首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Toxin-producing cyanobacteria (blue-green algae) are abundant in surface waters used as drinking water resources. The toxicity of one group of these toxins, the microcystins, and their presence in surface waters used for drinking water production has prompted the World Health Organization (WHO) to publish a provisional guideline value of 1.0 mug microcystin (MC)-LR/l drinking water. To verify the efficiency of two different water treatment systems with respect to reduction of cyanobacterial toxins, the concentrations of MC in water samples from surface waters and their associated water treatment plants in Switzerland and Germany were investigated. Toxin concentrations in samples from drinking water treatment plants ranged from below 1.0 microg MC-LR equiv./l to more than 8.0 microg/l in raw water and were distinctly below 1.0 microg/l after treatment. In addition, data to the worldwide occurrence of cyanobacteria in raw and final water of water works and the corresponding guidelines for cyanobacterial toxins in drinking water worldwide are summarized.  相似文献   

2.
The cyanobacterial toxin cylindrospermopsin (CYN) is widely distributed in German lakes, but volumetric data for risk assessment are lacking and it is unclear which cyanobacterial species produce CYN in Europe. We therefore analyzed CYN concentration and cyanobacterial composition of 21 German lakes in 2005. CYN was detected in 19 lakes (102 of 115 samples). In total, 45 samples contained particulate CYN only, and 57 contained both dissolved and particulate CYN. The concentrations were 0.002-0.484 microg L(-1) for particulate CYN and 0.08-11.75 microg L(-1) for dissolved CYN with a maximum of 12.1 microg L(-1) total CYN. A drinking water guideline value of 1 microg L(-1) proposed by Humpage and Falconer [2003. Oral toxicity of the cyanobacterial toxin CYN in male Swiss albino mice: determination of no observed adverse effect level for deriving a drinking water guideline value. Environ. Toxicol. 18, 94-103] was exceeded in 18 samples from eight lakes due to high concentrations of dissolved CYN. CYN occurrence in the German lakes could not be ascribed to the three known CYN-producing species Cylindrospermopsis raciborskii, Anabaena bergii and Aphanizomenon flos-aquae, which were detected in some lakes in low abundances. The highest correlation coefficients were observed between particulate CYN and the native Aphanizomenon gracile. It occurred in 98 CYN-positive samples, was the most abundant Nostocales and was the only Nostocales in five samples. This indicates that A. gracile is a potential CYN producer in German lakes.  相似文献   

3.
Cylindrospermopsin (CYN) is a toxic alkaloid produced by several genera of freshwater cyanobacteria. This compound has been implicated in outbreaks of human sickness and the death of domestic and wild animals. Given that several of the cyanobacterial genera known to produce CYN are common components of the phytoplankton of freshwaters including aquaculture facilities, we studied the accumulation of CYN in the freshwater mussel (swan mussel) Anodonta cygnea. Anodonta were exposed to CYN-producing cultures of the cyanobacterium Cylindrospermopsis raciborskii for 16 days and were found to accumulate the toxin to concentrations up to 2.52 microg g tissue dry weight(-1). There was considerable variation in the concentrations of CYN detected in different parts of the body. At the end of a 2-week accumulation period the distribution of CYN in the body of Anodonta was as follows: haemolymph (68.1%), viscera (23.3%), foot and gonad (7.7%) and mantle (0.9%). No CYN was detected in the gills or adductor muscle of any animals. Following a 2-week depuration period, approximately 50% of the toxin remained in the tissues. Based on the recently derived guideline value for CYN in human drinking water (1 microg l(-1)) and the concentrations of this compound in animal tissues reported here, there is a clear need for the increased monitoring of this compound in organisms grown for human and animal consumption.  相似文献   

