首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
2.
The excisional dorsal full‐thickness skin wound model with or without splinting is widely utilized in wound healing studies using diabetic or normal mice. However, the effects of splinting on dermal wound healing have not been fully characterized, and there are limited data on the direct comparison of wound parameters in the splinted model between diabetic and normal mice. We compared full‐thickness excisional dermal wound healing in db/db and heterozygous mice by investigating the effects of splinting, semi‐occlusive dressing, and poly(ethylene glycol) treatment. Two 8‐mm full‐thickness wounds were made with or without splinting in db/db and heterozygous mice. Body weights, splint maintenance, wound contraction, wound closure, and histopathological parameters including reepithelialization, wound bed collagen deposition, and inflammation were compared between groups. Our results show that silicone splint application effectively reduced wound contraction in heterozygous and db/db mice. Splinted wounds, as opposed to nonsplinted wounds, exhibited no significant differences in wound closure between heterozygous and db/db mice. Finally, polyethylene glycol and the noncontact dressing had no significant effect on wound healing in heterozygous or db/db mice. We believe these findings will help investigators in selection of the appropriate wound model and data interpretation with fully defined parameters.  相似文献   

3.
Peppa M  Brem H  Ehrlich P  Zhang JG  Cai W  Li Z  Croitoru A  Thung S  Vlassara H 《Diabetes》2003,52(11):2805-2813
Advanced glycoxidation end products (AGEs) are implicated in delayed diabetic wound healing. To test the role of diet-derived AGE on the rate of wound healing, we placed female db/db (+/+) (n = 55, 12 weeks old) and age-matched control db/db (+/-) mice (n = 45) on two diets that differed only in AGE content (high [H-AGE] versus low [L-AGE] ratio, 5:1) for 3 months. Full-thickness skin wounds (1 cm) were examined histologically and for wound closure. Serum 24-h urine and skin samples were monitored for N(epsilon)-carboxymethyl-lysine and methylglyoxal derivatives by enzyme-linked immunosorbent assays. L-AGE-fed mice displayed more rapid wound closure at days 7 and 14 (P < 0.005) and were closed completely by day 21 compared with H-AGE nonhealed wounds. Serum AGE levels increased by 53% in H-AGE mice and decreased by 7.8% in L-AGE mice (P < 0.04) from baseline. L-AGE mice wounds exhibited lower skin AGE deposits, increased epithelialization, angiogenesis, inflammation, granulation tissue deposition, and enhanced collagen organization up to day 21, compared with H-AGE mice. Reepithelialization was the dominant mode of wound closure in H-AGE mice compared with wound contraction that prevailed in L-AGE mice. Thus, increased diet-derived AGE intake may be a significant retardant of wound closure in diabetic mice; dietary AGE restriction may improve impaired diabetic wound healing.  相似文献   

4.
Mesangial cells in diabetic mice and human kidneys with diabetic nephropathy exhibit increased type VIII collagen, a nonfibrillar protein that exists as a heterodimer composed of α1(VIII) and α2(VIII), encoded by Col8a1 and Col8a2, respectively. Because TGF-β1 promotes the development of diabetic glomerulosclerosis, we studied whether type VIII collagen modulates the effects of TGF-β1 in mesangial cells. We obtained primary cultures of mesangial cells from wild-type, doubly heterozygous (Col8a1(+/-)/Col8a2(+/-)), and double-knockout (Col8a1(-/-)/Col8a2(-/-)) mice. TGF-β1 bound normally to double-knockout mesangial cells. In wild-type mesangial cells, TGF-β1 inhibited proliferation, but in double-knockout cells, it stimulated proliferation, promoted cell cycle progression, and reduced apoptosis; we could reverse this effect by reconstituting α1(VIII). Furthermore, in wild-type cells, TGF-β1 mainly stimulated the Smad pathways, whereas in double-knockout cells, it activated the MAPK and PI3K/Akt pathways and induced expression of fibroblast growth factor 21 (FGF21). Inhibiting FGF21 expression by either interfering with activation of the MAPK and PI3K/Akt pathways or by FGF21 siRNA attenuated the TGF-β1-induced proliferation of double-knockout mesangial cells. In vivo, diabetic double-knockout mice had significantly higher expression of renal FGF21 mRNA and protein compared with diabetic wild-type mice. Immunohistochemistry revealed strong expression of FGF21 in both glomerular (mesangial) and tubular cells of diabetic mice. Taken together, these data suggest that type VIII collagen significantly modulates the effect of TGF-β1 on mesangial cells and may therefore play a role in the pathogenesis of diabetic nephropathy.  相似文献   

