首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Purpose  Multidrug resistance, aggressiveness and accelerated choline metabolism are hallmarks of malignancy and have motivated the development of new PET tracers like 18F-FCH, an analogue of choline. Our aim was to study the relationship of multidrug resistance of cultured glioma cell lines and 18F-FCH tracer uptake. Methods  We used an in vitro multidrug-resistant (MDR) glioma model composed of sensitive parental U87MG and derived resistant cells U87MG-CIS and U87MG-DOX. Aggressiveness, choline metabolism and transport were studied, particularly the expression of choline kinase (CK) and high-affinity choline transporter (CHT1). FCH transport studies were assessed in our glioblastoma model. Results  As expected, the resistant cell lines express P-glycoprotein (Pgp), multidrug resistance-associated protein isoform 1 (MRP1) and elevated glutathione (GSH) content and are also more mobile and more invasive than the sensitive U87MG cells. Our results show an overexpression of CK and CHT1 in the resistant cell lines compared to the sensitive cell lines. We found an increased uptake of FCH (in % of uptake per 200,000 cells) in the resistant cells compared to the sensitive ones (U87MG: 0.89 ± 0.14; U87MG-CIS: 1.27 ± 0.18; U87MG-DOX: 1.33 ± 0.13) in line with accelerated choline metabolism and aggressive phenotype. Conclusions  FCH uptake is not influenced by the two ATP-dependant efflux pumps: Pgp and MRP1. FCH would be an interesting probe for glioma imaging which would not be effluxed from the resistant cells by the classic MDR ABC transporters. Our results clearly show that FCH uptake reflects accelerated choline metabolism and is related to tumour aggressiveness and drug resistance.  相似文献   

2.
Elevated levels of choline (trimethyl-2-hydroxyethylammonium) and choline kinase (CK) activity in neoplasms have motivated the development of positron-labeled choline analogs for noninvasive detection of cancer using PET. The aim of this study was to further evaluate [(18)F]fluorocholine (fluoromethyl-dimethyl-2-hydroxyethylammonium [FCH]) as an oncologic probe in comparison with several other closely related molecules. METHODS: FCH, [(18)F]fluoromethyl-methylethyl-2-hydroxyethylammonium (FMEC), [(18)F]fluoroethyl-dimethyl-2-hydroxyethylammonium (FEC), and [(18)F]fluoropropyl-dimethyl-2-hydroxyethylammonium (FPC) were synthesized through [(18)F]fluoroalkylation reactions. In vitro phosphorylation rates of the (18)F-labeled choline analogs and [methyl-(14)C]choline (CH) were studied using yeast CK. Several choline radiotracers were also evaluated in cultured PC-3 human prostate cancer cells. Data on chemical stability, radiation dosimetry, and toxicity of FCH were obtained. PET studies with FCH were performed on a patient with prostate cancer and a patient with a brain tumor. RESULTS: FCH and FMEC revealed in vitro phosphorylation by CK that was similar to that of choline, whereas rates of phosphorylation of FEC and FPC were 30% (P < 0.01) and 60% (P < 0.01) lower, respectively. Accumulations of FCH, CH, and FPC in cultured PC-3 cancer cells were comparable, whereas uptake of FEC was approximately one fifth that of FCH. Dosimetry estimates using FCH biodistribution data in mice indicated that the kidneys are radiation-dose-critical organs for FCH. PET images of a patient with recurrent prostate cancer showed uptake of FCH in the prostatic bed and in metastases to lymph nodes. FCH PET showed uptake in malignancies in a patient with metastatic breast cancer. PET revealed FCH uptake in biopsy-proven recurrent brain tumor with little confounding uptake by normal brain tissues. CONCLUSION: The fluoromethyl choline analog FCH may serve as a probe of choline uptake and phosphorylation in cancer cells, whereas fluoroethyl (FEC) and fluoropropyl (FPC) analogs appear to have relatively poorer biologic compatibility. Preliminary PET studies on patients with prostate cancer and with breast cancer and brain tumor support further studies to evaluate the usefulness of FCH as an oncologic probe.  相似文献   