4.
The cyanobacterial toxin cylindrospermopsin (CYN) is a frequent contaminant of freshwaters throughout the world, including those that are sources of drinking water. The first cases of human poisoning attributed to this toxin occurred from a treated drinking water supply in Queensland, Australia, in 1979. The toxin causes extensive damage to the liver, kidneys, spleen, heart, and other organs. It is known to be a potent protein synthesis inhibitor, but there is mounting evidence for genotoxicity and that it metabolizes to even more toxic forms. As part of a risk assessment process leading to a guideline for a safe drinking water level for this toxin, we performed a series of experiments to determine a no-observed-adverse-effect level (NOAEL) for this toxin. In the first trial male mice were exposed to CYN-containing cyanobacterial extract in their drinking water (0-657 microg CYN kg(-1) day(-1)) for 10 weeks. In the second trial mice received purified CYN by daily gavage (0-240 microg CYN kg(-1) day(-1)) for 11 weeks. Body and organ weights were recorded; urine, serum, and hematology analyses were performed; and histopathological examination of tissues was carried out. Body weights were significantly increased at low doses (30 and 60 microg kg(-1) day(-1)) and decreased at high doses (432 and 657 microg kg(-1) day(-1)). Liver and kidney weights were significantly increased at doses of 240 microg kg(-1) day(-1) and 60 microg kg(-1) day(-1), respectively. Serum bilirubin levels were significantly increased and bile acids significantly decreased at doses of 216 microg kg day(-1) and greater. Urine total protein was significantly decreased at doses above 60 microg kg(-1) day(-1). The kidney appeared to be the more sensitive organ to this toxin. If it is assumed that increased organ weights and changes in functional capacity are responses to an underlying toxic effect, then the NOAEL based on this data is 30 microg kg(-1) day(-1), which, with standard calculations and uncertainty factors, provides a proposed guideline safety value of 1 microg/L in drinking water.  相似文献   

5.
The effects of cyanobacterial cells containing microcystins (MCs), toxins from cyanobacteria, on oxidative stress biomarkers from liver and kidney of Tenca fish (Tinca tinca) were investigated under laboratory conditions. Moreover, a histopathological study of liver, kidney, heart and intestine tissues was performed. Fish were orally exposed to cyanobacterial cells dosing 0, 5, 11, 25 and 55 microg MC-LR/fish mixed with the food. Results showed a dose-dependent decrease of superoxide dismutase (SOD) activity, and also of catalase (CAT) in the liver. Glutathione levels and protein oxidation, however, were not altered by the exposure to the cyanobacterial material. The microscopic study revealed tissue alterations even at the lower cyanobacterial cells doses. Onion-like hepatocytes in the liver, glomerulopathy in the kidney, loss of myofibrils in the heart and vacuolated enterocytes in the gastrointestinal tract were the main changes observed. These findings suggest that this fresh water fish can be adversely affected by cyanobacterial blooms in their natural habitats.  相似文献   

6.
The toxin cylindrospermopsin (CYN) is produced by a variety of cyanobacterial genera. One of these, Cylindrospermopsis raciborskii, is generally assumed to be the source of CYN in lakes and rivers in Florida, USA. However, in this study, none of the eight Florida isolates of this species tested contained the genetic determinants involved in toxin production nor did they produce CYN. We show for the first time that Aphanizomenon ovalisporum isolated from a pond in this state has the genes putatively associated with CYN production. Analysis by liquid chromatography with mass spectrometric detection (LC/MS) revealed that it produced CYN in the range of 7.39-9.33 microg mg(-1) freeze-dried cells. 16S rDNA sequences of this strain showed 99.6% and 99.9% identity to published A. ovalisporum and Anabaena bergii 16S sequences, respectively. These results help to explain the general lack of a defined relationship between the abundance of C. raciborskii in freshwater ecosystems of Florida and observed concentrations of CYN. The latter observation raises the potential that previous reports of CYN may be coincidental with unrecorded presence of another CYN-producing species.  相似文献   

