首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of the present study was to examine the acute effects of hamstring and calf stretching on leg extension and flexion peak torque (PT) and the hamstrings-to-quadriceps (H : Q) ratio during maximal, concentric isokinetic muscle actions at 60, 180, and 300 degrees . s (-1) in women. Thirteen women (mean age +/- SD = 20.8 +/- 1.8 yrs; height = 163.0 +/- 5.7 cm; mass = 64.0 +/- 8.3 kg) performed 3 maximal concentric isokinetic leg extension and flexion muscle actions at 3 randomly ordered angular velocities (60, 180, and 300 degrees . s (-1)) before and after a bout of static stretching. The stretching protocol consisted of 1 unassisted and 3 assisted static stretching exercises designed to stretch the posterior muscles of the thigh and leg. Four repetitions of each stretch were held for 30 s with 20 s rest between repetitions. The results indicated that leg flexion PT decreased from pre- to post-stretching (34.9 +/- 3.5 and 32.4 +/- 3.2 Nm, respectively) collapsed across velocity. However, no other changes were observed from pre- to post-stretching for leg extension PT (78.5 +/- 5.9 and 77.8 +/- 5.5 Nm, respectively) and the H : Q ratio (0.47 +/- 0.04 and 0.44 +/- 0.03, respectively). Our findings suggested that despite the stretching-induced decreases in leg flexion PT, leg extension PT and the H : Q ratios were unaltered by the stretching.  相似文献   

2.
Recent evidence has shown acute static stretching may decrease hamstring‐to‐quadriceps (H:Q) ratios. However, the effects of static stretching on the functional H:Q ratio, which uses eccentric hamstrings muscle actions, have not been investigated. This study examined the acute effects of hamstrings and quadriceps static stretching on leg extensor and flexor concentric peak torque (PT), leg flexor eccentric PT, and the conventional and functional H:Q ratios. Twenty‐two women (mean ± SD age=20.6 ± 1.9 years; body mass=64.6 ± 9.1 kg; height=164.5 ± 6.4 cm) performed three maximal voluntary unilateral isokinetic leg extension, flexion, and eccentric hamstring muscle actions at the angular velocities of 60 and 180°/s before and after a bout of hamstrings, quadriceps, and combined hamstrings and quadriceps static stretching, and a control condition. Two‐way repeated measures ANOVAs (time × condition) were used to analyze the leg extension, flexion, and eccentric PT as well as the conventional and functional H:Q ratios. Results indicated that when collapsed across velocity, hamstrings‐only stretching decreased the conventional ratios (P<0.05). Quadriceps‐only and hamstrings and quadriceps stretching decreased the functional ratios (P<0.05). These findings suggested that stretching may adversely affect the conventional and functional H:Q ratios.  相似文献   

3.
The aim of this study was to explore the effects of static and dynamic stretching of the leg flexors and extensors on concentric and eccentric peak torque (PT) and electromyography (EMG) amplitude of the leg extensors and flexors in women athletes. Ten elite women athletes completed the following intervention protocol in a randomized order on separate days: (a) non‐stretching (control), (b) static stretching, and (c) dynamic stretching. Stretched muscles were the quadriceps and hamstring muscles. Before and after the stretching or control intervention, concentric and eccentric isokinetic PT and EMG activity of the leg extensors and flexors were measured at 60 and 180°/s. Concentric and eccentric quadriceps and hamstring muscle strength at both test speeds displayed a significant decrease following static stretching (P<0.01–0.001). In contrast, a significant increase was observed after dynamic stretching for these strength parameters (P<0.05–0.001). Parallel to this, normalized EMG amplitude parameters exhibited significant decreases following static (P<0.05–0.001) and significant increases following dynamic stretching (P<0.05–0.001) during quadriceps and hamstring muscle actions at both concentric and eccentric testing modes. Our findings suggest that dynamic stretching, as opposed to static or no stretching, may be an effective technique for enhancing muscle performance during the pre‐competition warm‐up routine in elite women athletes.  相似文献   

