha ratio increased (LAD, 1.8+/-0.3 versus 0.99+/-0.3 in remote myocardium; P<0.05), although GppNHp-stimulated cAMP production was equivocally reduced. Forskolin responses were unchanged and similar to shams. These data indicate regional attenuation of beta-receptor adenylyl cyclase signaling in hibernating myocardium. This blunts the local contractile response to beta-adrenergic stimulation and may serve to protect against a myocardial supply/demand imbalance when external determinants of myocardial workload increase during sympathetic activation. 相似文献
13.
Regulation of glucagon-like peptide-1 receptor and calcium-sensing receptor signaling by L-histidine
Receptor-specific agonists of the extracellular calcium-sensing receptor (CaSR) potentiate glucose-induced insulin secretion, an effect similar to that of glucagon-like peptide-1 (GLP-1). We have sequenced the full open reading frame of the CaSR from rat insulinoma (INS-1) cells and find that the predicted amino acid sequence of the receptor is identical with that of the receptor from the parathyroid gland. This receptor couples to both Gq/11 and Gi/o, and this dual coupling may partly explain the varying effects of nonspecific agonists on secretion reported previously. L-Histidine (L-His) increases the sensitivity of the CaSR to extracellular Ca2+ and potentiates glucose-dependent insulin secretion from INS-1 cells. This potentiation is partially inhibited at low extracellular [Ca2+] where the CaSR is ineffective. Coexpression of the CaSR and GLP-1 receptor (GLP-1R) produces a pertussis toxin-sensitive inhibition of GLP-1-induced cAMP production in response to elevated extracellular [Ca2+]. However, l-His potentiates cAMP response element reporter activity in INS-1 cells and in human embryonic kidney-293 cells expressing either the GLP-1R alone or the CaSR and GLP-1R. INS-1 cells express the RNA for the CaSR at a lower level than that for the GLP-1R. This difference in expression level of the receptors may explain the potentiation of insulin secretion by L-His despite coupling of the CaSR to Gi/o. In conclusion, L-His can potentiate both GLP-1R- and CaSR-activated signaling pathways, and these effects may play a role in the potentiation of glucose-induced insulin secretion in response to meals containing protein in addition to carbohydrates and fat. 相似文献
14.
The present study is designed to explore the role of G protein-coupled receptors (GPCRs) in the protection afforded by ischemic preconditioning (PC). We used TG mice with cardiac-specific overexpression of a Gbetagamma-sequestering peptide, betaARKct (TG betaARKct mice), to test whether the protection of PC is Gbetagamma-dependent. To test the role of G(i) protein, we used wild-type mice pretreated with the G(i) inhibitor pertussis toxin. Recovery of left ventricular developed pressure and infarct size were measured as indices of protection. PC induced protection in wild-type mice, but this protection was blocked by pertussis toxin treatment and was also blocked in TG betaARKct mice. To determine the mechanism of Gbetagamma-induced protection in PC, we investigated one of the downstream targets of Gbetagamma, the PI3K/p70S6K pathway. PC-induced phosphorylation of p70S6K was not blocked in TG betaARKct hearts; therefore, we investigated other targets of Gbetagamma. Recent studies suggest a role for Gbetagamma in GPCR internalization. We found that betaARKct, a specific PI3K inhibitor wortmannin, and bafilomycin A1, which all block receptor recycling, all blocked the protective effect of PC. To additionally test whether PI3K is involved in PC-activated receptor internalization and endosomal signaling, we used TG mice with cardiac-specific overexpression of a catalytically inactive mutant PI3Kgamma, which disrupts the recruitment of functional PI3K to agonist-activated GPCRs in vivo. We found that the catalytically inactive mutant of PI3Kgamma blocks the protection of PC. In summary, these data suggest the novel finding that the cardioprotective effect of PC requires receptor internalization. 相似文献
15.