7.
8.
Cylindrospermopsis raciborskii, a freshwater cyanobacterium of tropical origin, is not only increasingly found in (sub) tropical water bodies, but also in temperate regions. Since this species may produce potent toxins such as cylindrospermopsin (CYN) and paralytic shellfish poisons, its massive occurrence in water bodies used as drinking water sources or for recreation is of major concern. The proliferation of C. raciborskii in German water bodies has been documented for the past decade. We investigated the occurrence of CYN in field populations and isolates of C. raciborskii from two lakes, and assessed the toxicity of culture isolates using the mouse bioassay, primary rat hepatocytes and human derived cell lines. We show for the first time the occurrence of CYN in German water bodies. None of seven isolates of C. raciborskii contained CYN, however, all isolates were toxic to primary rat hepatocytes, human hepatoblastoma (HEP-G2) and human colon adenocarcinoma (CACO-2) cells. Methanolic extracts were more toxic than aqueous extracts. Three isolates tested in the mouse bioassay were toxic at a concentration of 800 mg kg(-1) showing liver and spleen damage and inflammation of the intestine. These results give strong evidence that the German isolates of C. raciborskii contain currently not identified or unknown toxins.  相似文献   

9.
Cylindrospermopsin (CYN) is a potent hepatotoxin produced by different cyanobacteria of the order Nostocales. Questions of major concern are: which species produce CYN, which are the seasonal patterns of CYN dynamics and how are they regulated? Therefore, we studied for the first time the seasonal dynamics of particulate and dissolved CYN concentrations, cyanobacterial abundance and environmental factors in two German lakes over 2 years. Total CYN reached maximum concentrations of 0.34 and 1.80 μg L−1 in Melangsee and Langer See, respectively. In both lakes, maxima of the dissolved CYN fraction occurred later in the season than those of the particulate fraction, and it reached higher concentrations. This indicates that CYN is poorly decomposed and accumulates in the water. The cyanobacterial community in both lakes included several potentially CYN-producing species that did not correlate with CYN concentrations. Significant correlations between the particulate CYN concentrations and species biovolume were only found for Aphanizomenon gracile (rs = 0.803) in Langer See indicating that this species is a CYN producer. Different correlations of CYN with abiotic factors in the two lakes indicate the presence of further undetected CYN producers as well as different regulation mechanisms of their dynamics and the variability of CYN.  相似文献   

10.
The cyanobacterium Planktothrix rubescens Anagnostidis & Komarek (previously Oscillatoria rubescens DC ex Gomont) is present in several Italian lakes and it is known to produce cyanotoxins. The dynamics and toxin production of P. rubescens population in Lake Albano, a volcanic crater lake in Central Italy, has been studied for 5 years (January 2001-April 2005). Winter-spring superficial blooms with frequent scums were observed every year. Total microcystin (MC) levels were measured from April 2004 to October 2005 by liquid chromatography-tandem mass spectrometry. MC levels up to 14.2mug/l were measured, with high concentrations found in summer at a 20-25m depth. The intracellular toxin content varied between 1.5 (surface, January 2004) and 0.21pg/cell (surface, May 2004). Six different MCs were detected, the most abundant being two desmethyl-MC-RR isomers. Of the 13 water wells monitored in the Lake Albano area, two of them showed MC contamination during winter, confirming the ability of these toxins to migrate through groundwater towards public water sources. These results highlight the need for further studies on the mobility and fate of these pervasive cyanobacterial toxins.  相似文献   

