首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Improved internal defibrillation efficacy with a biphasic waveform   总被引:1,自引:0,他引:1  
Clinically available automatic implantable defibrillators use a monophasic truncated exponential waveform shock; after delivery the charge remaining on the device's capacitors is "dumped" internally and wasted. The efficacy of a monophasic and biphasic truncated exponential defibrillation waveform produced by a single capacitor discharge was compared in seven closed-chest, pentobarbital-anesthetized dogs. Defibrillation leads consisted of a new deployable intrapericardial electrode system. The monophasic waveform was positive and 6 msec in duration. The biphasic waveform had a positive phase identical to that of the monophasic waveform and a negative phase of equal duration with its initial voltage equal to 50% of the final voltage of the positive phase. Defibrillation shocks of varying initial voltage were delivered to construct curves of the percentage of successful defibrillation versus initial voltage and delivered energy, and the voltage and energy required for 50% (V50 and E50, respectively) and 80% (V80 and E80, respectively) success were compared. The biphasic waveform had significantly lower initial voltage (V50: 194 +/- 48 volts vs 227 +/- 48 volts, p less than 0.001; V80: 217 +/- 55 volts vs 256 +/- 66 volts, p less than 0.02) and energy (E50: 2.7 +/- 1.3 joules vs 3.4 +/- 1.5 joules, p less than 0.01; E80: 3.4 +/- 1.6 joules vs 4.3 +/- 2.2 joules, p less than 0.05) requirements than the monophasic waveform. It is concluded that a biphasic waveform produced by a single discharge that uses the "free" energy remaining on the capacitors significantly reduces the initial voltage and energy requirements for successful defibrillation and may improve the efficacy of future automatic implantable defibrillators.  相似文献   

2.
The standard implantable defibrillator waveform is a truncated exponential of approximately 6 msec duration. This study compares the defibrillation efficacy of a standard monophasic truncated exponential to a biphasic 12 msec truncated exponential waveform in 21 patients undergoing automatic implantable cardioverter defibrillator (AICD) surgery. For the biphasic waveform, the polarity was reversed and remaining capacitor voltage was attenuated by 75% after 6 msec. Two hundred thirty episodes of VF were induced with 115 "matched pairs" of monophasic and biphasic waveforms of identical initial capacitor voltages given over a range from 70 to 600 V (0.35 to 25.7 joules). The biphasic waveform was superior to the monophasic waveform (p less than 0.006), especially for "low energy" defibrillation. For initial voltages less than 200 V, the percent successful defibrillation was 28% for the monophasic waveform versus 64% for the biphasic waveform and from 200 to 290 V (energies less than 6.4 joules) it was 45% versus 69%. There was no difference in the two waveforms in time to the first QRS complex or in the blood pressure following defibrillation. This study shows that a 12 msec biphasic truncated exponential is superior to a 6 msec monophasic waveform for defibrillation in man, especially at energies less than 6.4 joules. The waveform can be achieved in an implanted device without any increase in capacitor size or in battery energy consumption.  相似文献   

3.