5.
6.
Mac‐1 (CD11b/CD18) is a macrophage receptor that plays several critical roles in macrophage recruitment and activation. Because macrophages are essential for proper wound healing, the impact of Mac‐1 deficiency on wound healing is of significant interest. Prior studies have shown that Mac‐1?/? mice exhibit deficits in healing, including delayed wound closure in scalp and ear wounds. This study examined whether Mac‐1 deficiency influences wound healing in small excisional and incisional skin wounds. Three millimeter diameter full thickness excisional wounds and incisional wounds were prepared on the dorsal skin of Mac‐1 deficient (Mac‐1?/?) and wild type (WT) mice, and wound healing outcomes were examined. Mac‐1 deficient mice exhibited a normal rate of wound closure, generally normal levels of total collagen, and nearly normal synthesis and distribution of collagens I and III. In incisional wounds, wound breaking strength was similar for Mac‐1?/? and WT mice. Wounds of Mac‐1 deficient mice displayed normal total macrophage content, although macrophage phenotype markers were skewed as compared to WT. Interestingly, amounts of TGF‐β1 and its downstream signaling molecules, SMAD2 and SMAD3, were significantly decreased in the wounds of Mac‐1 deficient mice compared to WT. The results suggest that Mac‐1 deficiency has little impact on the healing of small excisional and incisional wounds. Moreover, the findings demonstrate that the effect of single genetic deficiencies on wound healing may markedly differ among wound models. These conclusions have implications for the interpretation of the many prior studies that utilize a single model system to examine wound healing outcomes in genetically deficient mice.  相似文献   

7.
The murine dorsum dermal excisional wound model has been widely utilized with or without splint application. However, variations in experimental methods create challenges for direct comparison of results provided in the literature and for design of new wound healing studies. Here, we investigated the effects of wound location and size, number of wounds, type of adhesive used for splint fixation on wound healing using splinted or unsplinted dorsum excisional full thickness wound models. One or two 6‐ or 8‐mm full thickness wounds were made with or without splinting in genetically diabetic but heterozygous mice (Dock7m + / + Leprdb). Two different adhesives: tissue adhesive and an over the counter cyanoacrylate adhesive (OTCA) “Krazy glue” were used to fix splints. Wound contraction, wound closure, and histopathological parameters including reepithelialization, collagen deposition and inflammation were compared between groups. No significant effect of wound number (1 vs. 2), side (left vs. right and cranial vs. caudal) or size on wound healing was observed. The OTCA group had a significantly higher splint success compared to the tissue adhesive group that resulted in significantly higher reepithelialization and collagen deposition in the OTCA group. Understanding the outcomes and effects of the variables will help investigators choose appropriate experimental conditions for the study purpose and interpret data.  相似文献   

8.
To clarify the mechanisms underlying declines in wound contraction caused by basic fibroblast growth factor (bFGF) and the role of autologous fibroblasts in modulating wound healing, we have examined the expression of alpha-smooth muscle actin (alpha-SMA) and apoptosis in a model of wound healing using collagen sponges with and without bFGF (1 microg) and/or fibroblasts (1 x 10(6) cells/cm(2)) applied to experimentally produced full-thickness skin wounds in rats (n=10 for each group). At 7 days postoperatively, wounds filled with a fibroblast-seeded collagen sponge (fibroblast-seeded group) displayed a greater area of collagen sponge and a smaller area of fibroblasts compared with control wounds filled with collagen sponge alone (control group). Therefore, seeding of fibroblasts in the dermal substitute might retard degradation of the collagen sponge, inhibiting fibroblast infiltration into the substitute. By day 14, wounds filled with bFGF-treated collagen sponge without fibroblast seeding (bFGF group) displayed decreased alpha-SMA expression and significantly increased apoptosis compared with other wounds. Double staining revealed that apoptosis in alpha-SMA-positive fibroblastic cells was significantly increased in the bFGF group, suggesting that bFGF treatment is a potent stimulator of myofibroblast apoptosis. Furthermore, morphometric analysis demonstrated the significant decrease in the level of wound contraction and the degree of mature collagen bundle formation in the bFGF group by day 42. The bFGF group also showed increased bFGF expression in macrophages by day 28. These results suggest that bFGF administration to an artificial dermis promotes apoptosis of alpha-SMA-positive fibroblastic cells and inhibits alpha-SMA expression in the treated wound, thus reducing wound contraction.  相似文献   