3.
Introduction The positron emission tomography (PET) tracers 18F-fluoro-ethyl-L-tyrosine (FET), 18F-fluorocholine (N,N-dimethyl-N-[18F]fluoromethyl-2-hydroxyethylammonium (FCH]) and 18F-fluoro-2-deoxyglucose (FDG) are used in the diagnosis of brain tumours. The aim of this study was threefold: (a) to assess the uptake of the different tracers in the F98 rat glioma, (b) to evaluate the impact of blood-brain barrier (BBB) disruption and microvessel density (MVD) on tracer uptake and (c) to compare the uptake in the tumours to that in the radiation injuries (induced by proton irradiation of healthy rats) of our previous study.Methods F98 gliomas were induced in 26 rats. The uptake of FET, FCH and FDG was measured using autoradiography and correlated with histology, disruption of the BBB and MVD.Results The mean FET, FCH and FDG standardised uptake values (SUVs) in the tumour and the contralateral normal cortex (in parentheses) were 4.19±0.86 (1.32±0.26), 2.98±0.58 (0.51±0.11) and 11.02±3.84 (4.76±1.77) respectively. MVD was significantly correlated only with FCH uptake. There was a trend towards a negative correlation between the degree of BBB disruption and FCH uptake and a trend towards a positive correlation with FET uptake. The ratio of the uptake in tumours to that in the radiation injuries was 1.97 (FCH), 2.71 (FET) and 2.37 (FDG).Conclusion MVD displayed a significant effect only on FCH uptake. The degree of BBB disruption seems to affect the accumulation of FET and FCH, but not FDG. Mean tumour uptake for all tracers was significantly higher than the accumulation in radiation injuries.  相似文献   

4.
Radiolabeled amino acids represent a promising class of tumor imaging agents, and the determination of the optimal characteristics of these tracers remains an area of active investigation. A new (18)F-labeled branched amino acid, 2-amino-4-[(18)F]fluoro-2-methylbutanoic acid (FAMB), has been prepared in 36% decay-corrected yield using no-carrier-added [(18)F]fluoride. In vitro uptake assays with rat 9L gliosarcoma cells suggest that [(18)F]FAMB was transported primarily via the L type amino acid transport system. In vivo studies with [(18)F]FAMB demonstrated tumor to normal brain ratios of 14:1 in rats with intracranial 9L gliosarcoma tumors at 60 minutes after injection. Comparison of [(18)F]FAMB with structurally related (18)F-labeled branched amino acids demonstrated that A type transport in vitro was positively correlated with the tumor to brain ratios observed in vivo.  相似文献   

5.

Introduction

No direct proof has been brought to light in a link between hypoxic changes in glioma models and the effects of antiangiogenic treatments. Here, we assessed the sensitivity of the detection of hypoxia through the use of 18F-fluoromisonidazole positron emission tomography ([18F]-FMISO PET) in response to the evolution of the tumor and its vasculature.

Methods

Orthotopic glioma tumors were induced in rats after implantation of C6 or 9L cells. Sunitinib was administered from day (D) 17 to D24. At D17 and D24, multiparametric magnetic resonance imaging was performed to characterize tumor growth and vasculature. Hypoxia was assessed by [18F]-FMISO PET.

Results

We showed that brain hypoxic volumes are related to glioma volume and its vasculature and that an antiangiogenic treatment, leading to an increase in cerebral blood volume and a decrease in vessel permeability, is accompanied by a decrease in the degree of hypoxia.

Conclusions

We propose that [18F]-FMISO PET and multiparametric magnetic resonance imaging are pertinent complementary tools in the evaluation of the effects of an antiangiogenic treatment in glioma.  相似文献   