4.
BackgroundDeficits in knee flexor strength and rate of torque development (RTD) might be present in women with patellofemoral pain (PFP). In addition, maximal strength and RTD of the knee flexors and extensors might be related with subjective and objective function in women with PFP. However, both conjectures are still poorly understood.Research questionDo women with PFP have deficits in the maximal strength and RTD of the knee flexors and extensors during isometric, concentric, and eccentric contractions? Is there a relationship between maximal strength and RTD of the knee flexors and extensors with subjective and objective function in women with PFP?MethodsFifty-six women with, and 46 women without, PFP participated. Maximal strength and RTD (to 30% and 60% maximal torque) during isometric, concentric, and eccentric contractions of the knee flexors and extensors were assessed using an isokinetic dynamometer. Objective assessment included single leg hop test (SLHT) and forward step-down test (FSDT). Subjective assessment involved the anterior knee pain scale.ResultsWomen with PFP had small to large deficits in maximal strength and RTD of the knee flexors and extensors during isometric, concentric and eccentric contractions (Effect sizes: -0.43 to -1.10; p ≤ 0.016). Small to moderate correlations of maximal concentric and eccentric knee flexor strength and RTD with SLHT and FSDT (r = 0.28 to 0.41; p ≤ 0.037) were identified. Subjective or objective function were not correlated with maximal isometric knee flexor strength and RTD, or any knee extensor measures (p > 0.05).SignificanceMaximal strength and RTD deficits of the knee flexors and extensors were identified in this female PFP cohort, but they were unrelated to subjective function. The relationship of concentric and eccentric knee flexor strength and RTD deficits with poor objective function should be considered in future exercise trials for women with PFP.  相似文献   

5.
The purpose of this study was to investigate the potential differences in peak isokinetic concentric end eccentric torque following low- and high-intensity cycle exercise fatigue protocols. Ten healthy, recreationally-active men were tested in a balanced, randomized testing sequence for peak eccentric and concentric isokinetic torque (60 degrees/sec) immediately before and after three experimental conditions each separated by 48 hours: 1) a bout of high intensity cycling consisting of a maximal 90-second sprint; 2) a bout of low-intensity cycling at 60 rpm equated for total work with the high-intensity protocol: and 3) no exercise (control bout). Blood was drawn from an antecubital vein and plasma lactate concentrations were determined immediately before and after each experimental bout. Post-exercise plasma lactate concentrations were 15.1 +/- 2.5 and 4.7 +/- 1.9 mmol l(-1), respectively, following the high- and low-intensity protocols. The high intensity exercise bout resulted in the only post-exercise decrease in concentric and eccentric isokinetic peak torque. The percent decline in maximal force production was significantly (P< 0.05) greater for concentric muscle actions compared to eccentric (29 vs 15%, respectively). In conclusion, a 90-second maximal cycling sprint results in a significant decline in maximal torque of both concentric and eccentric muscle actions with the greatest magnitude observed during concentric muscle actions.  相似文献   

6.
We sought to determine if the velocity of an acute bout of eccentric contractions influenced the duration and severity of several common indirect markers of muscle damage. Subjects performed 36 maximal fast (FST, n = 8: 3.14 rad x s(-1)) or slow (SLW, n = 7: 0.52 rad x s(-1)) velocity isokinetic eccentric contractions with the elbow flexors of the non-dominant arm. Muscle soreness, limb girth, plasma creatine kinase (CK) activity, isometric torque and concentric and eccentric torque at 0.52 and 3.14 rad x s(-1) were assessed prior to and for several days following the eccentric bout. Peak plasma CK activity was similar in SLW (4030 +/- 1029 U x 1(-1)) and FST (5864 +/- 2664 U x 1(-1)) groups, (p > 0.05). Both groups experienced similar decrement in all strength variables during the 48 hr following the eccentric bout. However, recovery occurred more rapidly in the FST group during eccentric (0.52 and 3.14 rad x s(-1)) and concentric (3.14 rad x s(-1)) post-testing. The severity of muscle soreness was similar in both groups. However, the FST group experienced peak muscle soreness 48 hr later than the SLW group (24 hr vs. 72 hr). The SLW group experienced a greater increase in upper arm girth than the FST group 20 min, 24 hr and 96 hr following the eccentric exercise bout. The contraction velocity of an acute bout of eccentric exercise differentially influences the magnitude and time course of several indirect markers of muscle damage.  相似文献   

