首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Analysis of lymphocyte muscarinic cholinergic receptors using quantitative techniques such as radioligand binding assay is made difficult due to the low density of these sites and the lack of subtype-specific selectivity of most available muscarinic ligands. In this study, a combined kinetic and equilibrium labeling technique recently developed for brain tissue was used for labeling the five muscarinic cholinergic receptor subtypes in intact human peripheral blood lymphocytes. No specific muscarinic M1 receptor binding was detectable in human peripheral blood lymphocytes using [3H]-pirenzepine as a ligand. Labeling of M2-M5 muscarinic receptors using [3H]N-methyl-scopolamine (NMS) by occluding various receptor subtypes with muscarinic antagonist and mamba venom resulted in the labeling of M2-M5 receptors in brain as well as in human peripheral blood lymphocytes. The relative density of different receptor subtypes was M3 > M5 > M4 > M2. The development of a reproducible technique for assaying muscarinic cholinergic receptor subtypes expressed by human peripheral blood lymphocytes may contribute to clarify their role in lymphocyte function.  相似文献   

2.
Autoradiographic examination of the response of muscarinic cholinergic (M1 and M2) receptors to multiple doses of methamphetamine has been performed in several regions of the rat brain. Both muscarinic receptor subtypes were identified with [3H]-N-methylscopolamine, while M1 receptors were specifically labeled with [3H]-pirenzepine. No change in muscarinic receptors labeled with [3H]-pirenzepine was found in any of the brain regions examined following methamphetamine treatment; however, [3H]-N-methylscopolamine binding was significantly reduced (24-40%). These results indicate that M1 receptors remained unchanged after the drug treatment, while M2 receptors were reduced in many areas of the rat central nervous system following multiple high doses of methamphetamine. Five doses of methamphetamine (6-hour interval between doses) were required to elicit the receptor changes in all brain regions analyzed. Within 7 days after drug treatment, the receptor number returned to control values in the affected brain areas. Additionally, the response of serotonin (5-HT1 and 5-HT2) receptors to methamphetamine was examined and found to be reduced in a few brain areas analyzed. The receptor changes were accompanied by METH-induced decreases in tyrosine hydroxylase and tryptophan hydroxylase activities.  相似文献   

3.
4.
Anatomical evidence indicates that cholinergic and opioidergic systems are co-localized and acting on the same neurons. However, the regulatory mechanisms between cholinergic and opioidergic system have not been well characterized. In the present study, we investigated whether there are compensatory changes of acetylcholinesterase activity and cholinergic receptors in mice lacking mu-opioid receptor gene. The acetylcholinesterase activity was determined by histochemistry assay. The cholinergic receptor binding was carried out by quantitative autoradiography using [3H]-quinuclidinyl benzilate (nonselective muscarinic receptors), N-[3H]-methylscopolamine (nonselective muscarinic receptors), [3H]-pirenzepine (M1 subtype muscarinic receptors) and [3H]-AF-DX384 (M2 subtype muscarinic receptors) in brain slices of wild-type and mu-opioid receptor knockout mice. The acetylcholinesterase activity of mu-opioid receptor knockout mice was higher than that of the wild-type in the striatal caudate putamen and nucleus accumbens, but not in the cortex and hippocampus areas. In addition, the bindings in N-[3H]-methylscopolamine and [3H]-AF-DX384 of mu-opioid receptor knockout mice were significantly lower when compared with that of the wild-type controls in the striatal caudate putamen and nucleus accumbens. However, there were no significant differences in bindings of [3H]-quinuclidinyl benzilate and [3H]-pirenzepine between mu-opioid receptor knockout and wild-type mice in the cortex, striatum and hippocampus. These data indicate that there are up-regulation of acetylcholinesterase activity and compensatory down-regulation of M2 muscarinic receptors in the striatal caudate putamen and nucleus accumbens of mu-opioid receptor knockout mice.  相似文献   