In order to eliminate the need for epicardial electrodes, two large transvenous catheter electrodes or one catheter and one extrathoracic patch electrode have been proposed as alternative electrode configurations for defibrillation and ventricular tachycardia cardioversion by implantable cardioverter/defibrillators. We compared the efficacy and safety of endocardial shocks delivered through these two electrode systems in man in a prospective randomized crossover study. Twelve patients with sustained ventricular tachycardia and heart disease undergoing electrophysiologic study were evaluated. A transvenous tripolar cardioversion electrode catheter with a large distal defibrillation electrode (surface area, 400 mm2) and proximal defibrillation electrode (surface area, 800 mm2) was positioned in the right ventricular apex with a cutaneous patch electrode placed on the cardiac apex. Sustained ventricular tachycardia was induced at electrophysiologic study. Shocks were delivered using two catheter electrodes only (right ventricular cathode and right atrial anode = method I), and one catheter electrode and cutaneous patch (right ventricular cathode and cutaneous apical patch anode = method II). Synchronized monophasic shocks were delivered using three preselected protocols based on ventricular tachycardia cycle length and morphology. Initial shock energies were 25 joules for polymorphic ventricular tachycardia and ventricular fibrillation, 15 joules for monomorphic rapid ventricular tachycardia (cycle length less than or equal to 300 msec), and 5 joules for monomorphic slow ventricular tachycardia (cycle length greater than 300 msec). Ventricular tachycardia was reinduced and shock energies titrated until cardioversion threshold was obtained. Identical ventricular tachycardia episodes were treated with both methods at each energy level.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
BACKGROUND. Two sequential biphasic shocks delivered over separate lead configurations markedly improve defibrillation efficacy compared with a single shock alone. We investigated the effect of varying the intershock interval between sequential biphasic shocks on defibrillation. METHODS AND RESULTS. Defibrillation thresholds (DFTs) were obtained in six dogs for shock separations ranging from 0.2 to 125 msec. The first shock was given from a catheter electrode in the right ventricular apex to a patch on the left lateral thorax; the second was from a small patch on the left ventricular apex to a catheter electrode in the right ventricular outflow tract. When the interval between shocks was less than or equal to 10 msec or greater than or equal to 75 and less than or equal to 125 msec, the mean DFTs were less than that previously found for the first shock by itself (4.2 versus 7.4 J, p = 0.002). At a separation of 50 msec, however, there was a marked rise in the DFT to 27 J. The mean DFT for the second shock at a delay of 50 msec was not different from the mean DFT previously found for the second shock by itself (7.2 versus 7.0 J). These results were confirmed in another six dogs using defibrillation probability-of-success curves. In 12 other dogs, probability-of-success curves were generated for delays between shocks as a percentage of the activation interval during ventricular fibrillation. Minimum defibrillation energy requirements were at two separations, 0.2 msec and 90% of the activation interval. CONCLUSIONS. The optimal intershock interval between two sequential biphasic shocks is either less than or equal to 10 msec or greater than or equal to 75 and less than or equal to 125 msec. The marked rise in the DFT at a shock separation of 50 msec, requiring more energy than that for the first shock alone, suggests that the second shock at this time delay is likely to reinduce fibrillation after it is halted by the first shock until the second shock is strong enough to defibrillate independently of the first shock.  相似文献   

5.
BACKGROUND. Several clinical studies have demonstrated a general superiority of biphasic waveform defibrillation compared with monophasic waveform defibrillation using epicardial lead systems. To test the breadth of utility of biphasic waveforms in humans, a prospective, randomized evaluation of defibrillation efficacy of monophasic and single capacitor biphasic waveform pulses was performed for two distinct nonthoracotomy lead systems as well as for an epicardial electrode system in 51 cardiac arrest survivors undergoing automatic defibrillator implantation. METHODS AND RESULTS. The configurations tested consisted of a right ventricular-left ventricular (RV-LV) epicardial patch-patch system, an RV catheter-chest patch (CP) nonthoracotomy system, and a coronary sinus (CS) catheter-RV catheter nonthoracotomy system. For each configuration, the defibrillation current and voltage waveforms were recorded via a digital oscilloscope to measure defibrillation threshold voltage, current, resistance, and stored energy. Biphasic waveform defibrillation proved more efficient than monophasic waveform defibrillation for the epicardial RV-LV system (4.8 +/- 4.1 versus 6.7 +/- 4.9 J, p = 0.047) and the nonthoracotomy RV-CP system (23.4 +/- 11.1 versus 34.3 +/- 10.4 J, p = 0.0042). Biphasic waveform defibrillation thresholds were not significantly lower than monophasic waveform defibrillation thresholds for the CS-RV nonthoracotomy system (15.6 +/- 7.2 versus 20.0 +/- 11.5 J, p = 0.11). Biphasic waveform defibrillation proved more efficacious than monophasic waveform defibrillation in 13 of 20 patients (65%) with RV-LV epicardial patches, 10 of 15 patients (67%) with an RV-CP nonthoracotomy system, and nine of 16 patients (56%) with an RV-CS nonthoracotomy system. CONCLUSIONS. Biphasic pulsing was useful with nonthoracotomy lead systems as well as with epicardial lead systems. However, the degree of biphasic waveform defibrillation superiority appeared to be electrode system dependent. Furthermore, for a few individuals, biphasic waveform defibrillation proved less efficient than monophasic waveform defibrillation, regardless of the lead system used.  相似文献   

6.
