首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Calcium phosphate ceramics have been widely used for filling bone defects to aid in the regeneration of new bone tissue. Addition of osteogenic cells to porous ceramic scaffolds may accelerate the bone repair process. This study demonstrates the feasibility of culturing marrow stromal cells (MSCs) on porous biphasic calcium phosphate ceramic scaffolds in a flow perfusion bioreactor. The flow of medium through the scaffold porosity benefits cell differentiation by enhancing nutrient transport to the scaffold interior and by providing mechanical stimulation to cells in the form of fluid shear. Primary rat MSCs were seeded onto porous ceramic (60% hydroxyapatite, 40% β-tricalcium phosphate) scaffolds, cultured for up to 16 days in static or flow perfusion conditions, and assessed for osteoblastic differentiation. Cells were distributed throughout the entire scaffold by 16 days of flow perfusion culture whereas they were located only along the scaffold perimeter in static culture. At all culture times, flow perfused constructs demonstrated greater osteoblastic differentiation than statically cultured constructs as evidenced by alkaline phosphatase activity, osteopontin secretion into the culture medium, and histological evaluation. These results demonstrate the feasibility and benefit of culturing cell/ceramic constructs in a flow perfusion bioreactor for bone tissue engineering applications.  相似文献   

2.
Perfusion culture systems have proven to be effective bioreactors for constructing tissue engineered bone in vitro, but existing circuit-based perfusion systems are complicated and costly for conditioned culture due to the large medium volume required. A compact perfusion system for artificial bone fabrication using oscillatory flow is described here. Mouse osteoblast-like MC 3T3-E1 cells were seeded at 1.5 x 10(6) cells/100 microL and cultured for 6 days in porous ceramic beta-tricalcium phosphate scaffolds (10 mm in diameter, 8 mm in height) by only 1.5 mL culture media per scaffold. The seeding efficiency, cell proliferation, distribution and viability, and promotion of early osteogenesis by both a static and an oscillatory perfusion method were evaluated. The oscillatory perfusion method generated higher seeding efficiency, alkaline phosphatase activity, and scaffold cellularity (by DNA content) after 6 days of culture. Stereomicroscopic observation of 3(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide staining and Calcein-AM/propidium iodide double staining also demonstrated homogeneous seeding, proliferation, and viability of cells throughout the scaffolds in the oscillatory perfusion system. By contrast, the static culture yielded polarized seeding and proliferation favoring the outer and upper scaffold surfaces, with only dead cells in the center of the scaffolds. Thus, these results suggest that the oscillatory flow condition not only allow a better seeding efficiency and homogeneity, but also facilitates uniform culture and early osteogenic differentiation. The oscillatory perfusion system could be a simple and effective bioreactor for bone tissue engineering.  相似文献   

3.
Xie Y  Hardouin P  Zhu Z  Tang T  Dai K  Lu J 《Tissue engineering》2006,12(12):3535-3543
A 3-dimensional flow perfusion system has been created in our laboratory to provide continuous and homogeneous nutrient supply inside the critical-size beta-tricalcium phosphate (beta-TCP) scaffold and permit cell proliferation during long-term incubation. The critical-size porous cylindrical scaffold (14 mm in diameter, 30 mm in length) with a central tunnel was impregnated with sheep mesenchymal stem cells. In the flow perfusion group, the hybrid scaffolds were continuously perfused with complete alpha-minimum essential medium via a peristaltic pump for 7, 14, and 28 days. In the static culture group, the hybrid composites were immersed in the medium without perfusion for 14 and 28 days. The daily glucose consumption was much higher in the flow perfusion group than in the static group (p < 0.001). In the flow perfusion group, glucose consumption increased dramatically in the first 14 days, and the increase slowed in the last 14 days. In the static group, the increase occurred only in the first 14 days. Cell viability via MTT colorimetry increased with time, which coincided with the results of glucose consumption. Histological study showed that the cells proliferated through the whole scaffolds under the flow perfusion culture. While under the static culture, the cells survived and proliferated only inside the first to third rows of the macropores under the scaffold surface. The cell quantity increased with time under flow perfusion culture. The results suggest that flow perfusion culture is superior to static culture for mesenchymal stem cell proliferation in the critical-size porous scaffold. This perfusion culture system permits a constant nutrition supply into the center of a large-scale scaffold for at least 4 weeks. Determination of D-glucose in the culture medium is a noninvasive way to survey cell proliferation in this system.  相似文献   