6.
PURPOSE: The aim of this study was to investigate (a) in vitro the relationship between [(18)F]fluorocholine ([(18)F]FCH) uptake and cell growth in endocrine cell lines and (b) in vivo the uptake of [(18)F]FCH by tumoral sites in an animal model of metastasized endocrine tumor. METHODS: In vitro studies were conducted on three endocrine and two nonendocrine digestive tumoral cell lines. The proliferative ratio was estimated using the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay. The uptake of [(18)F]FCH and that of [(18)F]fluorodeoxyglucose ([(18)F]FDG) were measured before and after cytotoxic therapy. [(18)F]FCH biodistribution was studied in nude mice and in an endocrine xenografted mice model. RESULTS: The [(18)F]FCH uptake in tumoral cell lines was related to their proliferative capacities as measured by the MTT assay in basal conditions. After cytotoxic therapy, the IC(50) values calculated with the [(18)F]FCH incorporation test were very close to those determined with the MTT assay. Biodistribution studies showed that [(18)F]FCH was predominantly concentrated in the liver and kidney of nude mice. In the STC-1 xenografted animal model, the uptake of [(18)F]FCH in the primary tumor was only 1.1%. On autoradiography and micro-positron emission tomography, there was no uptake of [(18)F]FCH in liver metastases but there was a significant uptake of [(18)F]FDG. CONCLUSIONS: In vitro studies suggested that the incorporation of [(18)F]FCH in endocrine tumor cell lines was related to their growth capacities; however, in vivo studies conducted in an endocrine xenografted animal model showed an uptake of [(18)F]FCH in hepatic metastases lower than that in normal liver cells. An influence of the microenvironment or a competition phenomenon for [(18)F]FCH uptake between normal liver and endocrine tumor cells cannot be excluded.  相似文献   

7.
Acetate is preferentially transported into and metabolized by astrocytes, rather than synaptosomes or neurons, and labeled acetate is used as a glial reporter molecule to assess glial metabolism and glial-neuronal interactions. Because monocarboxylic acid transporter specificity might confer a phenotype to help localize, detect, and characterize brain tumors of glial origin, use of [2-(14)C]acetate and [(14)C]deoxyglucose (a glucose analog metabolized by all brain cells) was compared in rat and human brain tumors. METHODS: Cultured C6 glioma or U-373 glioblastoma/astrocytoma tumor cells were injected into the caudate nucleus of anesthetized CDF Fisher rats; 2--3 wk later, an intravenous pulse of [2-(14)C]acetate or [(14)C]deoxyglucose was given, and timed blood samples were drawn during the 5- or 45-min experiment, respectively. Local (14)C levels in the brain were assayed by quantitative autoradiography, and acetate uptake or glucose use was calculated. Uptake and metabolism of the [(14)C]acetate was also assayed in C6 glioma and human surgical tumor samples in vitro. RESULTS: [(14)C]Acetate uptake into rat brain C6 tumors was 9.9 +/- 2.1 mL/100 g/min, compared with 3.9 +/- 1.0 mL/100 g/min in contralateral tissue (n = 6; P < 0.001), and was much higher than that into other brain structures (e.g., 5:1 for white matter and 2:1 for cortical gray matter). Glucose use in C6 tumors was 111 +/- 34 micromol/100 g/min, versus 81 +/- 5 micromol/100 g/min in contralateral tissue (n = 6; P = 0.08); no left-right differences in glucose use or acetate uptake were seen in other brain structures. The tumor-to-contralateral-tissue ratio for acetate (2.3 +/- 0.3) exceeded that for deoxyglucose (1.4 +/- 0.5) (P < 0.05), indicating that acetate is a sensitive C6 glioma marker. [(14)C]Acetate uptake also demarcated a few 3-wk-old C6 tumors that had unlabeled necrotic cores. U-373 tumors were smaller than C6 tumors in rat brain and were detected equally well with [(14)C]acetate and [(14)C]deoxyglucose. In vitro uptake of [(14)C]acetate into human glioblastoma or meningioma tumors was higher than uptake into pituitary adenoma. Rat C6 and human tumors with high uptake metabolized acetate to acidic compounds and amino acids. CONCLUSION: Tumor imaging with radiolabeled acetate can help to localize and classify brain tumors. Transporter and metabolic substrate specificity are traits that can be exploited further for in vivo imaging of brain glial tumors.  相似文献   