Biphasic waveforms reduce defibrillation threshold compared with corresponding monophasic waveforms. However, effects of fibrillation duration on relative efficacy of monophasic and biphasic waveforms are unknown. This study used a newly developed defibrillation model, the isolated right- and left-sided working rabbit heart, with epicardial defibrillation electrodes, to compare threshold for a monophasic waveform (5 msec rectangular) and an asymmetrical biphasic waveform (5 msec each pulse, V2 = 50% V1). Mean voltage defibrillation threshold (V50) was determined from sigmoidal probability of successful defibrillation versus shock intensity curves after 5, 15, and 30 seconds of fibrillation in a paired study with 10 hearts. Results showed that biphasic waveforms had significantly lower voltage and energy thresholds at all fibrillation durations and that their relative efficacy improved with increasing fibrillation duration. Biphasic voltage threshold was 38.2 +/- 2.2, 44.7 +/- 4.8, and 46.6 +/- 3.2 V after 5, 15, and 30 seconds of fibrillation compared with monophasic thresholds of 51.7 +/- 4.4 (p less than 0.002), 63.0 +/- 7.6 (p less than 0.05), and 72.1 +/- 3.9 V (p less than 0.005). Biphasic waveform energy threshold was 0.67 that for the monophasic waveform after 5 seconds of fibrillation (0.12 +/- 0.01 versus 0.18 +/- 0.03 J, p less than 0.05). The ratio between biphasic waveform threshold and monophasic waveform threshold (B/M) decreased to 0.62 at 15 seconds. At 30 seconds, B/M was 0.52 (0.17 +/- 0.02 versus 0.33 +/- 0.04 J, p less than 0.02). This study also showed that biphasic waveform threshold was a nonlinear function of monophasic waveform threshold so that improved biphasic defibrillator waveform efficacy was greatest for hearts having higher monophasic thresholds.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Implantable cardiac defibrillators are now an accepted form of therapy for patients with life-threatening ventricular arrhythmias that cannot be controlled by antiarrhythmic drugs. These devices could be made even more acceptable if they were smaller, had increased longevity and the surgical procedure for implantation was less invasive. Reducing the energy requirements for internal defibrillation with use of a nonthoracotomy system would make all of these goals achievable. Monophasic and double and single capacitor biphasic waveforms were compared in 14 anesthetized dogs (25.5 +/- 2.2 kg) with use of a nonthoracotomy lead system that has previously been shown to distribute the delivered voltage throughout the heart more equally. Cathodal catheter electrodes were placed in the right ventricular apex and outflow tract. The anodal electrode was a large cutaneous R2 patch placed over the left side of the chest. The mean energy requirement for defibrillation when a single capacitor biphasic waveform was used was significantly less (6.4 +/- 2.6 J) than that for either the double capacitor biphasic or the monophasic waveform (18.0 +/- 8.0 and 17.4 +/- 8.0 J, respectively) of the same duration. Unexpectedly, the leading edge voltage for the phase I of the single capacitor biphasic waveform was significantly less (266 +/- 51 V) than that for either the double capacitor biphasic or the monophasic waveform (336 +/- 76 and 427 +/- 117 V, respectively). In conclusion, in large dogs, defibrillation is possible at low energy levels with a single capacitor biphasic waveform.  相似文献   

8.