4.
This study investigates the influence of the porosity of fiber mesh scaffolds obtained from a blend of starch and poly(epsilon-caprolactone) on the proliferation and osteogenic differentiation of marrow stromal cells cultured under static and flow perfusion conditions. For this purpose, biodegradable scaffolds were fabricated by a fiber bonding method into mesh structures with two different porosities-- 50 and 75%. These scaffolds were then seeded with marrow stromal cells harvested from Wistar rats and cultured in a flow perfusion bioreactor or in 6-well plates for up to 15 days. Scaffolds of 75% porosity demonstrated significantly enhanced cell proliferation under both static and flow perfusion culture conditions. The expression of alkaline phosphatase activity was higher in flow cultures, but only for cells cultured onto the higher porosity scaffolds. Calcium deposition patterns were similar for both scaffolds, showing a significant enhancement of calcium deposition on cellscaffold constructs cultured under flow perfusion, as compared to static cultures. Calcium deposition was higher in scaffolds of 75% porosity, but this difference was not statistically significant. Observation by scanning electron microscopy showed the formation of pore-like structures within the extracellular matrix deposited on the higher porosity scaffolds. Fourier transformed infrared spectroscopy with attenuated total reflectance and thin-film X-ray diffraction analysis of the cell-scaffold constructs after 15 days of culture in a flow perfusion bioreactor revealed the presence of a mineralized matrix similar to bone. These findings indicate that starch-based scaffolds, in conjunction with fluid flow bioreactor culture, minimize diffusion constraints and provide mechanical stimulation to the marrow stromal cells, leading to enhancement of differentiation toward development of bone-like mineralized tissue. These results also demonstrate that the scaffold structure, namely, the porosity, influences the sequential development of osteoblastic cells and, in combination with the culture conditions, may affect the functionality of tissues formed in vitro.  相似文献   

5.
The objective of this study was to evaluate the effect of two cell culture techniques, static and flow perfusion, on the osteogenic expression of rat bone marrow cells seeded into titanium fiber mesh for a period up to 16 days. A cell suspension of rat bone marrow stromal osteoblasts (5 x 10(5) cells/300 microL) was seeded into the mesh material. Thereafter, the constructs were cultured under static conditions or in a flow perfusion system for 4, 8, and 16 days. To evaluate cellular proliferation and differentiation, constructs were examined for DNA, calcium content, and alkaline phosphatase activity. Samples were also examined with scanning electron microscopy (SEM) and plastic-embedded histological sections. Results showed an increase in DNA from day 4 to day 8 for the flow perfusion system. At day 8, a significant enhancement in DNA content was observed for flow perfusion culture compared with static culture conditions, but similar cell numbers were found for each culture system at 16 days. Calcium measurements showed a large increase in calcium content of the meshes subjected to flow perfusion at day 16. The SEM examination revealed that the 16-day samples subjected to flow perfusion culture were completely covered with layers of cells and mineralized matrix. In addition, this matrix extended deep into the scaffolds. In contrast, meshes cultured under static conditions had only a thin sheet of matrix present on the upper surface of the meshes. Evaluation of the light microscopy sections confirmed the SEM observations. On the basis of our results, we conclude that a flow perfusion system can enhance the early proliferation, differentiation, and mineralized matrix production of bone marrow stromal osteoblasts seeded in titanium fiber mesh.  相似文献   

6.
This study aims to investigate the effect of culturing conditions (static and flow perfusion) on the proliferation and osteogenic differentiation of rat bone marrow stromal cells seeded on two novel scaffolds exhibiting distinct porous structures. Specifically, scaffolds based on SEVA-C (a blend of starch with ethylene vinyl alcohol) and SPCL (a blend of starch with polycaprolactone) were examined in static and flow perfusion culture. SEVA-C scaffolds were formed using an extrusion process, whereas SPCL scaffolds were obtained by a fiber bonding process. For this purpose, these scaffolds were seeded with marrow stromal cells harvested from femoras and tibias of Wistar rats and cultured in a flow perfusion bioreactor and in 6-well plates for 3, 7, and 15 days. The proliferation and alkaline phosphatase activity patterns were similar for both types of scaffolds and for both culture conditions. However, calcium content analysis revealed a significant enhancement of calcium deposition on both scaffold types cultured under flow perfusion. This observation was confirmed by Von Kossa-stained sections and tetracycline fluorescence. Histological analysis and confocal images of the cultured scaffolds showed a much better distribution of cells within the SPCL scaffolds than the SEVA-C scaffolds, which had limited pore interconnectivity, under flow perfusion conditions. In the scaffolds cultured under static conditions, only a surface layer of cells was observed. These results suggest that flow perfusion culture enhances the osteogenic differentiation of marrow stromal cells and improves their distribution in three-dimensional, starch-based scaffolds. They also indicate that scaffold architecture and especially pore interconnectivity affect the homogeneity of the formed tissue.  相似文献   