11.
John P. Berry  Owen Lind 《Toxicon》2010,55(5):930-938
Exposure to cyanobacterial toxins in freshwater systems, including both direct (e.g., drinking water) and indirect (e.g., bioaccumulation in food webs) routes, is emerging as a potentially significant threat to human health. We investigated cyanobacterial toxins, specifically cylindrospermopsin (CYN), the microcystins (MCYST) and the “paralytic shellfish toxins” (PST), in Lago Catemaco (Veracruz, Mexico). Lago Catemaco is a tropical lake dominated by Cylindrospermopsis, specifically identified as Cylindrospermopsis catemaco and Cylindrospermopsis philippinensis, and characterized by an abundant, endemic species of snail (Pomacea patula catemacensis), known as “tegogolos,” that is both consumed locally and commercially important. Samples of water, including dissolved and particulate fractions, as well as extracts of tegogolos, were screened using highly specific and sensitive ELISA. ELISA identified CYN and PST at low concentrations in only one sample of seston; however, both toxins were detected at appreciable quantities in tegogolos. Calculated bioaccumulation factors (BAF) support bioaccumulation of both toxins in tegogolos. The presence of CYN in the phytoplankton was further confirmed by HPLC-UV and LC-MS, following concentration and extraction of algal cells, but the toxin could not be confirmed by these methods in tegogolos. These data represent the first published evidence for CYN and the PST in Lago Catemaco and, indeed, for any freshwater system in Mexico. Identification of the apparent bioaccumulation of these toxins in tegogolos may suggest the need to further our understanding of the transfer of cyanobacterial toxins in freshwater food webs as it relates to human health.  相似文献   

12.
Toxin-producing cyanobacteria pose a worldwide health threat to humans and animals due to their increasing presence in both drinking and recreational waters. Detection of microcystins in water generally relies on specialised equipment and a delay of several days for transport and analysis. Little work has, however, been done on establishing a simple, cost-effective and sensitive plant bioassay for the detection of microcystin-LR (MCLR) in water at the WHO Tolerable Daily Intake guideline level of 1 microg/l. We investigated the effect of a MCLR extract at 1 and 10 microg/l on the growth of Lepidium sativum over 6 days. Exposure to 10 microg/l MCLR resulted in a significant decrease in root and leaf lengths and fresh weights of seedlings when compared to the controls. These results were consistent with seedlings exposed to pure MCLR at 10 microg/l. Seedlings exposed to 1 microg/l MCLR showed a significant decrease in root development from day 2 to day 6. Glutathione S-transferase and glutathione peroxidase activities were also significantly raised in plants from days 5 and 4, respectively, at both toxin levels investigated.  相似文献   

13.
Three single-filament isolates of Aphanizomenon flos-aquae from two German lakes were found to produce remarkable amounts of the cyanobacterial hepatotoxin cylindrospermopsin (CYN). CYN-synthesis of the strains were evidenced both by LC-MS/MS analysis and detection of PCR products of gene fragments which are implicated in the biosynthesis of the toxin. The strains contain CYN in the range of 2.3-6.6 mg g(-1) of cellular dry weight. To our knowledge this is the first report of CYN in A. flos-aquae.  相似文献   

14.
Toxic cyanobacterial blooms are an increasing problem in Argentina. The production of cyanobacterial hepatotoxins (microcystins) and their presence in drinking and recreational waters represent a growing danger to human and animal health. Risk management deals with the probability that a certain exposure to toxins will lead to specific health outcomes. Various model schemes for risk management have been portrayed, most of which have some common elements. These include the need for an information base on which to make decisions. Thus, seasonal variability in the concentrations of total microcystins and cyanobacterial cells was studied in two reservoirs: San Roque and Paso de las Piedras. Both reservoirs are eutrophic water bodies and mainly used to supply drinking water and for recreation. Because San Roque is an important recreational spot, the spatial distribution of microcystins was also investigated. Sampling of the San Roque Reservoir occurred from 1998 to 2000 and of the Paso de las Piedras Reservoir from June to December 2002 (late autumn, winter, and spring). Microcystins were identified by LC-MS, and their concentrations were measured using the enzyme-linked immunosorbent assay. These hepatotoxic compounds were detected in all seasons, and even during winter relatively high concentrations were observed. Concentrations in the San Roque Reservoir varied from undetectable to 920 microg/L. On the contrary, in the Paso de las Piedras Reservoir the concentration remained below 1 microg/L, which is the provisional guideline value proposed by the World Health Organization (WHO; Chorus and Bartram, 1999) for microcystin-LR in drinking water. Comparison of cell number and concentration of total microcystins indicated that the phytoplankton in San Roque Reservoir contained more toxic cyanobacterial strains than did the Paso de las Piedras Reservoir. This indicates that the threshold of 2000 cell/mL proposed by WHO as a alert level should be adjusted: it should be reduced for the San Roque Reservoir, whereas it seems appropriate for the Paso de la Piedras Reservoir.  相似文献   