5.
Spontaneously hypertensive rats (SHR) respond with exaggerated pressor responses of central origin in response to pharmacologic stimulation of brain muscarinic receptors when compared with those to normotensive Wistar Kyoto (WKY) rats. At least part of the enhanced response to central muscarinic stimulation may be due to alterations in the expression of one or more of the five subtypes of muscarinic receptors. SHR are also known to exhibit regional alterations in the levels of mRNA encoding the M1, M2 and M4 receptors. In this study, we estimated the number of specific muscarinic receptor binding sites in 12-week-old SHR and WKY by measuring the binding of M1- and M2-selective ligands. Using standard autoradiographic techniques, coronal sections obtained from 12-week-old SHR and WKY were incubated with [3H]pirenzepine or [3H]AFDX 384 to label M1 and M2 receptors, respectively. Although both strains exhibited similar distribution patterns for both binding sites, sections derived from SHR expressed a significant increase in the number of [3H]pirenzepine binding sites compared to normotensive WKY in caudate putamen, CA3 region of the hippocampus, cingulate cortex, substantia nigra, posterior hypothalamic area and tuberomammillary nucleus. An increased number of [3H]AFDX 384 binding sites in SHR were observed in the olfactory tubercle, nucleus accumbens, basolateral amygdaloid nucleus, rostroventrolateral medulla and nucleus paragigantocellularis. Decreases in the number of [3H]AFDX 384 binding sites in SHR were also observed in the parietal cortex, medial geniculate, and lateral hypothalamic area. Statistically significant site-selective differences in binding densities between strains ranged from 4.0% to 35.5% of WKY means. These alterations in the expression of M1 and M2 binding sites in cardiovascular regions may contribute to the strain's hyper-responsiveness to cholinergic drugs and possibly to the appearance of other autonomic or behavioral phenotypes exhibited by SHR, including the hypertensive state itself.  相似文献   

6.
Muscarinic M2-M5 muscarinic cholinergic receptors were investigated in peripheral blood lymphocytes of patients with mild cognitive impairment of the Alzheimer's type (MCIAT), probable Alzheimer's disease (AD) and probable vascular dementia (VaD). [3H]-N-methyl scopolamine (NMS) in the presence of muscarinic antagonists and Mamba venom to occlude different receptor subtypes was used as radioligand. Analysis of [3H]-NMS binding curves without receptor subtype assessment resulted in a slight decrease of receptor density in AD patients. Evaluation of receptor subtypes in MCIAT and AD patients revealed a decrease of M3 receptor by more than 50%, an increase of M4 receptor expression by about 20% and no changes of M2 or M5 receptors. The expression of M2-M5 receptors was unaltered in VaD patients. Strong positive and negative correlations respectively were found between the density of lymphocyte M3 and M4 receptors and MMSE score in both MCIAT (0.78 for M3 receptor and 0.80 for M4 receptor) and AD (0.82 for M3 receptor and 0.83 for M4 receptor) patients. These findings suggest that changes in the expression of peripheral blood lymphocyte M3 and M4 receptors in AD are related to the degree of cognitive impairment. Assessment of lymphocyte muscarinic receptor subtypes may contribute to characterization of cholinergic impairment in AD.  相似文献   

7.
Summary We have characterised the muscarinic receptor subtypes found in human skin fibroblasts and compared binding levels in cell lines from members of the Alzheimer's disease family with the Swedish amyloid precursor protein (APP) 670/671 mutation. Binding studies with [3H] quinuclidinyl benzilate ([3H]QNB) and the M2/M4 selective antagonist [3H](±)-5,11-dihydro-11-{[(2-[(di-propylamino)methyl]-1-piperidinyl}ethyl)amino]carbonyl}-6H-pyrido(2,3-b)(1,4) benzodiazepine-6-one ([3H]AF-DX 384) revealed the presence of a single population of muscarinic receptors on lysed fibroblast membranes. [3H]QNB binding was displaced by a number of selective muscarinic ligands with a rank order of potency: atropine>himbacine>methoctramine>(±)-p-fluoro-hexahydro-sila-difenidol hydrochloride>pirenzepine>muscarinic-toxin-3. APP 670/671 mutation carrying cell lines showed 25–35% lower levels of muscarinic receptors labelled with [3H]QNB, [3H]N-methyl scopolamine and [3H]AF-DX 384, compared to controls. This difference was not statistically significant due to large individual variation. It is concluded that muscarinic receptors on adult skin fibroblasts are predominantly of the M2 subtype. Since these cells do not possess M1 and M3 receptor subtypes, they are unlikely to provide a good model for studying muscarinic receptor regulation of APP processing.  相似文献   