8.
[(11)C]-2'-Fluoro-5-methyl-1-beta-D-arabinofuranosyluracil ([(11)C]FMAU) and [(18)F]-9-[(3-fluoro-1-hydroxy-2-propoxy)methyl]guanine ([(18)F]FHPG), radiolabeled representatives of two classes of antiviral agents, were evaluated as tracers for measuring herpes simplex virus thymidine kinase (HSV-tk) enzyme activity after gene transfer and as tracers for localization of active human cytomegalovirus (HCMV) infections. In vitro accumulation experiments revealed that both [(11)C]FMAU and [(18)F]FHPG accumulated significantly more in HSV-tk expressing cells than they did in control cells. [(18)F]FHPG uptake in HSV-tk expressing cells, however, was found to depend strongly on the cell line used, which might be due to cell type dependent membrane transport or cell type dependent substrate specific susceptibility of the enzyme. In vitro, both tracers exhibited a good selectivity for accumulation in HCMV-infected human umbilical vein endothelial cells over uninfected cells. In contrast to [(18)F]FHPG, [(11)C]FMAU uptake in control cells was relatively high due to phosphorylation of the tracer by host kinases. Therefore, [(18)F]FHPG appears to be the more selective tracer not only to predict HSV-tk gene therapy outcome, but also to localize active HCMV infections with PET.  相似文献   

9.
The gene for herpes simplex virus thymidine kinase (HSV-tk) is widely used as a suicide gene in experimental gene therapy of cancer. 9-(4-Fluoro-3-hydroxymethylbutyl)guanine (FHBG) is an antiviral nucleoside analog that is rapidly phosphorylated by viral thymidine kinase but is a poor substrate for mammalian thymidine kinase. Recently, FHBG labeled in the 4-fluoro position with (18)F has shown promise relative to other similar compounds for imaging in vivo expression of HSV-tk using PET. In this study, we evaluated the uptake of [(18)F]FHBG in vitro and in vivo using transduced and wild-type human colon cancer cells (HT-29). We also imaged [(18)F]FHBG and measured the radioactivity concentrations of circulating [(18)F]FHBG and its metabolites in monkeys. METHODS: Sterile, pyrogen-free [(18)F]FHBG was produced routinely in good yields. Cells were transduced with the retroviral vector G1Tk1SvNa containing HSV-tk gene. In vitro uptake studies were performed by incubating cells with [(18)F]FHBG at 37 degrees C for 1 and 5 h. Biodistribution studies were performed at 2 and 5 h after injection in nude mice bearing tumors grown from wild-type or transduced cells. Sequential, whole-body PET scans of cynomolgus monkeys were obtained over a period of >2 h after intravenous injection of [(18)F]FHBG. Arterial plasma samples obtained from monkeys 15-120 min after intravenous injection were subjected to acid extraction, and the acid-soluble fractions were analyzed by high-performance liquid chromatography. RESULTS: In vitro studies showed 31 and 71 (P < 0.001) times higher uptake of the probe at 1 and 5 h, respectively, in transduced cells compared with nontransduced cells. In vivo studies in mice showed that tumor uptake of the radiotracer was 4-fold (P < 0.05) and 13-fold (P < 0.001) higher at 2 and 5 h, respectively, in tumors grown from transduced cells compared with control cells. Transduced tumor-to-normal tissue ratios ranged from 2 to 25 at 2 h and from 2 to 22 at 5 h. Recirculating labeled metabolites had only a minor effect on the biodistribution of radiolabel from [(18)F]FHBG in monkeys. CONCLUSION: These results indicate that [(18)F]FHBG may yield high-contrast PET images of HSV-tk expression in tumors and, therefore, it is a very promising radiotracer for monitoring of gene therapy of cancer with PET.  相似文献   