7.
Isometric and isokinetic (concentric and eccentric, strength of alpine skiers with different performance levels were measured. Nine national (elite, EG) and 10 collegiate (trained, TG) female alpine skiers (16 to 23 years of age) performed maximal voluntary knee extension and flexion. Peak torque was measured at an angular velocity of 30 deg.s-1. The cross-sectional area (CSA) of thigh muscles (quadriceps and hamstring muscles) was determined by an ultrasonic method. No significant differences in anthropometric variables and CSA were observed between EG and TG. EG had significantly greater (p < 0.01 for extensors and p < 0.05 for flexors) eccentric knee extensor and flexor strength than that of TG whereas no significant differences were noted in isometric and concentric strength. Eccentric strength/CSA ratio was also higher for EG than for TG. It was suggested that knee extension and flexion strength during eccentric muscle action might be related to the performance level of alpine skiers.  相似文献   

8.
Contracting the knee flexor muscles immediately before a maximum voluntary contraction (MVC) of knee extension increases the maximal force that the extensor muscles can exert. It is hypothesized that this phenomenon can be impaired by muscle fiber damage following eccentric exercise [delayed onset muscle soreness (DOMS)]. This study investigates the effect of eccentric exercise and DOMS on knee extension MVC immediately following a reciprocal‐resisted knee flexion contraction. Electromyography (EMG) was recorded from the knee extensors and flexors of 12 healthy men during knee extension MVCs performed in a reciprocal (maximal knee extension preceded by resisted knee flexion), and nonreciprocal condition (preceded by relaxation of the knee flexors). At baseline, knee extension MVC force was greater during the reciprocal condition (P < 0.001), whereas immediately after, 24 and 48 h after eccentric exercise, the MVC force was not different between conditions. Similarly, at baseline, the EMG amplitude of the quadriceps during the MVC was larger for the reciprocal condition (P < 0.001). However, immediately after, 24 and 48 h postexercise the EMG amplitude was similar between conditions. In conclusion, eccentric exercise abolished the facilitation of force production for the knee extensors, which normally occurs when maximum knee extension is preceded by activation of the knee flexors.  相似文献   

9.
Strength training effects in prepubescent boys   总被引:6,自引:0,他引:6  
Possible changes in muscle size and function due to resistance training were examined in prepubertal boys. Thirteen boys (9-11 yr) volunteered for each of the training and control groups. Progressive resistance training was performed three times weekly for 20 wk. Measurements consisted of the following: 1 repetition maximum (RM) bench press and leg press; maximal voluntary isometric and isokinetic elbow flexion and knee extension strength; evoked isometric contractile properties of the right elbow flexors and knee extensors; muscle cross-sectional area (CSA) by computerized tomography at the mid-right upper arm and thigh; and motor unit activation (MUA) by the interpolated twitch procedure. Training significantly increased 1 RM bench press (35%) and leg press (22%), isometric elbow flexion (37%) and knee extension strength (25% and 13% at 90 degrees and 120 degrees, respectively), isokinetic elbow flexion (26%) and knee extension (21%) strength, and evoked twitch torque of the elbow flexors (30%) and knee extensors (30%). There were no significant effects of training on the time-related contractile properties (time to peak torque, half-relaxation time), CSA, or %MUA of the elbow flexors or knee extensors. There was, however, a trend toward increased MUA for the elbow flexors and knee extensors in the trained group. Strength gains were independent of changes in muscle CSA, and the increases in twitch torque suggest possible adaptations in muscle excitation-contraction coupling. Improved motor skill coordination (especially during the early phase of training), a tendency toward increased MUA, and other undetermined neurological adaptations, including better coordination of the involved muscle groups, are likely the major determinants of the strength gains in this study.  相似文献   