7.
In vitro expansion of hematopoietic stem cells (HSCs) has been employed to obtain sufficient numbers of stem cells for successful engraftment after HSC transplantation. A three-dimensional perfusion bioreactor system with a heparin-chitosan scaffold was designed and evaluated for its capability to support maintenance and expansion of HSCs. Porous chitosan scaffolds were fabricated by a freeze-drying technique and N-desulfated heparin was covalently immobilized within the scaffolds using carbodiimide chemistry. CD34+ HSCs isolated from umbilical cord blood by immunomagnetic separation were cultured within the porous scaffold in a perfusion bioreactor system. Control cultures were maintained on dishes coated with similar heparin-chitosan films. Oxygen uptake was measured during the culture period. After 7 days of culture, scaffolds were harvested for analysis. Cellular phenotype and HSC characteristics were evaluated via flow cytometry and colony forming unit assays. The results indicate good cell retention and proliferation within the perfused scaffolds. Oxygen consumption in the perfusion bioreactor system increased continuously during the culture, indicating steady cell growth. Cells from the perfused scaffold cultures showed higher percentages of primitive progenitors and exhibited superior colony forming unit performance as compared to cells from static cultures. In addition, perfusion culture at low oxygen (5%) enhanced the expansion of CD34+ cells and colony-forming activity compared to high oxygen (19%) cultures. The results suggest that perfusion culture of cord blood CD34+ cells under bone marrow-like conditions enhances HSC expansion compared to static cultures.  相似文献   

8.
Bjerre L  Bünger CE  Kassem M  Mygind T 《Biomaterials》2008,29(17):2616-2627
Autologous bone grafts are currently the gold standard for treatment of large bone defects, but their availability is limited due to donor site morbidity. Different substitutes have been suggested to replace these grafts, and this study presents a bone tissue engineered alternative using silicate-substituted tricalcium phosphate (Si-TCP) scaffolds seeded with human bone marrow-derived mesenchymal stem cells (hMSC). The cells were seeded onto the scaffolds and cultured either statically or in a perfusion bioreactor for up to 21 days and assessed for osteogenic differentiation by alkaline phosphatase activity assays and by quantitative real-time RT-PCR on bone markers. During culture, cells from the flow cultured constructs demonstrated improved proliferation and osteogenic differentiation verified by a more pronounced expression of several bone markers, e.g. alkaline phosphatase, osteopontin, Runx2, bone sialoprotein II, and bone morphogenetic protein 2. Cells and matrix were distributed homogeneously throughout the entire scaffold in flow culture, whereas only a peripheral layer was obtained after static culture. A viable and homogenous ex vivo bone construct with superior osteogenic properties was produced in dynamic culture and may provide a replacement for autologous grafts.  相似文献   