8.
A combination of in vitro (competitive binding assays) and in vivo (tissues from animals exposed to dietary methyl mercury, MeHg) experimental procedures was employed to assess the effects of mercury (MeHg, HgCl(2)) on the two-key muscarinic cholinergic (mACh) receptor subtypes (M1, M2) in two brain regions (occipital cortex, brain stem) of captive mink (Mustela vison). In vitro, HgCl(2) and MeHg were equipotent in inhibiting [(3)H]-pirenzipine binding to the M1 receptor in the occipital cortex, but in the brain stem, MeHg was about 65x more potent than HgCl(2). For the M2 receptor, both HgCl(2) and MeHg were more potent at inhibiting [(3)H]-AFDX-384 binding in the occipital cortex than in the brain stem. Within each brain region, HgCl(2) was more potent at inhibiting [(3)H]-AFDX-384 binding than MeHg. In vivo exposure of captive mink to MeHg (0.5, 1, and 2ppm MeHg in the diet for 89 days) resulted in greater binding of radioligands to the M1 and M2 receptor in the occipital cortex, but not in the brain stem, when compared to control animals. Based on the in vitro results, we could not conclude which mACh receptor subtype or brain region was most sensitive to Hg, but the in vivo findings suggest that Hg preferentially affects mACh receptor subtype (M1 and M2) levels in the occipital cortex. By studying distinct mACh receptors, these results extend upon previous studies in laboratory rodents and wildlife that showed Hg to affect the global population of mACh receptors.  相似文献   

9.
The M(1) and M(4) muscarinic acetylcholine receptors are the most abundant muscarinic receptor subtypes in the brain, and are involved in learning and memory. Because cannabinoid receptors are also abundantly expressed in similar brain regions and mediate opposite effects to acetylcholine on cognition, the present study investigated whether the endocannabinoid agonist, anandamide, and its metabolically stable derivative, methanandamide, directly modified the binding properties of the human M(1) and M(4) receptors individually expressed in CHO cell membranes. Experiments utilized the antagonists, [(3)H]N-methylscopolamine and [(3)H]quinuclidinyl benzilate. When acetylcholine was used as the inhibiting ligand, shallow, biphasic isotherms were observed at both receptors, characterised by similar apparent dissociation constants for high and low affinity binding at each receptor but with a greater proportion of high affinity sites at the M(4) (40-45%) than at the M(1) receptor (17-20%). In contrast, anandamide and methanandamide inhibited the binding of both radioligands over a narrow (low micromolar) concentration range, with monophasic isotherms characterized by Hill coefficients significantly greater than 1 at both receptors. These effects were not due to the vehicle used. Further saturation binding analyses found anandamide able to significantly reduce the apparent affinity and maximal density of binding sites labeled by [(3)H]quinuclidinyl benzilate. Interestingly, no significant inhibition of radioligand binding was noted using the synthetic cannabinoid agonist, WIN55212-2, or the cannabinoid CB(1) receptor antagonist, SR141716A. These data thus provide evidence for a direct role of anandamides in modulating muscarinic receptor binding properties through a non-competitive mechanism that is unrelated to their actions on cannabinoid receptors.  相似文献   

10.
M1 muscarinic receptor signaling in mouse hippocampus and cortex   总被引:3,自引:0,他引:3  
The five subtypes (M1-M5) of muscarinic acetylcholine receptors signal through G(alpha)(q) or G(alpha)(i)/G(alpha)(o). M1, M3 and M5 receptors couple through G(alpha)(q) and function predominantly as postsynaptic receptors in the central nervous system. M1 and M3 receptors are localized to brain regions involved in cognition, such as hippocampus and cortex, but their relative contribution to function has been difficult to ascertain due to the lack of subtype specific ligands. A functional and genetic approach was used to identify the predominant muscarinic receptor subtype(s) mediating responses in mouse hippocampus and cortex, as well as the relative degree of spare muscarinic receptors in hippocampus. The nonselective muscarinic agonist oxotremorine-M stimulated G(alpha)(q)/11-specific GTP-gamma-35S binding in a concentration dependent manner with a Hill slope near unity in wild type mouse hippocampus and cortex. Muscarinic receptor stimulated G(alpha)(q)/11-specific GTP-gamma-35S binding was virtually abolished in both the hippocampus and cortex of M1 receptor knockout (KO) mice. In contrast, there was no loss of signaling in M3 receptor KO mice in either brain region. Muscarinic receptor reserve in wildtype mouse hippocampus was measured by Furchgott analysis after partial receptor alkylation with propylbenzylcholine mustard. Occupation of just 15% of the M1 receptors in mouse hippocampus was required for maximal efficacy of oxotremorine-M-stimulated GTP-gamma-35S binding indicating a substantial level of spare receptors. These findings support a role for the M1 receptor subtype as the primary G(alpha)(q)/11-coupled muscarinic receptor in mouse hippocampus and cortex.  相似文献   