15.
The frequent occurrence of the cyanobacterial toxin cylindrospermopsin (CYN) in the (sub)tropics has been largely associated with cyanobacteria of the order Nostocales of tropical origin, in particular Cylindrospermopsis raciborskii. C. raciborskii is currently observed to spread northwards into temperate climatic zones. In addition, further cyanobacteria of the order Nostocales typically inhabiting water bodies in temperate regions are being identified as CYN-producers. Therefore, data on the distribution of CYN in temperate regions are necessary for a first assessment of potential risks due to CYN in water used for drinking and recreation. A total of 127 lakes situated in the north-eastern part of Germany were investigated in 2004 for the presence of the toxin CYN and the phytoplankton composition. The toxin could be detected in half of the lakes (n = 63) and in half of 165 samples (n = 88). Concentrations reached up to 73.2 microg CYN/g DW. CYN thus proved more widely distributed than previously demonstrated. The analyses of phytoplankton data suggest Aphanizomenon sp. and Anabaena sp. as important CYN producers in Germany, and confirm recent findings of Aphanizomenon flos-aquae as CYN-producing species frequently inhabiting water bodies in temperate climatic regions. The data shown here suggest that CYN may be an important cyanobacterial toxin in German water bodies and that further data are needed to assess this.  相似文献   

16.
Cyanobacteria produce a diverse array of toxic or otherwise bioactive compounds that pose growing threats to human and environmental health. We utilized the zebrafish (Danio rerio) embryo, as a model of vertebrate development, to investigate the inhibition of development pathways (i.e. developmental toxicity) by the cyanobacterial toxin, cylindrospermopsin (CYN), as well as extracts from various isolates of Cylindrospermopsis raciborskii and Aphanizomenon ovalisporum. CYN was toxic only when injected directly into embryos, but not by direct immersion at doses up to 50 μg/ml. Despite the dose dependency of toxicity observed following injection of CYN, no consistent patterns of developmental defects were observed, suggesting that toxic effects of CYN may not target specific developmental pathways. In contrast, direct immersion of embryos in all of the extracts resulted in both increased mortality and reproducible, consistent, developmental dysfunctions. Interestingly, there was no correlation of developmental toxicity observed for these extracts with the presence of CYN or with previously reported toxicity for these strains. These results suggest that CYN is lethal to zebrafish embryos, but apparently inhibits no specific developmental pathways, whereas other apparent metabolites from C. raciborskii and A. ovalisporum seem to reproducibly inhibit development in the zebrafish model. Continued investigation of these apparent, unknown metabolites is needed.  相似文献   

17.
Burrowing mayflies, genus Hexagenia, were extirpated from the major water bodies of North America in the early 1950s, paralleling an increase in eutrophication and organic pollution, and a decrease in dissolved oxygen concentrations. Burrowing mayflies recolonized the western basin of Lake Erie, but remain absent in other former habitats such as Oneida Lake, New York. Eutrophication is commonly associated with a shift in the phytoplankton community toward dominance by cyanobacteria, and therefore, one class of cyanobacterial toxins, microcystins, were investigated as a contributing factor to Hexagenia's eradication or as an impediment to recolonization. Laboratory experiments were conducted to determine if microcystin-LR (MC-LR) produced negative effects on Hexagenia at three points within its life cycle: egg, hatchling nymph (<24-h old, <1 mm total length), and pre-emergence nymph (>17 mm). Treatment concentrations ranged from the guideline set by the World Health Organization for drinking water (0.001 microg mL(-1)) to 0.1 microg mL(-1) for the egg experiment and 10 microg mL(-1) for the nymph trials. Eggs showed a delay in hatching and an altered distribution of hatching over the study period when submerged in 0.1 microg mL(-1) MC-LR (an elevated concentration representative of bloom scum). The 72-h (1.1 microg mL(-1)) and 96-h (0.049 microg mL(-1)) LC(50) values for hatchling nymphs exceeded typical bloom concentrations of North American lakes, (0.01 microg mL(-1)). Large nymphs were more tolerant of the toxin, as indicated by 100% survival over seven days exposure to 10 microg mL(-1), suggesting older larvae can withstand brief encounters with high microcystin levels for at least short periods of time. The sensitivity of young nymphs and eggs to MC-LR may have implications for the recruitment of the genus in water bodies with persistent summer cyanobacterial blooms.  相似文献   