9.
Bone grafts are widely used in orthopaedic reconstructive surgery, but harvesting of autologous grafts is limited due to donor site complications. Bone tissue engineering is a possible alternative source for substitutes, and to date, mainly small scaffold sizes have been evaluated. The aim of this study was to obtain a clinically relevant substitute size using a direct perfusion culture system. Human bone marrowderived mesenchymal stem cells were seeded on coralline hydroxyapatite scaffolds with 200 μm or 500 μm pores, and resulting constructs were cultured in a perfusion bioreactor or in static culture for up to 21 days and analysed for cell distribution and osteogenic differentiation using histological stainings, alkaline phosphatase activity assay, and real-time RT-PCR on bone markers. We found that the number of cells was higher during static culture at most time points and that the final number of cells was higher in 500 μm constructs as compared with 200 μm constructs. Alkaline phosphatase enzyme activity assays and real time RT-PCR on seven osteogenic markers showed that differentiation occurred primarily and earlier in statically cultured constructs with 200 μm pores compared with 500 μm ones. Adhesion and proliferation of the cells was seen on both scaffold sizes, but the vitality and morphology of cells changed unfavorably during perfusion culture. In contrast to previous studies using spinner flask that show increased cellularity and osteogenic properties of cells when cultured dynamically, the perfusion culture in our study did not enhance the osteogenic properties of cell/scaffold constructs. The statically cultured constructs showed increasing cell numbers and abundant osteogenic differentiation probably because of weak initial cell adhesion due to the surface morphology of scaffolds. Our conclusion is that the specific scaffold surface microstructure and culturing system flow dynamics has a great impact on cell distribution and proliferation and on osteogenic differentiation, and the data presented warrant careful selection of in vitro culture settings to meet the specific requirements of the scaffolds and cells, especially when natural biomaterials with varying morphology are used.  相似文献   

10.
Flow perfusion culture of scaffold/cell constructs has been shown to enhance the osteoblastic differentiation of rat bone marrow stroma cells (MSCs) over static culture in the presence of osteogenic supplements including dexamethasone. Although dexamethasone is known to be a powerful induction agent of osteoblast differentiation in MSC, we hypothesied that the mechanical shear force caused by fluid flow in a flow perfusion bioreactor would be sufficient to induce osteoblast differentiation in the absence of dexamethasone. In this study, we examined the ability of MSCs seeded on titanium fiber mesh scaffolds to differentiate into osteoblasts in a flow perfusion bioreactor in both the presence and absence of dexamethasone. Scaffold/cell constructs were cultured for 8 or 16 days and osteoblastic differentiation was determined by analyzing the constructs for cellularity, alkaline phosphatase activity, and calcium content as well as media samples for osteopontin. For scaffold/cell constructs cultured under flow perfusion, there was greater scaffold cellularity, alkaline phosphatase activity, osteopontin secretion, and calcium deposition compared with static controls, even in the absence of dexamethasone. When dexamethasone was present in the cell culture medium under flow perfusion conditions, there was further enhancement of osteogenic differentiation as evidenced by lower scaffold cellularity, greater osteopontin secretion, and greater calcium deposition. These results suggest that flow perfusion culture alone induces osteogenic differentiation of rat MSCs and that there is a synergistic effect of enhanced osteogenic differentiation when both dexamethasone and flow perfusion culture are used.  相似文献   

11.
In this study, we report on the ability of resorbable poly(L-lactic acid) (PLLA) nonwoven scaffolds to support the attachment, growth, and differentiation of marrow stromal cells (MSCs) under fluid flow. Rat MSCs were isolated from young male Wistar rats and expanded using established methods. The cells were then seeded on PLLA nonwoven fiber meshes. The PLLA nonwoven fiber meshes had 99% porosity, 17 m fiber diameter, 10 mm scaffold diameter, and 1.7-mm thickness. The nonwoven PLLA meshes were seeded with a cell suspension of 5 × 105 cells in 300 l, and cultured in a flow perfusion bioreactor and under static conditions. Cell/polymer nonwoven scaffolds cultured under flow perfusion had significantly higher amounts of calcified matrix deposited on them after 16 days of culture. Microcomputed tomography revealed that the in vitro generated extracellular matrix in the scaffolds cultured under static conditions was denser at the periphery of the scaffold while in the scaffolds cultured in the perfusion bioreactor the extracellular matrix demonstrated a more homogeneous distribution. These results show that flow perfusion accelerates the proliferation and differentiation of MSCs, seeded on nonwoven PLLA scaffolds, toward the osteoblastic phenotype, and improves the distribution of the in vitro generated calcified extracellular matrix.  相似文献   