OBJECTIVE: To determine whether considerably smaller capacitors could replace 125 microF capacitors as the standard for use in implantable defibrillators. METHODS: Measured energy, impedance, voltage, and current delivered were compared at defibrillation threshold in 10 mongrel dogs for defibrillation using 75 microF and 125 microF capacitors alternated randomly. Defibrillation was attempted with biphasic shocks of comparable tilt between an endocardial lead in the right ventricular apex and a "dummy" active can of an experimental implantable device placed in the subpectoral position. RESULTS: A reduction of capacitor size of 40% was associated with an increase in voltage of 21% and in current of 22%. With a 65% tilt, no significant differences were found between the two capacitances with respect to the impedance or energy required for defibrillation. CONCLUSIONS: Multiple advances in electrode material, electrode configuration, shock morphology, and shock polarity have reduced defibrillation energy requirements. Smaller capacitors could be used in implantable cardioverter/defibrillators without a major decrease in effectiveness.  相似文献   

9.
Introduction: A variety of factors, including the number of defibrillation electrodes and shocking capacitance, may influence the defibrillation efficacy of an implantable defibrillator system. Therefore, the purpose of this study was to compare the defibrillation energy requirement using a 125 uF two-electrode defibrillation system and a 90 uF three-electrode defibrillation system.Methods and Results: The defibrillation energy requirements measured with both systems were compared in 26 consecutive patients. The two-electrode system used a single transvenous lead with two defibrillation coils in conjunction with a biphasic waveform from a 125 uF capacitor. The three-electrode system used the same transvenous lead, utilized a pectoral implantable defibrillator generator shell as a third electrode, and delivered the identical biphasic waveform from a 90 uF capacitor. The two-electrode system was associated with a higher defibrillation energy requirement (10.8±5.5 J) than was the three-electrode system (8.9±6.7 J, p < 0.05), however, the leading edge voltage was not significantly different between systems (361±103 V vs. 397±123 V, P = 0.07). The two-electrode system also had a higher shocking resistance (49.0±9.0 ohms vs. 41.4±7.3 ohms, p < 0.001) and a lower peak current (7.7±2.6 A vs. 10.1±3.7 A, p < 0.001) than the three-electrode system.Conclusions: A three-electrode defibrillation system that utilizes a dual coil transvenous lead and a subcutaneous pectoral electrode with lower capacitance is associated with a lower defibrillation energy requirement than is a dual coil defibrillation system with higher capacitance. This finding suggests that the utilization of a pectoral generator as a defibrillation electrode in conjunction with smaller capacitors is a more effective defibrillation system and may allow for additional miniaturization of implantable defibrillators.  相似文献   

10.
It has recently been demonstrated that both biphasic and sequential pulse defibrillation shocks are superior to monophasic defibrillation shocks in animals and humans. There is little information directly comparing these two waveforms when pulse characteristics, subject, and total electrode surface area are kept constant. Pigs were randomized in a cross-over design for triplicate determinations of defibrillation threshold using biphasic and sequential pulse shocks and both large and small epicardial electrodes. Anesthetized pigs weighing 18 to 28 kg had sets of defibrillating electrodes (TX-7) with total surface areas of 13 cm2 (group 1, n = 16) and 26 cm2 (group 2, n = 16), respectively, attached to the heart. Leading edge delivered voltage, current, and energy were significantly lower with sequential pulse shocks than with biphasic shocks for both electrode sets (delivered energy means +/- standard error of the mean: 13.3 +/- 1.6 versus 22.4 +/- 3.0 joules, and 9.9 +/- 1.5 versus 14.2 +/- 1.6 joules, respectively). In addition, six of the pigs could not be defibrillated with 900 stored V using biphasic shocks, although all pigs were defibrillated with less than 800 stored V using sequential pulse defibrillation. We conclude that sequential pulse defibrillation using three defibrillating electrodes provides an important current delivery system not matched by biphasic shocks using two electrodes when subject, waveform characteristics, and total electrode surface area are kept constant.  相似文献   

11.