9.
Biology of fetal wound healing: collagen biosynthesis during dermal repair.   总被引:8,自引:0,他引:8  
The rapid restoration of tissue integrity and breaking strength in healing fetal wounds is mainly a function of fetal wound collagen. In this study, the fetal and adult tissue responses to injury were characterized in terms of changes in collagen biosynthesis. Linear wounds and unwounded skin were incubated with radioactive proline, and collagen synthesis was measured as isotope incorporation into collagenase-sensitive protein. Likewise, noncollagen protein synthesis was represented by isotope incorporation into collagenase-resistant protein. Adult wounds demonstrated a preferential stimulation of collagen as compared with noncollagen protein synthesis after wounding. In contrast, both collagen and noncollagen protein synthesis were significantly elevated in the fetus during the first 5 days postwounding. Despite marked increases in fetal wound collagen synthesis above both unwounded fetal skin and adult wound levels, fetal wounds exhibited no evidence of excessive collagen deposition or scar formation after wounding. These findings suggest that the fetal response to tissue injury is a function of the distinctive qualities of fetal fibroblasts associated with the extracellular wound matrix and may involve rapid collagen turnover and degradation.  相似文献   

10.
Excessive wound contraction is known to lead to pathological wound contracture. Using a rabbit model, we applied a bovine type I collagen matrix sponge as a dermal substitute and human epidermal growth factor to full-thickness excisional wounds. Wound contraction was assessed 14 and 28 days after wounding. It was found that both collagen matrix and epidermal growth factor significantly inhibited wound contraction ( p < 0.001) in all wounds treated with collagen matrix alone or treated with 0.1 and 1 µg of epidermal growth factor 28 days after wounding. Interestingly, the combination of collagen matrix with epidermal growth factor strongly inhibited wound contraction over matrix alone ( p < 0.01 on day 28). Histological analyses showed a regular horizontal arrangement of collagen fibers in the dermis under wounds treated with these substances but not under untreated wounds. Furthermore, using a fibroblast-populated collagen gel, the direct inhibitory effect of epidermal growth factor on gel contraction by fibroblasts was also observed. Collagen gels without stimulation contracted to 29.5 ± 0.6% of their original size, as determined 6 days after culturing. At 3 days or more, epidermal growth factor inhibited collagen gel contraction by fibroblasts (after 6 days: 34.2 ± 1.8%, p > 0.05; 36.5 ± 2.8%, p < 0.05; and 39.8 ± 2.1%, p < 0.001 at 1, 10, and 100 ng/ml of epidermal growth factor, respectively). In conclusion, collagen matrix and epidermal growth factor, particularly in combination, may be useful in the prevention of wound contracture.  相似文献   

11.
Fractionated irradiation (IR) before or after surgery of malignant tumours causes a high frequency of wound healing complications. Our aim was to investigate the effect of curcumin (CUM) on the healing of deep excision wound of mice exposed to fractionated IR by mimicking clinical conditions. A full-thickness dermal excision wound was created on the shaved dorsum of mice that were orally administered or not with 100 mg of CUM per kilogram body weight before partial body exposure to 10, 20 or 40 Gy given as 2 Gy/day for 5, 10 or 20 days. The wound contraction was determined periodically by capturing video images of the wound from day 1 until complete healing of wounds. Fractionated IR caused a dose-dependent delay in the wound contraction and prolonged wound healing time, whereas CUM administration before fractionated IR caused a significant elevation in the wound contraction and reduced mean wound healing time. Fractionated IR reduced the synthesis of collagen, deoxyribonucleic acid (DNA) and nitric oxide (NO) at different post-IR times and treatment of mice with CUM before IR elevated the synthesis of collagen, DNA and NO significantly. Histological examination showed a reduction in the collagen deposition, fibroblast and vascular densities after fractionated IR, whereas CUM pre-treatment inhibited this decline significantly. Our study shows that CUM pre-treatment accelerated healing of irradiated wound and could be a substantial therapeutic strategy in the management of irradiated wounds.  相似文献   