12.
A method to functionalize alginate by introducing monomeric or self-assembling (tetrameric) fibronectin (FN) domains is described, leading to a functional scaffold, which is used for three dimensional (3D) culture of human endometrial stromal cells (EnSCs). EnSCs encapsulated in the functional alginate were cultured under perfusion using the TissueFlex? platform, a multiple parallel microbioreactor system for 3D cell culture. The effect of the novel scaffold and the effect of perfusion were examined. Cell viability, proliferation, and extracellular matrix (ECM) deposition were determined and the results compared with those obtained with cells encapsulated in non-functionalized alginate, and also those without perfusion. Staining for focal adhesions and actin showed maximal cell adhesion only for alginate-tetrameric FN scaffolds under perfusion, associated with a significant increase in cell number over 7 days culture; in contrast to poor cell adhesion and a decrease in cell number for non-functionalized alginate scaffolds (irrespective of perfused/static culture) and 3D static culture (irrespective of the scaffold). Conjugation of alginate to FN was an absolute requirement to attenuate the loss of cell metabolic activity over 7 days culture. ECM deposition for blank alginate and alginate-monomeric FN was similar, but increased around 2-fold and 3-fold for alginate-tetrameric FN under static and perfusion culture, respectively. It is concluded that the requirement for EnSC engagement with multivalent integrin α5β1 ligands and perfused culture are both essential as a first step toward endometrial tissue engineering.  相似文献   

13.
In this study, we cultured marrow stromal cells on titanium fiber meshes in a flow perfusion bioreactor and examined the effect of altering scaffold mesh size on cell behavior in an effort to develop a bone tissue construct composed of a scaffold, osteogenic cells, and extracellular matrix. Scaffolds of differing mesh size, that is, distance between fibers, were created by altering the diameter of the mesh fibers (20 or 40 microm) while maintaining a constant porosity. These scaffolds had a porosity of 80% and mesh sizes of 65 microm (20-microm fibers) or 119 microm (40-microm fibers). Cell/scaffold constructs were grown in static culture or under flow for up to 16 days and assayed for osteoblastic differentiation. Cellularity was higher at early time points and Ca2+ deposition was higher at later time points for flow constructs over static controls. The 20-microm mesh had reduced cellularity in static culture. Under flow conditions, mass transport limitations are mitigated allowing uniform cell growth throughout the scaffold, and there was no difference in cellularity between mesh types. There was greater alkaline phosphatase (ALP) activity, osteopontin levels, and calcium under flow at 8 days for the 40-microm mesh compared to the 20-microm mesh. However, by day 16, the trend was reversed, suggesting the time course of differentiation was dependent on scaffold mesh size under flow conditions. However, this dependence was not linear with respect to time; larger mesh size was conducive to early osteoblast differentiation while smaller mesh size was conducive to later differentiation and matrix deposition.  相似文献   

14.
Dexamethasone, a powerful osteogenic agent for osteoblast differentiation, has been suggested to have synergistic effects when applied together with perfusion culture. As ceramic scaffolds are widely used clinically and oscillatory flow well replicates the natural physical conditions, the biological effects of dexamethasone on oscillatory perfusion culture of CaP-based tissue engineering bone were investigated in this study. Mouse osteoblast-like cells, MC 3T3-E1, were seeded onto porous ceramic scaffolds using the oscillatory perfusion method. The seeded constructs were then either cultured by a static method or an oscillatory perfusion method at different flow rates continuously for 6 days with and without dexamethasone. The cell proliferation, early osteogenic effects, and viability were subsequently evaluated. The results showed that the oscillatory flow could enhance early osteogenesis of osteoblast-like cells in three-dimensional culture on ceramic scaffolds, with a peak function at the flow rate of 0.5 mL/min. The cell viability was significantly higher and more uniform in the perfusion groups than in the static culture groups. The uniformity decreased as the perfusion rates decreased. However, dexamethasone seems to have had no significant effects in any of the groups. Our results suggest that dexamethasone is not an efficient osteogenic supplement during perfusion culture on CaP ceramic scaffolds, and predifferentiation before seeding or additional osteogenic factors should be considered for such cultures.  相似文献   