Biphasic Defibrillation with Nonthoracotomy Leads. Introduction: For current implantable defibrillators, the nonthoracotomy approach to implantation fails in a substantial number of patients. In a prospective randomized cross-over study the defibrillation efficacy of a standard monophasic and a new biphasic waveform was compared for different lead configurations.
Methods and Results: Intraoperatively, in 79 patients receiving nonthoracotomy defibrillation leads, the defibrillation threshold was determined in the initial lead configuration for the mono-and biphasic waveform. In each patient, both waveforms were used alternately with declining energies (20, 15,10, 5 J) until failure of defibrillation occurred. Three different initial lead configurations were tested in different, consecutive, nonrandomized patients using a bipolar endocardial defibrillation lead alone (A; n = 36) or in combination with a subcutaneous defibrillation patch (B; n = 24) or array (C; n = 19) lead. The lowest successful defibrillation energy with the biphasic waveform was less than, equal to, or higher than with the monophasic waveform in 64%, 28%, and 8% of patients, respectively, and on average significantly lower with the biphasic waveform for all three lead configurations (A: 11.3 ± 4.4 J vs 14.5 ± 4.5.); B: 9.7 ± 4.7 J vs 15.1 ± 4.5 J; C: 7.9 ± 4.5 J vs 12.4 ± 4.9 J). Defibrillation efficacy at 20 J was significantly improved by the biphasic waveform (91% vs 76%).
Conclusion: In combination with nonthoracotomy defibrillation leads, the biphasic waveform of a new implantable cardioverter defibrillator showed superior defibrillation efficacy in comparison to the standard monophasic waveform. Defibrillation thresholds were improved for lead systems with and without a subcutaneous patch or array lead.  相似文献   

12.
The mechanism of biphasic waveform defibrillation threshold reduction is unknown. We tested the hypothesis that, during refractory period stimulation, sarcolemmal hyperpolarization by the first pulse of biphasic waveforms facilitates excitation channel recovery, which enhances graded responses produced by the second depolarizing pulse. This prolongs cellular refractoriness to fibrillation wavefronts when compared with a monophasic depolarizing stimulus. Monophasic (10 msec, rectangular wave) or symmetrical biphasic (10 msec, each pulse) current injection S2 stimuli at 1.5 and two times S1 threshold were used to scan the S1 action potential refractory period (S1 cycle length, 600 msec) in myocardial cell aggregates. S2 waveforms were delivered with normal and reversed polarity to test the hyperpolarizing action of biphasic waveforms. Responses to an S3 stimulus, which simulated a potential incoming fibrillation wavefront, were also determined. Results showed that biphasic S2 waveforms produced longer graded responses during and immediately after the S1 refractory period than did corresponding monophasic S2 waveforms. The maximum difference in response duration produced by the biphasic and monophasic waveforms was 58.6 +/- 10.0 msec (p less than 0.001). This maximum difference occurred 10 msec before the end of the S1 refractory period. The longer response durations produced by biphasic S2 also produced longer refractoriness to the S3 stimulus. The maximum difference in total refractoriness to S3 of 51.8 +/- 2.8 msec (p less than 0.002) occurred at the same S1S2 coupling interval as the maximum difference in S2 response duration. Prolonged refractoriness may protect ventricular cells from refibrillation wavefronts and act as the cellular basis for greater biphasic waveform defibrillation efficacy.  相似文献   

13.