10.
The significance of imaging hypoxia with the PET ligand [(18)F]FMISO has been demonstrated in a variety of cancers. However, the slow kinetics of [(18)F]FMISO require a 2-h delay between tracer administration and patient scanning. Labelled chloroethyl sulfoxides have shown faster kinetics and higher contrast than [(18)F]FMISO in a rat model of ischemic stroke. However, these nitrogen mustard analogues are unsuitable for routine production and use in humans. Here we report on the synthesis and in vitro and in vivo evaluation of two novel sulfoxides which we synthesised from a single precursor molecule via either 2-[(18)F]fluoroethyl azide click chemistry or conventional nucleophilic displacement of a chloride leaving group. The yields of the click chemistry approach were 90±5% of [(18)F]2 based on 2-[(18)F]fluoroethyl azide, and the yields for the S(N) reaction were 15±5% of [(18)F]1 based on K[(18)F]F. Both radiotracers underwent metabolism in an in vitro assay using S9 liver fractions with biological half-lives of 32.39 and 43.32 min, respectively. Imaging studies using an SK-RC-52 tumor model in BALB/c nude mice have revealed that only [(18)F]1 is retained in hypoxic tumors, whereas [(18)F]2 is cleared from those tumors at a rate similar to that of muscle tissue. [(18)F]1 has emerged as a promising new lead structure for further development of sulfoxide-based hypoxia imaging agents. In particular, the mechanism of uptake needs to be elucidated and changes to the chemical structure need to be made in order to reduce metabolism and improve radiotracer kinetics.  相似文献   

11.
11C-labeled choline ([11C]CHO) and 18F-fluorinated choline analogues have been demonstrated to be valuable tracers for in vivo imaging of neoplasms by means of positron emission tomography (PET). The objective of the present study was to evaluate whether deshydroxy-[18F]fluorocholine, ([18F]dOC), a non-metabolizable [18F]fluorinated choline analogue, can serve as a surrogate for cholines that are able to be phosphorylated and thus allow PET-imaging solely by addressing the choline transport system. The specificity of uptake of [18F]dOC was compared with that of [11C]choline ([11C]CHO) in cultured rat pancreatic carcinoma and PC-3 human prostate cancer cells in vitro. In addition, biodistribution of [18F]dOC and [11C]CHO was compared in AR42J- and PC-3 tumor bearing mice. The in vitro studies revealed that membrane transport of both compounds can be inhibited in a concentration dependent manner by similar concentrations of cold choline (IC50 [18F]dOC= 11 microM; IC50 [11C]CHO=13 microM. In vitro studies with PC-3 and AR42J cells revealed that the internalized fraction of [18F]dOC after 5 min incubation time is comparable to that of [11C]CHO, whereas the uptake of [11C]CHO was superior after 20 min incubation time. As for [11C]CHO, kidney and liver were also the primary sites of uptake for [18F]dOC in vivo. Biodistribution data after simultaneous injection of both tracers into AR42J tumor bearing mice revealed slightly higher tumor uptake for [18F]dOC at 10 min post-injection, whereas [11C]CHO uptake was higher at later time points. In conclusion, [18F]dOC is taken up into AR42J rat pancreatic carcinoma and PC-3 human prostate cancer cells by a choline specific transport system. Similar transport rates of [18F]dOC and [11C]CHO result in comparable cellular uptake levels at early time points. In contrast to [18F]dOC, which is transported but not intracellularly trapped, the choline kinase substrate [11C]CHO is transported into tumor cells and retained. Thus, the signal obtained by imaging early after injection is mainly reflecting transport, whereas a valid quantification of choline kinase activity needs imaging at later time points. Further studies have to clarify whether quantification of the transport capacity or the choline kinase activity result in a better pathophysiological correlate and thus is the more useful process for tumor characterization.  相似文献   

12.
The transport mechanisms of cis-4-[(18)F]fluoro-L-proline (cis-FPro) and trans-4-[(18)F]fluoro-L-proline (trans-FPro) were studied in F98 rat glioma cells in comparison to the natural parent [(3)H]-L-proline. Uptake rates of cis-FPro and trans-FPro in F98 glioma cells were 50-70% lower than those of [(3)H]-L-proline. The amino transport system A inhibitor MeAIB reduced the uptake of [(3)H]-L-proline by 30% and uptake of cis-FPro by 46% while uptake of trans-FPro was not significantly changed. BCH inhibited the uptake of all tracers by 35-44%, serine by 70-90% and L-proline by 60 -80%. Absence of Na(+) reduced uptake of all tracers significantly but no further inhibitory effect could be observed which suggests a component of unspecific uptake. Radioactivity of cis- and trans-FPro in the acid precipitable fraction was < 1% after 120 min incubation time while [(3)H]-L-proline exhibited a 20% incorporation into protein. Whole body PET scans in humans demonstrated a retention of cis-FPro in the renal cortex, liver and the pancreas while trans-FPro was retained particularly in muscles. We conclude that system A amino acid transport appears to be selectively relevant for cis-FPro which may contribute to the observed differences in whole body distribution of cis-FPro and trans-FPro in humans.  相似文献   