11.
We have studied binding parameters (Kd, Bmax) of [3H]N-methylscopolamine ([3H]NMS) in various brain regions and spinal cord of wild-type (WT) and muscarinic acetylcholine receptor (mAChR) subtype (M1-M5) knockout (KO) mice. In the M1-M4 KO mice, the number of [3H]NMS binding sites (Bmax) was decreased throughout the central nervous system (CNS) with significant regional differences. Our results collectively suggest that M1 receptor was present in a relatively high density in the cerebral cortex and hippocampus, and the densities of M1 and M4 subtypes were highest in the corpus striatum. M2 receptor appeared to be the major subtype in the thalamus, hypothalamus, midbrain, pons-medulla, cerebellum and spinal cord. These findings may contribute significantly not only to the further understanding of the physiological roles of mAChR subtypes in the central cholinergic functions, but also to the development of selective therapeutic agents targeting specific subtype.  相似文献   

12.
The existence of possible relationships among the developmental profile of various cholinergic markers in the main olfactory bulb (OB) was assessed by using in vitro quantitative autoradiography. Muscarinic receptors were visualized with [3H]pirenzepine (muscarinic M1-like sites) and [3H]AF-DX 384 (muscarinic M2-like sites); nicotinic receptors by using [3H]cytisine (nicotinic 42-like subtype) and [125I]α-bungarotoxin (nicotinic 7-like subtype); cholinergic nerve terminals by using [3H]vesamicol (vesicular acetylcholine transport sites) and [3H]hemicholinium-3 (high-affinity choline uptake sites). These various cholinergic markers exhibited their lowest levels at birth and reached adult values by the end of the 4–5 postnatal weeks. However, the density of presynaptic cholinergic markers and nicotinic receptors at postnatal day 2 represented a large proportion of the levels observed in adulthood, and displays a transient overexpression around postnatal day 20. In contrast, the postnatal development of cholinergic muscarinic M1-like and M2-like receptors is apparently regulated independently of the presynaptic cholinergic markers and nicotinic receptors. Two neurochemically and anatomically separate olfactory glomeruli subsets were observed in the posterior OB of the developing rat. These atypical glomeruli expressed large amounts of [3H]vesamicol- and [3H]hemicholinium binding sites without significant amounts of muscarinic M1, M2, or nicotinic α4β2 receptor binding sites. A significant density of [125I]α-bungarotoxin binding sites could be detected only at early postnatal ages. A few olfactory glomeruli specifically restricted to the dorsal posterior OB expressed a high density of [3H]cytisine binding sites but lacked significant binding of the two presynaptic cholinergic markers used here, suggesting their noncholinergic but cholinoceptive nature. © 1996 Wiley-Liss, Inc.  相似文献   

13.
Elevated brain monoamine concentrations resulting from monoamine oxidase A genetic ablation (MAOA knock-out mice) lead to changes in other neurotransmitter systems. To investigate the consequences of MAOA deficiency on the cholinergic system, we measured ligand binding to the high-affinity choline transporter (CHT1) and to muscarinic and nicotinic receptors in brain sections of MAOA knock-out (KO) and wild-type mice. A twofold increase in [3H]-hemicholinium-3 ([3H]-HC-3) binding to CHT1 was observed in the caudate putamen, nucleus accumbens, and motor cortex in MAOA KO mice as compared with wild-type (WT) mice. There was no difference in [3H]-HC-3 labeling in the hippocampus (dentate gyrus) between the two genotypes. Binding of [125I]-epibatidine ([125I]-Epi), [125I]-α-bungarotoxin ([125I]-BGT), [3H]-pirenzepine ([3H]-PZR), and [3H]-AFDX-384 ([3H]-AFX), which respectively label high- and low-affinity nicotinic receptors, M1 and M2 muscarinic cholinergic receptors, was not modified in the caudate putamen, nucleus accumbens, and motor cortex. A small but significant decrease of 19% in M1 binding densities was observed in the hippocampus (CA1 field) of KO mice. Next, we tested acetylcholinesterase activity and found that it was decreased by 25% in the striatum of KO mice as compared with WT mice. Our data suggest that genetic deficiency in MAOA enzyme is associated with changes in cholinergic activity, which may account for some of the behavioral alterations observed in mice and humans lacking MAOA.  相似文献   