Agents that decrease gonadotropin-releasing hormone (GnRH) receptor internalization do not inhibit GnRH-mediated gonadotrope desensitization 总被引:1,自引:0,他引:1
Exposure of pituitary cell cultures to GnRH causes gonadotropin release, receptor capping, internalization, and loss as well as altered responsiveness of the target cell. In the present study, the relationship between loss of gonadotrope secretory responsiveness to GnRH (desensitization) and internalization of the GnRH-receptor complex was examined. Pituitary cell cultures were pretreated (30 min) with vinblastine (100 microM, a concentration that prevents measurable receptor internalization) or with medium containing carrier only, incubated with 10(-7) M GnRH (a desensitizing concentration) with or without vinblastine or with medium alone for 60 min, and finally washed and rechallenged for 3 h with increasing concentrations of GnRH to assess the degree of desensitization as determined by LH release. Results indicate that vinblastine had no measurable effect on the ability of GnRH to stimulate LH release or desensitize the cells. In a second series of studies, a GnRH analog (D-Lys6-GnRH) was immobilized to a cross-linked agarose matrix. The covalent link was shown to be stable by biological, immunological, and physical criteria. This product bound to the GnRH receptor and provoked LH release, but was not internalized, as determined by GnRH receptor binding assays. Cultured cells were treated with either 10(-9) M free analog or an equivalent concentration of coupled analog (as measured by LH release) for 3 h. Cells were washed, then rechallenged with GnRH to assess desensitization. Both the free and coupled analogs provoked an equivalent degree of desensitization. While a significant degree of desensitization also occurred in the presence of 3 mM EGTA (conditions that totally inhibited GnRH-stimulated LH release), the loss of responsiveness was not as great as in the absence of EGTA, indicating that partial depletion of available LH may play a role in GnRH-stimulated gonadotrope desensitization. The present findings suggest that GnRH receptor internalization and LH release can be uncoupled and that loss of the GnRH receptor by internalization is not a sufficient explanation for GnRH-mediated desensitization of the gonadotrope. 相似文献
16.
Impaired coordination of nutrient intake and substrate oxidation in melanocortin-4 receptor knockout mice 总被引:4,自引:0,他引:4
Albarado DC McClaine J Stephens JM Mynatt RL Ye J Bannon AW Richards WG Butler AA 《Endocrinology》2004,145(1):243-252
Mutations in the melanocortin-4 receptor (MC4R) are associated with obesity. The obesity syndrome observed in humans with MC4R haploinsufficiency is similar to that observed in MC4R knockout mice, including increased longitudinal growth, hyperphagia, and fasting hyperinsulinemia. For comparison with other commonly investigated models of obesity and insulin resistance, we have backcrossed Mc4r-/- mice into the C57BL/6J (B6) background. Female obese Mc4r-/- mice exhibit reduced energy expenditure and an attenuated increase in fatty acid (FA) oxidation after exposure to high-fat diets compared with obese Lepob/Lepob mice. The reduced energy expenditure and FA oxidation correlates with changes in hepatic gene expression. The expression of genes involved in FA oxidation increased in obese Lepob/Lepob mice compared with wild-type and obese Mc4r-/- mice. In contrast, a key lipogenic enzyme, FA synthase (FAS), is increased in obese Mc4r-/- mice compared with obese Lepob/Lepob mice. Hyperinsulinemia, increased FAS mRNA expression and hepatic steatosis appear to be secondary to obesity in B6 Mc4r-/- mice. However, Mc4r-/- mice in a mixed genetic background develop severe hepatic steatosis at an early age. This might suggest an important role of the MC4R in regulating liver FA metabolism that is masked on the B6 background. Interestingly, the 10- to 20-fold increase in liver triglyceride in the outbred strain of Mc4r-/- mice is not always associated with fasting hyperinsulinemia or increased FAS mRNA expression. This observation suggests that changes in liver secondary to triglyceride accumulation lead to hyperinsulinemia and increased hepatic FAS expression in Mc4r-/- mice. 相似文献
17.