10.
Angle-specific isometric strength and angular velocity-specific concentric strength of the knee extensors were studied in eight subjects (5 males and 3 females) following a bout of muscular damaging exercise. One hundred maximal voluntary eccentric contractions of the knee extensors were performed in the prone position through a range of motion from 40 degrees to 140 degrees (0 degrees = full extension) at 1.57 rads(-1). Isometric peak torque was measured whilst seated at 10 degrees and 80 degrees knee flexion, corresponding to short and optimal muscle length, respectively. Isokinetic concentric peak torque was measured at 0.52 and 3.14 rad x s(-1). Plasma creatine kinase (CK) activity was also measured from a fingertip blood sample. These measures were taken before, immediately after and on days 1, 2, 4, and 7 following the eccentric exercise. The eccentric exercise protocol resuited in a greater relative loss of strength (P< 0.05) at short muscle length (76.3 +/- 2.5% of pre-exercise values) compared to optimal length (82.1 +/- 2.7%). There were no differences in the relative strength loss between isometric strength at optimal length and isokinetic concentric strength at 0.52 and 3.14 rad x s(-1). CK activity was significantly elevated above baseline at days 4 (P < 0.01) and 7 (P < 0.01). The greater relative strength loss at short muscle length appeared to persist throughout the seven-day testing period and provides indirect evidence of a shift in the angle-torque relationship towards longer muscle lengths. The results lend partial support to the popping sarcomere hypothesis of muscle damage, but could also be explained by an impairment of activation at short muscle lengths.  相似文献   

11.
ObjectiveTo assess the reproducibility of isokinetic eccentric and concentric knee extension and flexion strength indices obtained at two different angular velocities.DesignCohort study.SettingUniversity human performance laboratory.Participants45 healthy physically active young adults (25 males).Main outcome measuresA non reciprocal protocol of concentric and eccentric contractions of the knee extensors and flexors was performed at 30 and 120°/s. Strength indices evaluated included peak moment; dynamic control ratios; and the difference between eccentric and concentric ratio at the two angular velocities.ResultsNo evidence for inter-test bias in any of the strength indices was noted. Measurement precision for peak moment, as quantified using ratio limits of agreement, suggest that scores may be expected to vary up to 15% for the knee extensors in both eccentric and concentric contraction modes. An error of up to 19% was calculated for the peak moment scores of the knee flexors. Intraclass correlation coefficients revealed fairly robust preservation of participants’ rank order for the majority of strength indices (>0.85).ConclusionIsokinetic-related indices of knee muscles performance enable an acceptable level of detection of expected changes in muscular strength parameters as a result of planned interventions.  相似文献   

12.
The magnitude of muscle damage induced by downhill backward walking   总被引:1,自引:0,他引:1  
While various models for exercise-induced muscle damage (EIMD) have been introduced, many of them use maximal voluntary contractions of the elbow flexors and knee extensors performed on isokinetic dynamometers. Few studies have used exercise protocols that attempt to replicate submaximal eccentric muscle actions that commonly occur during daily activities. Downhill backwards walking has been used previously as an EIMD model. However, the common markers of muscle damage have not been systematically examined for this model. The purpose of this study was to determine the magnitude of muscle damage induced by downhill backward walking with regard to changes in commonly-used indirect markers of EIMD. Twenty subjects aged between 19 y and 42 y completed a bout of 60 min of downhill (-15%) backward walking in which a single limb performed submaximal eccentric actions at a stepping rate of 30 - 35 strides per min. A repeated measures ANOVA revealed significant (p < 0.05) increases from baseline for soreness (24 hr- 96 hr), tenderness (24 hr - 96 hr), and plasma creatine kinase activity (0.5 hr - 96 hr), and significant decreases (p < 0.05) in maximal voluntary isometric (approximately 25%) and isokinetic (-15%) strength (0.5 hr - 96 hr) post-walk for the exercised limb. The time course of observed changes in these markers was similar to that reported for EIMD models of the elbow flexors and knee extensors. However, the magnitude of muscle damage appeared more consistent with that demonstrated following submaximal eccentric exercise.  相似文献   