12.
While dermal substitutes can mitigate scarring and wound contraction, a significant drawback of current dermal replacement technologies is the apparent delay in vascular ingrowth compared with conventional skin grafts. Herein, we examined the effect of the chemokine stromal cell‐derived factor‐1 (SDF‐1) on the performance of a porous collagen–glycosaminoglycan dermal analog in excisional wounds in mice. C57BL/6 mice with 1 cm × 1 cm dorsal full‐thickness wounds were covered with a collagen–glycosaminoglycan scaffold, followed by four daily topical applications of 1 μg SDF‐1 or phosphate‐buffered saline vehicle. Some animals were also pretreated with five daily doses of 300 mg/kg granulocyte colony‐stimulating factor. Animals treated with SDF‐1 and no granulocyte colony‐stimulating factor reepithelialized 36% faster than vehicle controls (16 vs. 25 days), and exhibited less wound contraction on postwounding day 18 (~35% greater wound area) plus three‐fold longer neoepidermis formed than controls. Conversely, granulocyte colony‐stimulating factor promoted contraction and no epidermal regeneration. Early (postwounding Day 3) inflammatory cell infiltration in the SDF‐1‐treated group was 86% less, while the fraction of proliferating cells (positive Ki67 staining) was 32% more, when compared with controls. These results suggest that SDF‐1 simultaneously delays contraction and promotes reepithelialization and may improve the wound‐healing performance of skin substitutes.  相似文献   

13.
14.
The importance of stromal‐epithelial interactions in wound healing is well established. These interactions likely involve autocrine and paracrine action of multiple growth factors, including members of the TGF‐ß family. TGF‐ß1, ß2 and ß3 isoforms signal by sequentially binding to the TGF‐ß type II and type I receptors, respectively. We address the role of TGF‐ß signaling in dermal fibroblasts using a conditional fibroblastic TGF‐ß type II receptor knockout mouse model (termed FßKO). We found that the loss of TGF‐ß signaling in the dermal fibroblasts results in accelerated excision‐wound closure compared with similar wounds in wild type mice. The mechanism of the altered rate of re‐epitheliaization in the FßKO mice was examined with regard to keratiocyte motility and proliferation. The migration of keratinocytes through collagen I coated 8 μm pore filters in the presence or absence of fibroblast‐conditioned media was tested. These experiments showed increased keratinocyte migration when incubated with FßKO dermal fibroblast conditioned media compared to media conditioned in wild type fibroblasts. Immuno‐histochemical staining of paraffin embedded intact skin indicated both wild type and FßKO mice had similar low levels of keratinocyte proliferation, based on Ki67 staining. In healing wounds, only the distal wound edges of wild type mice were proliferative. In contrast, the FßKO mice exhibited elevated proliferation across the length of the wound, including the leading edge of epithelial closure. Together our results suggest TGF‐ß signaling by the dermal fibroblasts suppresses re‐epithelialization of excision wounds by regulating keratinocyte motility and proliferation through paracrine mechanisms.
Funding: DOD BC99184 and NIH CA85492.  相似文献   

15.
Classic Ehlers–Danlos syndrome (EDS) patients suffer from connective tissue hyperelasticity, joint instability, skin hyperextensibility, tissue fragility, and poor wound healing due to heterozygous mutations in COL5a1 or COL5a2 genes. This study investigated the roles of collagen V in establishing structure and function in uninjured patellar tendons as well as in the injury response using a Col5a1+/− mouse, a model for classic EDS. These analyses were done comparing tendons from a classic EDS model (Col5a1+/− ) with wild‐type controls. Tendons were subjected to mechanical testing, histological, and fibril analysis before injury as well as 3 and 6 weeks after injury. We found that Col5a1+/− tendons demonstrated diminished recovery of mechanical competency after injury as compared to normal wild‐type tendons, which recovered their pre‐injury values by 6 weeks post injury. Additionally, the Col5a1+/− tendons demonstrated altered fibril morphology and diameter distributions compared to the wild‐type tendons. This study indicates that collagen V plays an important role in regulating collagen fibrillogenesis and the associated recovery of mechanical integrity in tendons after injury. In addition, the dysregulation with decreased collagen V expression in EDS is associated with a diminished injury response. The results presented herein have the potential to direct future targeted therapeutics for classic EDS patients. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2707–2715, 2017.
  相似文献   