13.
INTRODUCTION: 2-Amino-6-[(18)F]fluoro-9-(4-hydroxy-3-hydroxy-methylbutyl) purine (6-[(18)F]FPCV) was prepared via a one-step nucleophilic substitution and evaluated as a novel probe for imaging the expression of herpes simplex virus type 1 thymidine kinase (HSV1-tk) reporter gene. METHODS: Log P of 6-[(18)F]FPCV was calculated in octanol/phosphate-buffered saline (PBS). Stability studies were performed in PBS and bovine serum albumin (BSA). Cell uptake was performed at various time points in wild-type cells and transduced cells. For in vivo studies, tumors were grown in nude mice by inoculation with C6 cells, wild type and tk positive. The radiotracer was intravenously injected to animals, and micro-PET imaging was performed. Biodistribution of 6-[(18)F]FPCV was performed on another group of animals at different time points. RESULTS: Log P of 6-[(18)F]FPCV was -0.517. 6-[(18)F]FPCV was fairly stable in PBS and BSA at 6 h. The tracer uptake in C6-tk cells was 5.5-18.8 times higher than that in wild-type cells. The plasma half-life of 6-[(18)F]FPCV was as follows: alpha t(1/2)=1.2 min and beta t(1/2)=73.7 min. The average ratio of tumor uptake between the transduced tumor and the wild-type tumor was 1.69 at 15 min. CONCLUSION: Biological evaluation showed that 6-[(18)F]FPCV is a potential probe for imaging HSV1-tk gene expression. However, its in vivo defluorination may limit its application in PET imaging of gene expression.  相似文献   

14.
BACKGROUND: We studied the regional characteristics within tumor masses using PET tracers and immunohistochemical methods. METHODS: The intratumoral distribution of (64)Cu-diacetyl-bis(N4-methylthiosemicarbazone) ([(64)Cu]Cu-ATSM) and [(18)F] 2-fluoro-2-deoxyglucose ((18)F]FDG) in mice with tumors of four different origins (LLC1, Meth-A, B16 and colon26) was compared with the immunohistochemical staining of proliferating cells (Ki67), blood vessels (CD34 or von Willebrand factor), and apoptotic cells (terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling method). RESULTS: With all cell lines, [(64)Cu]Cu-ATSM and [(18)F]FDG were distributed with different gradation in the tumor mass. The immunohistochemical study demonstrated that the high [(64)Cu]Cu-ATSM uptake regions were hypovascular and consisted of tumor cells arrested in the cell cycle, whereas the high [(18)F]FDG uptake regions were hypervascular and consisted of proliferating cells. CONCLUSION: In our study, it was revealed that one tumor mass contained two regions with different characteristics, which could be distinguished by [(64)Cu]Cu-ATSM and [(18)F]FDG. Because hypoxia and cell cycle arrest are critical factors to reduce tumor sensitivity to radiation and conventional chemotherapy, regions with such characteristics should be treated intensively as one of the primary targets. [(64)Cu]Cu-ATSM, which can delineate hypoxic and cell cycle-arrested regions in tumors, may provide valuable information for cancer treatment as well as possibly for treating such regions directly as an internal radiotherapy reagent.  相似文献   

15.
We studied how very short (10–40 min) incubation with anthracycline derivatives modifies the accumulation of PET tumor-diagnostic radiotracers in cancer cells. The human ovarian A2780 and A2780AD, human B lymphoid JY, human epidermoid KB-3-1 and KB-V-1, and smooth muscle DDT1 MF-2 cells were pre-incubated with daunorubicin and doxorubicin, and the uptake of [18F]FDG and [11C]choline was measured. Anthracycline treatment decreased remarkably the [11C]choline accumulation in a concentration dependent manner, while it did not modify significantly the [18F]FDG uptake of the cells.  相似文献   