AIMS: Improvements in the size and shape of implantable cardioverter defibrillators (ICDs) might be obtained by using one capacitor instead of the series connection of two capacitors traditionally used in ICDs. The aim of this study was to determine whether a biphasic waveform delivered from a single 336 microF capacitor had the same defibrillation efficacy as a standard biphasic waveform. METHODS AND RESULTS: Randomized, paired defibrillation threshold testing was acutely performed in 54 patients undergoing ICD implantation. A standard 140 microF 80% tilt biphasic waveform (two 280 microF capacitors connected in series) was compared with an experimental biphasic waveform delivered from a single 336 microF capacitor at either 60% tilt (33 patients) or 80% tilt (21 patients). All waveforms had a 60/40 phase1/phase2 duration ratio. Compared with the standard waveform, the 60% tilt experimental waveform had a lower delivered energy (6.7 +/- 2.8 vs 7.9 +/- 3.3 joules, P<0.02), lower peak voltage (218 +/- 43 vs 333 +/- 68 V, P<0.01), and a slightly longer pulse duration (13.4 +/- 1.4 vs 10.7 +/- 1.1 ms, P<0.01). Conversely, the 80% tilt experimental waveform had a higher delivered energy (9.1 +/- 3.5 vs 6.3 +/- 2.4 joules, P<0.01), a lower peak voltage (234 +/- 44 vs 302 +/- 51 V, P<0.01) and a much longer pulse duration (25.7 +/- 2.5 vs 1.13 +/- 1 ms, P<0.01). CONCLUSION: Waveforms delivered from a large capacitance are feasible but require a lower tilt. This technique may allow smaller, thinner ICDs without jeopardizing defibrillation success.  相似文献   

14.
Transthoracic electrical cardioversion using a monophasic waveform is the most common method converting persistent atrial fibrillation into sinus rhythm. Recently, cardioversion with a new biphasic waveform has shown promising results for treatment of atrial fibrillation. We undertook a randomized prospective trial comparing the efficacy and safety of the two waveforms for ambulatory cardioversion of atrial fibrillation. A total of 118 consecutive patients (mean age 62 years [SD 11]) presenting with persistent atrial fibrillation (mean duration 8 months [SD 11]) for ambulatory electrical cardioversion were randomized to receive either monophasic (n = 57) or biphasic shocks (n = 61). We used a standardized step-up protocol with increasing shock energies (100-360 joules) in either group. In all patients an anterior-posterior shock electrode position was used. If sinus rhythm was not achieved with the third (360 joules) shock, cardioversion was repeated with the opposite waveform. The two groups did not differ in demographic or disease-related data. The success rate was 100% for the biphasic and 73.7% for the monophasic waveform (p < 0.001). Biphasic patients required fewer shocks (1.5 versus 2.9) and a lower mean cumulative energy (203 versus 570 joules) (p < 0.001). Twelve out of 15 unsuccessfully treated monophasic patients were converted with biphasic shocks. The success rate for all 118 patients was 97.5%. No major acute complications were observed. For ambulatory transthoracic cardioversion of persistent atrial fibrillation biphasic shocks are of greater efficacy and require less energy than monophasic shocks. The procedure can be performed ambulatory and is safe regardless of shock waveform used.  相似文献   

15.
Newly developed biphasic waveforms improve defibrillation efficacy both by reduction of defibrillation threshold and by amelioration of shock-induced dysfunction depending on the relative shape of the first and second pulses. Each of these independent effects improves the waveform's safety factor, the ratio between the shock intensity that produces a specific degree of postshock dysfunction and the shock intensity that produces defibrillation (or cellular excitation). Symmetrical waveforms reduce defibrillation threshold to about 60% that of the corresponding monophasic waveform, probably by reduction of excitation threshold for ischemic cells, but increase postshock arrhythmias. Biphasic waveforms with 10% "tails" reduce postshock arrhythmias. This study tests the hypothesis that these independent mechanisms for improvement of defibrillation efficacy can be combined into a single triphasic waveform that will have a higher safety factor than either of the two biphasic waveforms of which it is composed. Cultured myocardial cells were subjected to high-intensity electric-field stimulation with a control monophasic rectangular waveform, a symmetrical biphasic waveform, and a triphasic waveform consisting of the biphasic waveform with an added 10% "tail." Each waveform portion was 5 msec in duration. Photocell mechanograms monitored contractile activity. We found that the duration of postshock arrest of spontaneous contractile activity increased with stimulus intensity for all waveforms. The voltage gradient producing a 4-second arrest after the biphasic waveform shock was 80.6 +/- 1.3% that of the control waveform (100%), while the voltage gradient for the triphasic waveforms was 87.1 +/- 0.73% of control. The difference between biphasic and triphasic waveforms was significant (p less than 0.001).