16.
Differences in cellular competence offer an explanation for the differences in the healing capacity of tissues of various ages and conditions. The homeobox family of genes plays key roles in governing cellular competence. Of these, we hypothesize that Msx2 is a strong candidate regulator of competence in skin wound healing because it is expressed in the skin during fetal development in the stage of scarless healing, affects postnatal digit regeneration, and is reexpressed transiently during postnatal skin wound repair. To address whether Msx2 affects cellular competence in injury repair, 3 mm full-thickness excisional wounds were created on the back of C.Cg- Msx2tm1Rilm /Mmcd (Msx2 null) mice and the healing pattern was compared with that of the wild type mice. The results show that Msx2 null mice exhibited faster wound closure with accelerated reepithelialization plus earlier appearance of keratin markers for differentiation and an increased level of smooth muscle actin and tenascin in the granulation tissue. In vitro, keratinocytes of Msx2 null mice exhibit increased cell migration and the fibroblasts show stronger collagen gel contraction. Thus, our results suggest that Msx2 regulates the cellular competence of keratinocytes and fibroblasts in skin injury repair.  相似文献   

17.
18.
Impaired healing after severe burns remains a reason for prolonged hospitalization, opportunistic infections, and debilitating scarring. Interferon‐gamma (IFN‐γ) is an important immune regulator that has been shown to inhibit collagen synthesis by fibroblasts, resulting in delayed healing in incision wounds. To determine whether IFN‐γ plays similar roles in the healing process after severe burn, we induced scald injury in mice deficient or sufficient in IFN‐γ and examined local responses. In the absence of IFN‐γ, scalded areas healed faster. This was associated with attenuated local inflammatory responses, enhanced reepithelialization, increased proliferation of keratinocytes in reepithelialized leading edges, and up‐regulation of growth factors in burned skin areas. Furthermore, angiogenesis and myofibroblast formation commenced and terminated earlier in IFN‐γ–/– mice compared with wild type (WT) controls. Our observations demonstrate that inhibition of IFN‐γ results in accelerated healing after burn injury by dampening excessive inflammation and facilitating reepithelialization, collagen deposition, and wound contraction.  相似文献   

19.
Chronic wounds such as diabetic ulcers pose a significant challenge as a number of underlying deficiencies prevent natural healing. In pursuit of a regenerative wound therapy, we developed a heparin‐based coacervate delivery system that provides controlled release of heparin‐binding epidermal growth factor (EGF)‐like growth factor (HB‐EGF) within the wound bed. In this study, we used a polygenic type 2 diabetic mouse model to evaluate the capacity of HB‐EGF coacervate to overcome the deficiencies of diabetic wound healing. In full‐thickness excisional wounds on NONcNZO10 diabetic mice, HB‐EGF coacervate enhanced the proliferation and migration of epidermal keratinocytes, leading to accelerated epithelialization. Furthermore, increased collagen deposition within the wound bed led to faster wound contraction and greater wound vascularization. Additionally, in vitro assays demonstrated that HB‐EGF released from the coacervate successfully increased migration of diabetic human keratinocytes. The multifunctional role of HB‐EGF in the healing process and its enhanced efficacy when delivered by the coacervate make it a promising therapy for diabetic wounds.  相似文献   

20.
A complex compound (immune ('IM') fraction) from colostrum-derived whey was investigated for its potential wound healing properties. One of its most intriguing in vitro abilities was to significantly inhibit the contraction of collagen gel while fibroblast density remained as in control gels. This antagonist effect was dose dependent and fibroblasts in these gels did not exhibit any stress fibres. Subsequently, in vivo studies have been conducted in two wound models in guinea pigs. Daily application on full-thickness wounds of a liquid formulation of the IM fraction (first model) significantly delayed wound closure by contraction compared to what normally occurred in control wounds. In another wound model, a gel formulation of the IM fraction was applied on scar tissues, which resulted in a minimised residual scar on 5/8 wounds compared to corresponding wound areas seen prior to treatment. Conversely, most control wounds exhibited scar tissue from which 3/8 resembled hypertrophic scar tissue. Wound tissue treated with IM fraction covered a significantly larger area than in the control wounds, whereas the collagen deposition was unchanged as in the presence of α-smooth muscle actin. Thus, IM fraction may act by modulating the contraction rate and wound remodelling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号