13.
PURPOSE: The purposes of this study were to determine whether ambulatory children with spastic cerebral palsy (CP) had abnormal isokinetic eccentric peak torque values at the knee and ankle, and to gain further insights on the influence of spasticity on voluntary force production in this population. METHODS: Twenty-four children with spastic CP (mean = 11.1+/-2.6 yr) and twenty children of comparable age with no neuromotor pathology (mean = 10.3+/-2.6 yr) participated in an isokinetic testing protocol on a Biodex dynamometer that measured eccentric and concentric peak torques of the knee extensors, knee flexors, ankle dorsiflexors, and ankle plantarflexors. Angular velocity of the eccentric trials was 30 degrees x s(-1) and of the concentric trials was 30 degrees x s(-1), 60 degrees x s(-1), and 120 degrees x s(-1). Peak torque values were normalized by body weight and compared across groups by using ANOVA procedures. Eccentric to concentric (E/C) peak torque ratios at 30 degrees x s(-1) were computed for each muscle and compared across groups. The torque values in CP were also expressed as a percent of the mean normalized value of the comparison group and compared across conditions using repeated measures ANOVA (P < 0.05). RESULTS: Children with CP demonstrated decreased eccentric and concentric peak torques for all muscle groups tested. The relative deficit in eccentric torque was less than the concentric torque and the decrement in concentric torque across speeds was greater in CP for all muscle groups except the ankle dorsiflexors. The E/C ratios for the knee extensors and flexors were also greater in CP. CONCLUSIONS: Children with CP have diminished eccentric as well as concentric peak torques at the knee and ankle. The influence of spasticity on voluntary force production can be inferred from the bias toward greater eccentric torque and the greater decrement in concentric torque across speeds in children with spastic CP.  相似文献   

14.
PURPOSE: The primary aim was to describe perceived exertion responses to different intensities of eccentric exercise in women and men. METHODS: 42 adults (21 men and 21 women, 7 per condition) completed elbow extension exercises with a weight corresponding to 80%, 100%, or 120% of maximal voluntary concentric strength. Total work was equated by manipulating the number of repetitions in the 80% (N = 45), 100% (N = 36), and 120% (N = 30) conditions. RESULTS: A two-way ANOVA showed significant main effects for the intensity and sex factors. Perceived exertion ratings were strongly dependent on exercise intensity, and women reported lower RPEs than men. A separate three-way mixed model ANOVA that included a repetition factor showed that perceived exertion ratings increased similarly across the first 30 repetitions in all exercise conditions. Significant partial correlations were found between mean RPE during the eccentric exercise bout, and the mean intensity of delayed-onset muscle pain measured from 12- to 72-h postexercise after controlling for the relative exercise intensity (r12.3 = 0.28) or the maximum concentric strength of the elbow flexors (r12.3 = 0.33). CONCLUSIONS: 1) for both women and men, there is a positive association between the intensity of eccentric exercise performed with the elbow flexors and RPE; 2) perceived exertion ratings increase significantly then plateau when repeated eccentric muscle actions are performed at constant, submaximal absolute intensities; 3) women rate eccentric exercise performed at the same intensity (relativized to MVC-C) as being less effortful compared with men; and 4) RPE during eccentric exercise can account for a small but significant amount of variability in delayed-onset muscle pain after statistically controlling for differences in strength or relative intensity.  相似文献   

