首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The recognition of antigenic peptides by CD4+ helper T cells is demonstrated here to result in a dramatic (up to 90%) decrease in expression of major histocompatibility complex (MHC) class II molecules on the surface of antigen-presenting cells (APC). The reduction is selective to the class II isotype presenting the antigen, but if affects both allelic forms of the same isotype in heterozygous APC. The observed MHC down-regulation requires a specific T cell receptor-peptide-class II interaction, a direct contact between T cell and APC, and the involvement of CD2 molecules. These findings have important implications for the regulation of immune response, self tolerance, and autoimmunity.  相似文献   

2.
In the course of constructing a recombinant vaccinia virus encoding the influenza A nucleoprotein (NP) gene preceeded by the hemagglutinin leader sequence, we isolated a single base-pair deletion mutant which gave rise to L+NP(1–159) in which only the first 159 amino acids were in frame. Despite this, when we infected target cells, we found that the point mutant was able to sensitize them for lysis not only by cytotoxic T cells recognizing residues 50–58 (the in-frame portion), but also by CTL to epitopes which are downstream of the mutation (366–374 and 378–386). Furthermore, normal C57BL/6 mice can be primed with the frameshift NP to recognize the immunodominant Db-restricted epitope 366–374 (which is out of frame). Experiments in which the mutant gene product was processed in the endoplasmic reticulum of target cells suggested that the apparent suppression occured during polypeptide extension.  相似文献   

3.
4.
Wortmannin, a fungal metabolite, is a specific inhibitor of phospholipase D (PLD) activation. Presentation of defined exogenous soluble proteins to specific T cell hybridomas was studied by using different antigen-presenting cells (APC): IA-positive peritoneal macrophages (MΦ?), B lymphoma cells (B) or dendritic cells (DC). Major histocompatibility complex class II-restricted antigen presentation by MΦ? was blocked when cells were pretreated with wortmannin. However, when cells constitutively expressing IA molecules (B. DC) were used as APC, no inhibition was observed. Additionally, MHC class I antigen presentation was not impaired by wortmannin. Moreover, wortmannin does not block either peptide presentation or presentation to autoreactive T cells. This effect was time and dose dependent and occurred at the level of intracellular handling of the antigen. Mainly because it was not a toxic inhibition, it was reversible with time and neither antigen uptake and catabolism, nor IA synthesis were affected. Because MΦ, but not B or DC, express PLD activity and only the former were blocked by wortmannin in antigen presentation, our results strongly suggest that a differential antigen-processing pathway exists in these disparate APC, which could be based essentially on a wortmannin-sensitive, PLD-dependent step present in MΦ but absent and/or unnecessary in both B lymphoma cells and DC.  相似文献   

5.
Major histocompatibility complex (MHC) restriction of the immune response is established during positive selection of T cells in the thymus. This occurs mainly through interactions of T cell receptor of developing thymocytes with MHC/peptide ligands on cortical thymic epithelial cells (TEC). An ongoing controversy concerns the origin and the role of peptides involved in the positive selection of thymocytes. Evidence provided here shows that processing of MHC class II complexes in cortical TEC differs from that of medullary TEC. Removal of the invariant chain associated with MHC class II complexes was rapid and complete in medullary TEC which present peptides from both exogenous and cytosolic origin. In cortical TEC, a large fraction of class II dimers remained associated with a 10–12-kDa fragment of invariant chain (Ii). Incomplete removal of Ii correlated with the inability of cortical TEC to present peptides from exogenous origin. However, presentation of peptides from cytosolic proteins by cortical TEC remained possible. Thus, most peptides from exogenous proteins may be excluded from participating in positive selection of CD4+ T cells by a mechanism limiting Ii breakdown.  相似文献   

6.
Suppressive functions of CD4+CD25+ regulatory T cells (Treg) are mainly studied by their interaction with conventional T cells. However, there is evidence that Treg also interact with antigen-presenting cells (APC), leading to suppression of APC function in in vitro coculture systems. Studying the in vivo distribution of Treg after injection, we found that Treg are located in direct proximity to dendritic cells (DC) and affect their functional maturation status. After contact to Treg, DC up-regulate the inhibitory B7-H3 molecule and display reduced numbers of MHC-peptide complexes, leading to impaired T cell stimulatory function. When Treg-exposed DC were used to immunize animals against antigens, the DC failed to produce a robust immune response as compared to control DC. Thus, these data indicate that Treg are able to inhibit DC activation and produce an inhibitory phenotype of DC. Accordingly, Treg may recruit DC for the amplification of immunosuppression by restraining their maturation in vivo and inducing an immunosuppressive phenotype of DC.  相似文献   

7.
A panel of antigen-specific, major histocompatibility complex class I-restricted T cell hybridomas has been generated to examine the capacity of peptide/class I complexes to stimulate T cells at the molecular level. Peptide/class I complexes were generated in detergent solution, purified and quantitated. Latex particles were subsequently coated with known amounts of preformed complexes and used to stimulate the T cell hybridomas. Stimulation was specific, i.e. only the appropriate peptide/class I combination were stimulatory, and quite sensitive, i.e. as little as 300 complexes per bead could be detected by the T cells. Preformed complexes were about 500000 times more potent than free peptide in terms of T cell stimulation, demonstrating the physiological relevancy of the biochemically generated complexes. Surprinsingly, the majority (including the most sensitive of the hybridomas) had lost CD8 expression, suggesting that antigen-specific stimulation of class I-restricted T cell hybridomas, as assessed by IL-2 release, does not depend on CD8.  相似文献   