15.
Culture of seeded osteoblastic cells in three-dimensional osteoconductive scaffolds in vitro is a promising approach to produce an osteoinductive material for repair of bone defects. However, culture of cells in scaffolds sufficiently large to bridge critical-sized defects is a challenge for tissue engineers. Diffusion may not be sufficient to supply nutrients into large scaffolds and consequently cells may grow preferentially at the periphery under static culture conditions. Three alternative culturing schemes that convect media were considered: a spinner flask, a rotary vessel, and a perfusion flow system. Poly(DL-lactic-co-glycolic acid) (PLGA) foam discs (12.7 mm diameter, 6.0 mm thick, 78.8% porous) were seeded with osteoblastic marrow stromal cells and cultured in the presence of dexamethasone and L-ascorbic acid for 7 and 14 days. Cell numbers per foam were found to be similar with all culturing schemes indicating that cell growth could not be enhanced by convection, but histological analysis indicated that the rotary vessel and flow system produced a more uniform distribution of cells throughout the foams. Alkaline phosphatase (ALP) activity per cell was higher with culture in the flow system and spinner flask after 7 days, while no differences in osteocalcin (OC) activity per cell were observed among culturing methods after 14 days in culture. Based on the higher ALP activity and better cell uniformity throughout the cultured foams, the flow system appears to be the superior culturing method, although equally important is the fact that in none of the tests did any of the alternative culturing techniques underperform the static controls. Thus, this study demonstrates that culturing techniques that utilize fluid flow, and in particular the flow perfusion system, improve the properties of the seeded cells over those maintained in static culture.  相似文献   

16.
The objective of this study was to enhance ectopic bone formation in a three-dimensional (3-D) hybrid scaffold in combination with bioreactor perfusion culture system. The hybrid scaffold consists of two biomaterials, a hydrogel formed through self-assembly of peptide-amphiphile (PA) with cell suspensions in media, and a collagen sponge reinforced with poly(glycolic acid) (PGA) fiber incorporation. PA was synthesized by standard solid-phase chemistry that ends with the alkylation of the NH2 terminus of the peptide. A 3-D network of nanofibers was formed by mixing cell suspensions in media with dilute aqueous solution of PA. Scanning electron microscopy (SEM) observation revealed the formation of fibrous assemblies with an extremely high aspect ratio and high surface areas. Osteogenic differentiation of mesenchymal stem cells (MSC) in the hybrid scaffold was greatly influenced by the perfusion culture method compared with static culture method. When the osteoinduction activity of hybrid scaffold was studied following the implantation into the back subcutis of rats in terms of histological and biochemical examinations, significantly homogeneous bone formation was histologically observed throughout the hybrid scaffolds when perfusion culture was used compared with static culture method. The level of alkaline phosphatase activity and osteocalcin content at the implanted sites of hybrid scaffolds were significantly high for the perfusion group compared with those in static culture method. We conclude that combination of MSC-seeded hybrid scaffold and the perfusion method was promising to enhance in vitro osteogenic differentiation of MSC and in vivo ectopic bone formation.  相似文献   

17.
The aim of the present study was to test the hypothesis that both scaffold material and the type of cell culturing contribute to the results of in vivo osteogenesis in tissue-engineered constructs in an interactive manner. CaCO3 scaffolds and mineralized collagen scaffolds were seeded with human trabecular bone cells at a density of 5 x 10(6) cells/cm(3) and were left to attach under standard conditions for 24 h. Subsequently, they were submitted to static and dynamic culturing for 14 days (groups III and IV, respectively). Dynamic culturing was carried out in a continuous flow perfusion bioreactor. Empty scaffolds and scaffolds that were seeded with cells and kept under standard conditions for 24 h served as controls (groups I and II, respectively). Five scaffolds of each biomaterial and from each group were implanted into the gluteal muscles of rnu rats for 6 weeks. Osteogenesis was assessed quantitatively by histomorphometry and expression of osteocalcin (OC) and vascular endothelial growth factor (VEGF) was determined by immunohistochemistry. CaCO3 scaffolds exhibited 15.8% (SD 3.1) of newly formed bone after static culture and 22.4% (SD 8.2) after dynamic culture. Empty control scaffolds did not show bone formation, and scaffolds after 24 h of standard conditions produced 8.2% of newly formed bone (SD 4.0). Differences between the controls and the scaffolds cultured for 14 days were significant, but there was no significant difference between static and dynamic culturing. Mineralized collagen scaffolds did not show bone formation in any group. There was a significant difference in the expression of OC within the scaffolds submitted to static versus dynamic culturing in the CaCO3 scaffolds. VEGF expression did not show significant differences between static and dynamic culturing in the two biomaterials tested. It is concluded that within the limitations of the study the type of biomaterial had the dominant effect on in vivo bone formation in small tissue-engineered scaffolds. The culture period additionally affected the amount of bone formed, whereas the type of culturing may have had a positive effect on the expression of osteogenic markers but not on the quantity of bone formation.  相似文献   