15.
This study compared nine resistance eccentric exercises targeting arm, leg, and trunk muscles in one session for changes in maximal voluntary isometric contraction strength (MVC), delayed onset muscle soreness (DOMS), plasma creatine kinase (CK) activity, and myoglobin (Mb) concentration after the first and second bouts. Fifteen sedentary men (20‐25 years) performed 5 sets of 10 eccentric contractions with 80% of MVC load for the elbow flexors (EF), elbow extensors (EE), pectoralis, knee extensors (KE), knee flexors (KF), plantar flexors (PF), latissimus, abdominis, and erector spinae (ES) in a randomized order and repeated the same exercises 2 weeks later. MVC decreased at 1 (16%‐57%) to 4 (13%‐49%) days, DOMS developed (peak: 43‐70 mm), and CK activity (peak: 23 238‐207 304 IU/L) and Mb concentration showed large increases after the first bout. The magnitude of decrease in MVC was greater (< 0.05) for EF, EE, and PEC than others and for KF than KE, PF, and ES. DOMS was greater (< 0.05) for EF, EE, and ES than others. Changes in all measures were smaller (< 0.05) after the second than the first bout, and the magnitude of the repeated bout effect was similar among the muscles. Plasma CK activity and Mb concentration did not increase significantly after the second exercise bout. It was concluded that muscle damage was greater for arm than leg muscles, and muscle proteins in the blood increased to a critical level after unaccustomed whole‐body resistance exercises, but the magnitude of damage was largely attenuated for all muscles similarly after the second bout.  相似文献   

16.
AIM: The purpose of this study was to provide an extensive isokinetic profile, including peak torque and "functional" and "conventional" muscle group ratios, of basketball players throughout the developmental years 12-17. Furthermore, we investigated the effects of age and angular velocity on peak torque and reciprocal muscle group ratios, and observed the force-velocity pattern. METHODS: Basketball players (n=180) 12 to 17 years. were divided according to their age in 6 equal (n=30) groups aged 12, 13, 14, 15, 16, 17 years. All subjects performed maximum knee extension and flexion efforts at 60 inverted exclamation mark /s and 180 inverted exclamation mark /s angular velocities under eccentric and concentric conditions. The absolute (Nm) peak torque was measured, and the relative peak torque (PT/BW) and "functional" and "conventional" reciprocal muscle group ratio (%) were calculated. RESULTS: PT/BW values of knee flexors ranged from 0.98 to 2.29 Nm/kg and of extensors from 1.53 to 3.69 Nm/kg, across all age, velocity, and muscle action levels. PT/BW was higher at slow speed and during eccentric contraction irrespective of age and angular velocity/muscle action. The results indicated a significant (p<0.05) age-related increase in peak torque independent of changes in BW. The force-velocity patterns were similar across ages. The "functional" and "conventional" ratios were not affected by age, but increased with increase in angular velocity, except the CON(KF)/ECC(KE) ratio that was higher (p<0.05) at slow speed. CONCLUSION: The present study provides an extensive isokinetic profile of a knee joint in basketball players throughout developmental years 12-17. Coaches and physical therapist may use these information when evaluating and planning exercise programs during training and rehabilitation.  相似文献   

17.
Ten healthy male subjects carried out bilateral concentric leg extension training twice a week for 8 weeks. Before and after the training, maximal voluntary isometric and isokinetic strength and cross-sectional areas of the quadriceps femoris were measured. Maximal bilateral leg extension power increased significantly after the training. Isometric and concentric unilateral strength did not change significantly before and after the training, while eccentric strength at 0.52 and 1.05 rad·s−1 increased after the training with no changes in cross-sectional area. The correlations between strength and cross-sectional area increased significantly after the training. It was speculated that the increase in eccentric strength of knee extensors was due to modification of the neural inhibition during eccentric muscle actions.  相似文献   