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The efficacy of truncated exponential waveform shocks using a cardioverter-defibrillator catheter with and without a 13.9 cm2 subcutaneous thoracic patch electrode was examined in 10 pentobarbital-anesthetized dogs. The cardioverter-defibrillator catheter was positioned through the external jugular vein with the distal 4 cm2 shocking electrode located in the right ventricular apex and the 8 cm2 proximal electrode located in the superior vena cava. Four electrode configurations were tested: 1) distal electrode (cathode) to proximal electrode and chest wall patch (common anodes), 2) distal electrode (cathode) to chest wall patch (anode), 3) distal electrode (cathode) to proximal electrode (anode), and 4) chest wall patch (cathode) to proximal electrode (anode). The lowest randomized energy resulting in termination of alternating current-induced ventricular fibrillation on four trials at that energy was 20.2, 21.3, 27.4 and greater than 40 J, respectively, for configurations 1 through 4. The energy requirements for configurations 1, 2 and 3 were significantly lower than for configuration 4 (p less than 0.001). Additionally, configurations incorporating the distal electrode and the patch electrode (configurations 1 and 2) were significantly better than the catheter alone (configuration 3; p less than 0.05). There was no significant difference between configurations 1 and 2. In conclusion, the addition of a subcutaneous chest wall electrode to the cardioverter-defibrillator catheter significantly lowered energy requirements for defibrillation, suggesting that a nonthoracotomy approach for the automatic implantable cardioverter-defibrillator is feasible.  相似文献   

17.
Monophasic and single capacitor and dual capacitor biphasic truncated exponential shocks were tested in pentobarbital-anesthetized dogs with use of a nonthoracotomy internal defibrillation pathway consisting of a right ventricular catheter electrode and a subcutaneous chest wall patch electrode. Seven dogs weighing 20.2 +/- 0.5 kg were utilized. Monophasic pulses of 10 ms duration were compared with three biphasic pulses. All biphasic waveforms had an initial positive phase (P1) followed by a terminal negative phase (P2) and the total duration of P1 plus P2 was 10 ms. The dual capacitor biphasic waveform (P1 9 ms, P2 1 ms) had equal initial voltages of P1 and P2. Two simulated single capacitor biphasic waveforms were also tested, the first designed to minimize the magnitude of P2 (P1 9 ms, P2 1 ms with initial voltage of P2 equal to 0.3 of the initial voltage of P1) and the second to maximize P2 (P1 5 ms, P2 5 ms with initial voltage of P2 = 0.5 P1). Alternating current was used to induce ventricular fibrillation and four trials of eight initial voltages from 100 to 800 V were performed for each of the four waveforms. Stepwise logistic regression was utilized to construct curves relating probability of successful defibrillation and energy. In the logistic model, the dual capacitor biphasic and single capacitor biphasic waveforms that maximized P2 were associated with significantly (p less than 0.001) lower energy requirements for defibrillation than those of the monophasic waveform. The single capacitor biphasic waveform that minimized P2 was not significantly better than the monophasic waveform.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Some antiarrhythmic sodium channel blocking drugs have been found to increase the energy necessary for internal defibrillation. Propafenone is a new drug that has been shown to be efficacious in the therapy of supraventricular and ventricular arrhythmias, and is of potential use in patients with defibrillators. The effects of short-term and prolonged propafenone administration on the internal defibrillation threshold (DFT) were determined in 43 pigs randomized to one of four groups: saline infusion (n = 10); propafenone infusion (n = 10); placebo administration for 8 days (n = 10); or propafenone administration for 8 days (n = 13). Two mesh