18.
《Acta biomaterialia》2014,10(5):1824-1835
In this work, the influence of direct cell–cell contact in co-cultures of mesenchymal stem cells (MSCs) and chondrocytes for the improved deposition of cartilage-like extracellular matrix (ECM) within nonwoven fibrous poly(∊-caprolactone) (PCL) scaffolds was examined. To this end, chondrocytes and MSCs were either co-cultured in direct contact by mixing on a single PCL scaffold or produced via indirect co-culture, whereby the two cell types were seeded on separate scaffolds which were then cultured together in the same system either statically or under media perfusion in a bioreactor. In static cultures, the chondrocyte scaffold of an indirectly co-cultured group generated significantly greater amounts of glycosaminoglycan and collagen than the direct co-culture group initially seeded with the same number of chondrocytes. Furthermore, improved ECM production was linked to greater cellular proliferation and distribution throughout the scaffold in static culture. In perfusion cultures, flow had a significant effect on the proliferation of the chondrocytes. The ECM contents within the chondrocyte-containing scaffolds of the indirect co-culture groups either approximated or surpassed the amounts generated within the direct co-culture group. Additionally, within bioreactor culture there were indications that chondrocytes had an influence on the chondrogenesis of MSCs as evidenced by increases in cartilaginous ECM synthetic capacity. This work demonstrates that it is possible to generate PCL/ECM hybrid scaffolds for cartilage regeneration by utilizing the factors secreted by two different cell types, chondrocytes and MSCs, even in the absence of juxtacrine signaling.  相似文献   

19.
The aim of this study was to develop a methodology for the in vitro expansion of skeletal-muscle precursor cells (SMPC) in a three-dimensional (3D) environment in order to fabricate a cellularized artificial graft characterized by high density of viable cells and uniform cell distribution over the entire 3D domain. Cell seeding and culture within 3D porous scaffolds by conventional static techniques can lead to a uniform cell distribution only on the scaffold surface, whereas dynamic culture systems have the potential of allowing a uniform growth of SMPCs within the entire scaffold structure. In this work, we designed and developed a perfusion bioreactor able to ensure long-term culture conditions and uniform flow of medium through 3D collagen sponges. A mathematical model to assist the design of the experimental setup and of the operative conditions was developed. The effects of dynamic vs static culture in terms of cell viability and spatial distribution within 3D collagen scaffolds were evaluated at 1, 4 and 7 days and for different flow rates of 1, 2, 3.5 and 4.5 ml/min using C2C12 muscle cell line and SMPCs derived from satellite cells. C2C12 cells, after 7 days of culture in our bioreactor, perfused applying a 3.5 ml/min flow rate, showed a higher viability resulting in a three-fold increase when compared with the same parameter evaluated for cultures kept under static conditions. In addition, dynamic culture resulted in a more uniform 3D cell distribution. The 3.5 ml/min flow rate in the bioreactor was also applied to satellite cell-derived SMPCs cultured on 3D collagen scaffolds. The dynamic culture conditions improved cell viability leading to higher cell density and uniform distribution throughout the entire 3D collagen sponge for both C2C12 and satellite cells.  相似文献   

20.
The classic paradigm for in vitro tissue engineering of bone involves the isolation and culture of donor osteoblasts or osteoprogenitor cells within three-dimensional (3D) scaffold biomaterials under conditions that support tissue growth and mineralized osteoid formation. Our studies focus on the development and utilization of new dynamic culture technologies to provide adequate nutrient flux within 3D scaffolds to support ongoing tissue formation. In this study, we have developed a basic one-dimensional (1D) model to characterize the efficiency of passive nutrient diffusion and transport flux to bone cells within 3D scaffolds under static and dynamic culture conditions. Internal fluid perfusion within modeled scaffolds increased rapidly with increasing pore volume and pore diameter to a maximum of approximately 1% of external fluid flow. In contrast, internal perfusion decreased significantly with increasing pore channel tortuosity. Calculations of associated nutrient flux indicate that static 3D culture and some inappropriately designed dynamic culture environments lead to regions of insufficient nutrient concentration to maintain cell viability, and can result in steep nutrient concentration gradients within the modeled constructs. These quantitative studies provide a basis for development of new dynamic culture methodologies to overcome the limitations of passive nutrient diffusion in 3D cell-scaffold composite systems proposed for in vitro tissue engineering of bone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号