14.
Physiological and biochemical evidence indicates the existence of functional muscarinic cholinergic receptors in the anterior pituitary. The selectivity of these receptors has been characterised by studying the binding of [3H]quinuclidinyl benzilate ([3H]QNB) and [3H]diphenyl-acetoxy-N-methyl-piperidine ([3H]4-DAMP) in membrane preparation of male rat anterior pituitary at 25 degrees C. Competition experiments with receptor selective muscarinic antagonists were used to characterise specific selective muscarinic receptor binding. Both [3H]QNB and [3H]4-DAMP bound to anterior pituitary membranes at low concentrations, binding was saturable and was potently displaced by 4-DAMP (M1, M3 subtypes selective antagonist) > atropine (general) > pirenzepine (M1). Methoctramine (M2) didn't antagonise the [3H]QNB binding efficiently. Acetylcholine and carbachol increased the intracellular Ca2+ level in 62% and 65% of cultured rat anterior pituitary cells in a dose-dependent manner, and this effect was prevented by pirenzepine. Based on these results we suggest that both M1 and M3 muscarinic receptors are present and active in the majority of cells in the rat anterior pituitary gland, but their physiological role in the adult rat remains to be examined.  相似文献   

15.
《Brain research bulletin》1993,31(6):723-732
Ontogenic development of muscarinic receptors was examined in the hippocampus of rabbits (from P2 to P60) using radioautographic method. Muscarinic sites were labelled with (3H)-quinuclinidyl-benzilate and pharmacologically defined M1 and M2 receptor subtypes with (3H)-pirenzepine and (3H)-oxotremorine, respectively. The distribution of binding sites was compared to acetylcholinesterase (AChE) staining in adjacent hippocampal sections. The two cholinergic components are progressively set up in the hippocampus during the first three postnatal weeks. The AChE staining was very low in all hippocampal fields in P2 rabbits. At P8 and after, the AChE staining was more pronounced in CA3 and CA4 than in CA1 and CA2. On the contrary, the M1 muscarinic binding sites were more abundant in CA1 and CA2 hippocampal fields than in CA3 and CA4 at all ages studied. M2 muscarinic binding sites were only distinguishable at P45 and have a relatively homogeneous distribution. This study shows a differential developmental evolution in the distribution of AChE and muscarinic M1 receptors, and no obvious correspondence between these two cholinergic markers was observed.  相似文献   

16.
Stereotaxic injection of AF64A, into the medial septum of the rat, resulted in significant loss of presynaptic cholinergic markers in this structure. No significant change was observed for the presynaptic neuronal markers for dopamine- and serotonin-containing neurons in either the medial septum or hippocampus. The AF64A lesion also resulted in a significant reduction of muscarinic receptors as demonstrated by a loss of [3H]QNB binding in the medial septum. Subtype analysis showed the decrease of receptor binding in the medial septum to be due to a loss of M1 receptors as well as other muscarinic receptor subtypes. In the hippocampal formation, [3H]hemicholinium-3 binding was significantly reduced in the molecular layer of the dentate gyrus, and in the stratum oriens and stratum radiatum of the hippocampus. AF64A lesion resulted in a significant increase (Bmax) in non-M1 muscarinic receptors in hippocampal stratum oriens, in areas CA2, CA3, and CA4. AF64A lesion of the medial septum did not result in muscarinic receptor alterations in any other region of the hippocampal formation examined. These results indicate that postsynaptic muscarinic receptors in the stratum oriens of the CA2 to CA4 region of the hippocampus mediate primarily the function of the cholinergic cell bodies of the medial septum. These receptors are not of the M1 subtype.  相似文献   