16.
To characterize [methyl-(11)C]choline ([(11)C]choline) as an oncologic PET radiopharmaceutical, [(11)C]choline uptake in regenerating livers after partial hepatectomy as a model of typical proliferating tissue and after CCl(4) insult as that of proliferating tissue with inflammation, was studied in rats. [(11)C]Choline, [(18)F]2-fluoro-2-deoxy-D-glucose ([(18)F]FDG) and [2-(14)C]thymidine ([(14)C]TdR) uptake was studied in regenerating rat liver after 70% partial hepatectomy or CCl(4)-administration. [(11)C]Choline uptake in regenerating liver after partial hepatectomy was significantly increased with [(14)C]TdR uptake as a marker of DNA synthesis at 18 hours after surgery. On the other hand, the uptake was not accelerated by CCl(4)-administration, though it significantly increased [(14)C]TdR uptake. There were no differences of [(11)C]choline uptake acceleration following partial hepatectomy among the three parts of the regenerating liver. [(18)F]FDG uptake was accelerated in the regenerating liver on either partial hepatectomy or CCl(4)-administration. The magnitude of the increase in [(18)F]FDG uptake in the regenerating liver induced by partial hepatectomy was greater than that for [(11)C]choline. [(11)C]Choline uptake in the liver was accelerated by partial hepatectomy, but not by CCl(4)-administration. This might be expected given that the differentiation between proliferating tissues such as tumor and inflammatory tissue was possible by [(11)C]choline-PET.  相似文献   

17.
9-[(3-[18F]Fluoro-1-hydroxy-2-propoxy)methyl]guanine ([18F]FHPG, 2) has been synthesized by nucleophilic substitution of N(2)-(p-anisyldiphenylmethyl)-9-[[1-(p-anisyldiphenylmethoxy)-3-toluenesulfonyloxy-2-propoxy]methyl]guanine (1) with potassium [18F]fluoride/Kryptofix 2.2.2 followed by deprotection with 1 N HCl and purification with different methods in variable yields. When both the nucleophilic substitution and deprotection were carried out at 90 degrees C and the product was purified by HPLC (method A), the yield of compound 2 was 5-10% and the synthesis time was 90 min from EOB. However, if both the nucleophilic substitution and deprotection were carried out at 120 degrees C and the product was purified by HPLC, the yield of compound 2 decreased to 2%. When compound 2 was synthesized at 90 degrees C and purified by Silica Sep-Pak (method B), the yield increased to 10-15% and the synthesis time was 60 min from EOB. Similarly, 9-(4-[18F]fluoro-3-hydroxymethylbutyl)guanine ([18F]FHBG, 4) was synthesized with method A and method B in 9% and 10-15% yield, respectively, in a synthesis time of 90 and 60 min, respectively, from EOB. Compound 2 was relatively unstable in acidic medium at 120 degrees C while compound 4 was stable under the same condition. Both compound 2 and compound 4 had low lipid/water partition coefficient (0.126 +/- 0.022, n=5 and 0.165 +/- 0.023, n=5, respectively). Although it contains non-radioactive ganciclovir ( approximately 5-30 microg) as a chemical by-product, compound 2 synthesized by method B has a similar uptake in 9L glioma cells as that synthesized by method A, and is a potential tracer for imaging herpes simplex virus thymidine kinase gene expression in tumors using PET. Similarly, compound 4 synthesized by method B contains approximately 10-25 microg of penciclovir as a chemical by-product. Thus, the simplified one pot synthesis (method B) is a useful method for synthesizing both compound 2 and compound 4 in good yield for routine clinical use, and the method is readily amenable for automation.  相似文献   