18.
This study examined markers of muscle damage following a repeated bout of maximal isokinetic eccentric exercise performed prior to full recovery from a previous bout. Twenty non-resistance trained volunteers were randomly assigned to a control (CON, n=10) or experimental (EXP, n=10) group. Both groups performed 36 maximal isokinetic eccentric contractions of the elbow flexors of the non-dominant arm (ECC1). The EXP group repeated the same eccentric exercise bout two days later (ECC2). Total work and peak eccentric torque were recorded during each set of ECC1 and ECC2. Isometric torque, delayed onset muscle soreness (DOMS), flexed elbow angle and plasma creatine kinase (CK) activity were measured prior to and immediately following ECC1 and ECC2. at 24h intervals for 7 days following ECC1 and finally on day 11. In both groups, all dependent variables changed significantly during the 2 days following ECC1. A further acute post-exercise impairment in isometric torque (30 +/- 5%) and flexed elbow angle (20 +/- 4%) was observed following ECC2 (p<0.05), despite EXP subjects producing uniformly lower work and peak eccentric torque values during ECC2 (p<0.05). No other significant differences between the CON and EXP groups were observed throughout the study (p>0.05). These findings suggest that when maximal isokinetic eccentric exercise is repeated two days after experiencing of contraction-induced muscle damage, the recovery time course is not significantly altered.  相似文献   

19.
BACKGROUND: Loss of muscle strength and cross-sectional area is a well-recognized consequence of spaceflight. Existing countermeasures have not been fully effective in preventing muscle weakness and atrophy in microgravity. Resistance exercise programs that consist of both eccentric and concentric actions have resulted in strength and muscle mass gains in ground-based studies. HYPOTHESES: 1) A concentric/eccentric combination exercise regimen (with a bias of either concentric or eccentric exercise) will result in a greater strength gain than concentric exercise alone; and 2) an eccentrically biased regimen will result in the greatest strength gain of all. METHODS: The 31 subjects were randomly assigned to one of three isokinetic exercise groups (CON-ECC: 75% concentric and 25% eccentric; ECC-CON: 75% eccentric and 25% concentric; CON: 100% concentric); each subject trained the right leg 3 d per week for 5 wk. Pre- and post-training isokinetic concentric/ eccentric strength tests and DEXA scans assessed changes in muscle strength and/or mass. RESULTS: All three groups showed an increase in eccentric muscle strength with the CON group showing the smallest gain (10.1%). Significantly larger gains were noted in the two combination groups (19.5%, 18.1%; p < 0.042), with the largest gains in eccentric strength. No significant change was noted in muscle mass. CONCLUSIONS: A resistance exercise protocol which includes eccentric as well as concentric exercise, particularly when the eccentric exercise is emphasized, appears to result in greater strength gains than concentric exercise alone. Findings suggest eccentric exercise may be an important component of the in-flight resistance exercise protocol for long-duration spaceflight.  相似文献   

20.
PURPOSE: The purpose of this experiment was to investigate the effects of eccentric exercise by the wrist extensor muscles on the function and motor control of synergist wrist extensor muscles and the antagonist wrist flexor muscles. METHODS: Ten subjects were tested repeatedly over a period of 11 d, once before and four times after a bout of strenuous eccentric exercise with the wrist extensor muscles. Tests performed as indicators of muscle injury were wrist extension MVC, ROM, and soreness. Tests performed as measures of function and motor control were maximum joint velocity, ability to sustain a constant torque, and the ability to track a changing torque. RESULTS: Indicators of muscle injury: subjects exhibited a decline in wrist extension MVC and ROM, which peaked on day 1, and reported that muscle soreness was greatest on day 2. All measures returned to baseline values by day 10. Measures of function and motor control: subjects exhibited a greater difficulty sustaining a submaximal contraction and tracking torque after eccentric exercise. Greater torque variances in these tests were most evident at high torque levels. Subjects exhibited the greatest difficulty 24 h after eccentric exercise and had recovered by day 10. There was no change in maximal wrist extension velocity. CONCLUSIONS: Strenuous eccentric exercise by wrist extensors had an effect on function and motor control of the wrist extensor muscles. The effect was most evident during contractions in which high torque was required. The response of all of the wrist extensors after the exercise bout was similar, suggesting that they operated in a synergistic manner. The antagonists wrist flexors showed increased coactivation after eccentric exercise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号