Haskell-Luevano C Todorovic A Gridley K Sorenson N Irani B Xiang Z 《Endocrine research》2004,30(4):591-597
The melanocortin pathway consists of endogenous agonists, antagonists, G-protein coupled receptors, and ancillary proteins that mediate the function of the endogenous antagonists. The melanocortin-4 receptor (MC4R) is involved in the regulation of obesity and the melanocortin-2 receptor (MC2R) is involved in the regulation of steroidogenesis. Herein, we present the effects of voluntary exercise on the MC4R knockout mice in terms of bypassing the morbid obesity and hyperphagia phenotypes associated with this genetic obesity model. Additionally, a systematic truncation study of the adrenocorticotropin hormone (ACTH 1-24) has been performed and characterized at the cloned MC2R. 相似文献
18.
Previous studies have shown that rat thyrotropin-releasing hormone (TRH) receptor type 2 exhibits higher basal signaling activity and internalizes more rapidly upon agonist binding than rat TRH receptor type 1. The mouse TRH receptor type 2 (mR2) was recently cloned and, similar to its rat homolog, shows a higher basal signaling activity than mR1. Taking advantage of the high degree of sequence homology between mR1 and mR2, we used chimeras/mutants of these receptors to gain insight into the properties of the receptors that influence internalization and basal signaling. Chimeric receptors that have the mR1 extracellular and transmembrane domains with the carboxyl terminus and intracellular loops of mR2 (R1/R2-tail; R1/R2-I3,tail; R1/R2-I2,3,tail; R1/R2-I1,2,3,tail) exhibited internalization rates and basal activities that were similar to that of mR1. In contrast, a chimeric receptor with the extracellular and transmembrane domains of mR2 and the carboxyl terminus of mR1 exhibited the more rapid internalization rate and higher basal signaling activity characteristic of mR2. We showed previously that mutation of a highly conserved tryptophan to alanine caused mR1 to exhibit a high basal signaling activity and rapid internalization rate. In contrast, mutation of this tryptophan to alanine in mR2 decreased the rate of internalization and inhibited basal signaling activity. The rates of receptor internalization did not correlate with the binding affinities, coupling efficiencies, or potencies of the receptors. Thus, we observed that receptors with more rapid internalization rates showed relatively higher basal signaling activities, whereas receptors with lower basal signaling activities showed slower internalization rates. These data suggest that similar receptor conformations are required for productive coupling to signaling G proteins and to proteins involved in internalization. 相似文献
19.
L Olsson A Goldstein J Stagsted 《Proceedings of the National Academy of Sciences of the United States of America》1994,91(19):9086-9090
We showed previously that peptides derived from the alpha 1 domain of the major histocompatibility complex class I protein (MHC-I) inhibit internalization of some receptors, thereby increasing the steady-state number of active receptors on the cell surface. In consequence, sensitivity to hormone (e.g., insulin) is enhanced, transport (e.g., of glucose by GLUT-4) is increased, and carrier proteins (e.g., transferrin) operate less efficiently. Now we report that a bioactive peptide (but not closely related inactive ones) binds to MHC-I on the cell surface, not in the groove but apparently to the alpha 1 helix. The binding is saturable, and the number of peptide binding sites on the cell surface approximately equals the number of MHC-I molecules. Antibodies to MHC-I inhibit peptide binding. Most significant, antibodies to MHC-I mimic the effect of a bioactive peptide, inhibiting receptor internalization. These results indicate that MHC-I participates in the regulation of cell surface receptor activity. 相似文献
20.
胰腺炎的发病机制长期以来一直是基础和临床研究的一个重要课题,然而至今尚不完全明确.研究证实TLRs(Toll-like receptors)家族成员中TLR4可与G-菌内毒素脂多糖(lipopolysaccharide,LPS)结合,通过NF-κB信号通路激发多种炎症因子的合成进而参与多种器官疾病的发病过程.在鼠类模型和临床研究中已经显示TLR4信号通路在急性胰腺炎(acute pancreatitis,AP)的发病过程中起着重要的作用;上调TLR4信号通路可诱导致炎细胞因子大量释放参与重症急性胰腺炎(severe acute pancreatitis,SAP)病程中多器官功能障碍综合征的形成.因此,进一步明确TLR4信号通路在胰腺炎发病机制的作用,有可能通过阻断TLR4信号通路使胰腺炎获得疗效. 相似文献