18.
BACKGROUND: Single-photon emission computed tomography (SPECT) using 3-[(123)I]-iodo-L-alpha-methyltyrosine ([(123)I]-IMT) and positron emission tomography (PET) using 2-[(18)F]-fluoro-2-deoxy-D-glucose ([(18)F]-FDG) are valuable tools for the distinction between viable tumor and radionecrosis in patients receiving radiotherapy for high-grade gliomas. However, to date, little is known about the early effects of radiation on [(123)I]-IMT and [(18)F]-FDG uptake in gliomas. MATERIAL AND METHODS: To determine the early effects of irradiation on [(123)I]-IMT and [(18)F]-FDG uptake in gliomas, in vitro studies were performed using rat C6 glioma cells. The glioma cells were irradiated with 20 Gy which is a common dose applied to patients receiving intraoperative radiotherapy. Subsequently, the early kinetics of [(123)I]-IMT and [(18)F]-FDG uptake in glioma cells were monitored for 3 days. RESULTS: Micromorphometric examinations of the irradiated glioma cells revealed that about 25% of the viable cells transformed into giant cells. [(123)I]-IMT uptake per 10(5) viable glioma cells was unchanged on the 1st day post irradiation, but showed a significant increase on the 2nd and 3rd day following radiotherapy (p < 0.01). In addition, there was a moderate increase in [(18)F]- FDG accumulation per 10(5) viable glioma cells during the first 3 days after irradiation (p < 0.05). The maximum increase in early [(123)I]-IMT uptake 1 h after application surpassed that of [(18)F]-FDG (p < 0.01). CONCLUSION: Rat C6 glioma cells show an early increase in [(123)I]-IMT and [(18)F]-FDG uptake following irradiation which may be partly due to giant cell formation. These data suggest that [(123)I]-IMT SPECT and [(18)F]-FDG PET may be promising procedures for the early prediction of the therapeutic response of gliomas to radiotherapy.  相似文献   

19.
As PET metabolic imaging becomes routine in clinical practice, there is a tendency to make imaging and data analysis fast and simple, but interpretation of these pictures by visual inspection does not do justice to the power of PET technology. Tissue data and blood data can be analyzed mathematically to provide parametric images of the PET tracer's biochemistry in terms of a transport parameter and a metabolic flux. The methods for parametric imaging with (11)C tracers of glucose and thymidine have been validated, but the short half-life of this radionuclide and the rapid metabolism of these labeled substrates to [(11)C]CO(2) have led investigators to develop (18)F analogs. While (18)F substitution at critical positions in the natural substrate can block metabolism, it has other effects on the transport and metabolism of the analog tracer. The fidelity with which analog tracers mimic tracers of the authentic substrate is critically evaluated for [(18)F]-2-fluoro-2-deoxyglucose and [(18)F]-3'-fluoro-3'-deoxythymidine.  相似文献   

20.
The purpose of this study was to develop and evaluate an F-18 labeled choline tumor imaging agent.FCH was synthesized through the intermediate F-18 fluorobromomethane that was used to alkylate dimethylethanolamine. The isolated FCH was evaluated in PC-3 human prostate cancer cells, PC-3 human prostate cancer xenograft studies, and human prostate and brain tumor patients.FCH was accumulated at a slightly lower rate than FDG in the cultures of PC-3 cells. Inhibition of choline transport and phosphorylation by hemicholinium-3 resulted in a 90% decrease in FCH uptake without altering FDG uptake. FCH had a similar biodistribution as C-14 choline in mice, with the liver and kidneys being the primary sites of uptake. Tumor uptake of FCH and FDG were comparable at 45-60 mins after injections. The tumor:blood ratio was higher for FCH (5.3 +/- 2.4) than for FDG (3.2 +/- 0.3). Brain uptake of FCH was 10% that of FDG. FCH-PET studies were compared to FDG-PET studies. In the prostate cancer patients, more lesions have been seen on the FCH studies than on the FDG studies, and the standardized uptake values (SUV) have been higher with the FCH. Decreases in FCH-PET SUV have been noted in patients treated by androgen deprivation. Patients with suspected recurrent brain tumors have had more clearly defined abnormal accumulation on the FCH-PET scans than on the FDG-PET scans. The FCH is not accumulated by normal cortex.FCH is a promising imaging agent for the evaluation of metastatic prostate cancer and recurrent brain tumor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号