electrodes were sutured on the right lateral and left lateral epicardial surface and current was delivered from the right electrode to the left electrode. Triplicate DFTs were obtained before and at 40 and 80 minutes after infusion of drug or placebo. In pigs receiving long-term administration, after baseline DFTs were obtained the electrodes were removed and the chest was closed. Following 8 days of drug or placebo administration, DFTs were redetermined. No changes were observed in the short- or long-term control groups. DFTs were lower after propafenone administration: either short-term infusion (20 +/- 6.2 joules at baseline; 15.6 +/- 5 joules at 40 minutes, p less than 0.05; 10.2 +/- 6 joules at 80 minutes, p less than 0.001) or long-term administration (17.8 +/- 2.6 joules at baseline versus 12 +/- 3.2 joules on drug, p less than 0.002). Decreased ventricular cycle lengths were found with acute administration of propafenone. Three pigs died during long-term administration of propafenone.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Certain biphasic waveforms require less energy to defibrillate than do monophasic pulses of equal duration, although the mechanisms of this increased effectiveness remain unclear. This study used strength-duration and percent success curves for defibrillation with monophasic and biphasic truncated exponential waveforms to explore these mechanisms. In part 1, defibrillation thresholds were determined for both high- and low-tilt waveforms. The monophasic pulses tested ranged in duration from 1.0 to 20.0 msec, and the biphasic waveforms had first phases of either 3.5 or 7.0 msec and second phases ranging from 1.0 to 20.0 msec. In part 2, defibrillation percent success curves were constructed for 6.0 msec/6.0 msec biphasic waveforms with a constant phase-one amplitude and with phase-two amplitudes of approximately 21%, 62%, 94%, and 141% of phase one. This study shows that if the first phase of a biphasic waveform is held constant and the second phase is increased in either duration or amplitude, defibrillation efficacy first improves, then declines, and then again improves. For pulse durations of at least 14 msec, the second-phase defibrillation threshold voltage of a high-tilt biphasic waveform is higher than that of a monophasic pulse equal in duration to the biphasic second phase (p less than 0.05), indicating that the previously proposed hypothesis of stimulation by the second phase is not the sole mechanism of biphasic defibrillation. These facts indicate the importance of the degree of tilt for the defibrillation efficacy of biphasic waveforms and suggest at least two mechanisms exist for defibrillation with these waveforms, one that is more effective for smaller second phases and another that becomes more effective as the second phase is increased.  相似文献   

20.
“Parallel-Series” Biphasic Waveform. Introduction: A biphasic defibrillation waveform can achieve a large second phase leading-edge voltage by a “parallel-series” switching system. Recently, such a system using two 30-μF capacitances demonstrated better defibrillation threshold than standard waveforms available in current implantable devices. However, the optimized tilt of such a “parallel-series” system had not been defined. Methods and Results: Defibrillation thresholds were evaluated for five different biphasic “parallel-series” waveforms (60/15 μF) and a biphasic “parallel-parallel” waveform (60/60 μF) in 12 anesthetized pigs. The five “parallel-series” waveforms had first phase tilts of 40%, 50%, 60%, 70%, and 80% with second phase pulse width of 3 msec. The “parallel-parallel” waveform had first phase tilt of 50% with second phase pulse width of 3 msec. The defibrillation lead system comprised a left pectoral “hot can” electrode (cathode) and a right ventricular lead (anode). The stored energy at defibrillation threshold of the “parallel-series” waveform with first phase tilts of 40%, 50%, 60%, 70%, and 80% was 7.0 ± 2.1, 6.1 ± 2.8, 6.8 ± 2.8, 7.2 ± 2.9. and 8.4 ± 3.1 J, respectively. The stored energy of the “parallel-series” waveform with a 50% first phase tilt was 16% less than the nonswitching “parallel-parallel” waveform (7.3 ± 2.8 J, P = 0.006). Conclusions: A first phase tilt of 50% maximized defibrillation efficacy of biphasic waveforms implemented with a “parallel-series” switching system. This optimized “parallel-series” waveform was more efficient than the comparable “parallel-parallel” biphasic waveform having the same first phase capacitance and tilt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号