17.
The expression of different muscarinic receptor subtypes was analyzed in immature Schwann cells obtained from sciatic nerve of 2-day neonatal rats. By using RT-PCR analysis, we demonstrated the presence of M1, M2, M3, and M4 receptor subtypes in cultured Schwann cells, with M2 displaying the highest expression levels. Muscarinic subtypes were also quantified by immunoprecipitation and [3H]QNB binding. With this approach, we found the levels of receptor expression to be M2 > M3 > M1. M4 is expressed at very low levels, and M5 receptor was not detectable. Moreover, we also demonstrated that stimulation of the receptors by muscarinic agonists activates previously described signal transduction pathways, leading to a decrease of cAMP and an increase of IP3 levels not associated with an efficient intracellular Ca2+ release. The presence and activity of particular muscarinic receptors in immature Schwann cells suggest that ACh may play an important role in Schwann cell development.  相似文献   

18.
A novel antimuscarinic agent, pirenzepine, has been proposed to distinguish at least two subtypes of muscarinic receptor. M1 receptors have been designated as those displaying a high affinity for pirenzepine. Both functional and binding studies have revealed a prevalence of M1 receptors in sympathetic ganglia while autonomic effector tissues have only low densities of M1 receptors. In the present study, in vitro autoradiographic procedures have been used to localize specifically high affinity binding sites for pirenzepine (M1 receptors) in sections of guinea-pig ileum, rat superior cervical ganglion and rat submaxillary gland. The overall localization of muscarinic receptors was also studied using the non-selective antagonist, [3H]N-methylscopolamine. The highest densities of M1 receptors were found in superior cervical ganglion, sympathetic nerve bundles, myenteric ganglia and mucous secreting cells of the submaxillary gland, while lower densities were found in smooth muscle and serous secreting cells of the submaxillary gland. No area found to possess muscarinic receptors was devoid of M1 receptors.  相似文献   

19.
We studied the autoradiographic densities of all pharmacologically characterised muscarinic receptors (MR) in frontal, temporal, and visual cortex, hippocampal formation, and striatum in autopsied brains from 19 histopathologically verified patients of Alzheimer's disease (AD) and in matched controls. Almost all (16 of 19) of the AD cases were severe. In AD brains, total MR, M1, and M3 MR subtypes were found to be significantly decreased in entorhinal cortex and in most hippocampal strata. Total MR and M1 receptors were also significantly reduced in visual area and in frontal cortex of AD brains, respectively. M2 receptors were significantly reduced over hippocampal formation but increased significantly in striatum of AD brains as compared with controls. M3 receptors in AD were in the range of controls in neocortex and striatum, whereas the M4 receptor subtype was also preserved in all brain regions in AD brains when compared with controls. This is the first autoradiographic study analysing the distribution of all MR subtypes in AD brains. These changes in MR densities concur with the general pattern of neuronal degeneration occurring in AD brains and partly explain the poor response of AD cognitive decline to present cholinergic supplementation therapies. Although M3 and M4 MR were labelled with nonselective approaches, the preservation of M4 and to a lesser degree M3 MR subtypes in AD brains could open an alternative way for the symptomatic therapy of AD dementia. Synapse 26:341–350, 1997. © 1997 Wiley-Liss Inc.  相似文献   

20.
The effects of long-term treatment of the tricyclic antidepressant drug, amitriptyline, on α-adrenergic, muscarinic and dopaminergic receptor binding were studied in mouse brain. No changes could be observed after 7 or 14 days of amitriptyline administration, but after 21 days a two-fold increase in α-adrenergic binding was detected in the medulla pons and in the hippocampus using [3H]WB-4101 as the binding ligand. In the same regions, a moderate increase in muscarinic receptor binding (25%) as measured by [3H]4NMPB was seen, while no change was detected in dopaminergic receptor binding measured by [3H]spiperone. Scatchard analysis reveals that the increases in receptor densities are not a result of changes in the dissociation constants of the tritiated drugs for their receptors. It is suggested that the increase in α-adrenergic as well as in muscarinic binding is a consequence of a chronic blockade of these two types of receptors by amitriptyline in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号