18.
Protein phosphatase inhibition assays currently used for the detection of cyanobacterial peptide hepatotoxins in drinking water require an enrichment step using C18 cartridges to achieve lower the detection limit. This paper describes a colorimetric and fluorometric protein phosphatase inhibition method for the direct detection of microcystin-LR (MCYST-LR) in drinking water without complex clean-up steps and preconcentration procedures. In this assay three different substrates, p-nitrophenyl phosphate (p-NPP) and two fluorogenic compounds, 4-methylumbelliferyl phosphate (MUP) and 6,8-difluoro-4-methylumbelliferyl phosphate DiFMUP), were tested. The detection limits of the assay are 0.25 and 0.1 microg/l using colorimetric and fluorometric methods, respectively. These levels are well below the provisional guideline value for MCYST-LR of 1 microg/l of drinking water. The detection limit of the fluorometric method is comparable to that of the classical ELISA test. Although both the latter tests allow the detection of MCYST-LR in drinking water directly without pretreatment, the protein phosphatase inhibition assay remain less expensive and therefore more attractive for use in the routine assessment of drinking water contamination by microcystins.  相似文献   

19.
Human health risks from cyanobacterial blooms are primarily related to cyanotoxins that some cyanobacteria produce. Not all species of cyanobacteria can produce toxins. Those that do often do not produce toxins at levels harmful to human health. Monitoring programs that use identification of cyanobacteria genus and species and enumeration of cyanobacterial cells as a surrogate for cyanotoxin presence can overestimate risk and lead to unnecessary health advisories. In the absence of federal criteria for cyanotoxins in recreational water, the Oregon Health Authority (OHA) developed guideline values for the four most common cyanotoxins in Oregon’s fresh waters (anatoxin-a, cylindrospermopsin, microcystins, and saxitoxins). OHA developed three guideline values for each of the cyanotoxins found in Oregon. Each of the guideline values is for a specific use of cyanobacteria-affected water: drinking water, human recreational exposure and dog recreational exposure. Having cyanotoxin guidelines allows OHA to promote toxin-based monitoring (TBM) programs, which reduce the number of health advisories and focus advisories on times and places where actual, rather than potential, risks to health exist. TBM allows OHA to more efficiently protect public health while reducing burdens on local economies that depend on water recreation-related tourism.  相似文献   

20.
Smith AH  Smith MM 《Toxicology》2004,198(1-3):39-44
The United States Public Health Service set an interim standard of 50 microg/l in 1942, but as early as 1962 the US Public Health Service had identified 10 microg/l as a goal which later became the World Health Organization Guideline for drinking water in 1992. Epidemiological studies have shown that about one in 10 people drinking water containing 500 microg/l of arsenic over many years may die from internal cancers attributable to arsenic, with lung cancer being the surprising main contributor. A prudent public health response is to reduce the permissible drinking water arsenic concentrations. However, the appropriate regulatory response in those developing countries with large populations with much higher concentrations of arsenic in drinking water, often exceeding 100 microg/l, is more complex. Malnutrition may increase risks from arsenic. There is mounting evidence that smoking and arsenic act synergistically in causing lung cancer, and smoking raises issues of public health priorities in developing countries that face massive mortality from this product. Also, setting stringent drinking water standards will impede short term solutions such as shallow dugwells. Developing countries with large populations exposed to arsenic in water might reasonably be advised to keep their arsenic drinking water standards at 50 microg/l.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号