8.
The endogenous major histocompatibility complex (MHC) class II presentation pathway allows biosynthesized, intracellular antigens access for presentation to MHC class II-restricted T cells. This pathway has been well documented in B cells and fibroblasts, but may not be universally available in all antigen-presenting cell types. This study compares the ability of different antigen-presenting cells, expressing endogenous C5 protein (fifth component of mouse complement) as a result of transfection, to present their biosynthesized C5 to MHC class II-restricted T cells. B cells and fibroblasts expressing C5 were able to present several epitopes of this protein with MHC class II molecules, whereas macrophages were unable to do so, but readily presented C5 from an extracellular source. However, macrophage presentation of endogenous C5 could be achieved when they were treated with low doses of the lysosomotropic agent ammonium chloride. In the presence of an inhibitor of autophagy, presentation of endogenous C5 was abrogated, indicating that biosynthesized C5 is shuttled into lysosomal compartments for degradation before making contact with MHC class II molecules. Taken together, this suggests that proteolytic activity in lysosomes of macrophages may be excessive, compared with fibroblasts and B cells, and destroys epitopes of the C5 protein before they can gain access to MHC class II molecules. Thus, there are inherent differences in presentation pathways between antigen-presenting cell types; this could reflect their specialized functions within the immune system with macrophages focussing preferentially on internalization, degradation, and presentation of extracellular material.  相似文献   

9.
We analyzed the mode of antigen presentation of an endogenous antigen localized in the cytoplasm or in the mitochondria. Pseudomonas aeruginosa PAO leucine-, isoleucine-, valine-binding protein (LIVAT-BP) encoded by the braC gene was used as a model antigen. Using mouse BALB/3T3 cells, we established two LIVAT-BP transfectants by transfection of a plasmid harboring the intact braC or braC gene fused with the mitochondrial transport signal derived from the yeast COXIV gene. One of the resulting transfectants, BC-15, expressed LIVAT-BP in the cytoplasm, while YZ-710 cells expressed LIVAT-BP in the mitochondria. The splenic effector cells derived from BALB/c mice primed with BC-15 cells exhibited cytotoxic T lymphocyte (CTL) activity against BC-15 cells, but not against YZ-710 cells, whereas splenic effector cells primed with YZ-710 cells exhibited CTL activity against YZ-710 cells, but not against BC-15 cells. Neither group of splenic effector cells showed CTL activity against parental BALB/3T3 cells. These CTL belonged to the CD8+ αβ T cell subset. Furthermore, we observed that the CTL activity against BC-15 cells or YZ-710 cells was blocked with anti-H2-Kd mAb, but not with anti-H2-Dd or H2-Ld mAb. The CTL against BC-15 or YZ-710 cells could kill parental BALB/3T3 cells in the presence of peptides produced by alkali lysis of the LIVAT-BP. suggesting that these CTL indeed recognized the peptide(s) derived from LIVAT-BP. We determined that the epitope for the CTL against BC-15 cells was QYGEGIATEV, corresponding to residues 162–171, and that the epitope recognized by the CTL against YZ-710 cells was GYKLIFRTI, corresponding to residues 123–131 of LIVAT-BP, respectively. Thus, we show here that epitope selection for MHC class I expression is affected by the intracellular localization of the antigenic protein.  相似文献   

10.
Biochemical and functional studies have demonstrated major histocompatibility complex (MHC) class II-restricted presentation of peptides derived from cytosolic proteins, but the underlying processing and presentation pathways have remained elusive. Here we show that endogenous presentation of an epitope derived from the cytosolic protein neomycin phosphotransferase II (NeoR) on MHC class II is mediated by autophagy. This presentation pathway involves the sequestration of NeoR into autophagosomes, and subsequent delivery into the lytic compartment. These results identify endosomes/lysosomes as the processing compartment for cytosolic antigens and furthermore link endogenous antigen presentation on MHC class II with the process of cellular protein turnover by autophagy.  相似文献   

11.
12.
Trypanosoma cruzi, the intracellular protozoan parasite that causes Chagas' disease, interferes with the host immune response to establish a persistent infection. In this report, we demonstrate that macrophages infected with T. cruzi are unable to effectively present antigens to CD4 T cells. The interference is due to defective antigen-presenting cell (APC) function, as antigen-independent stimulation of the T cell in the presence of infected macrophages is not affected. The defect is distal to antigen processing and is not due to decreased major histocompatibility complex (MHC) class II expression, decreased viability, defective peptide loading in the infected macrophages, nor absence of CD28 co-stimulation. There was a role for gp39:CD40 co-stimulation during antigen presentation to the T cells we studied, but the expression of CD40 on T. cruzi-infected macrophages was not decreased. Antigen-specific adhesion between macrophages and T cells was reduced by infection. Equivalent levels of the adhesion molecules lymphocyte function-associated antigen-1, intercellular adhesion molecule-1, vascular cell adhesion molecule-1 or very late antigen-4 are found on infected and uninfected APC, suggesting that reduced expression of these adhesion molecules was not responsible for the defect in antigen-specific adhesion. The defective T cell:macrophage adhesion may be due to the reduced expression of other adhesion molecules or other changes in the cell induced by infection. Interfering with MHC class II antigen presentation in infected macrophages may help T. cruzi to blunt the immune response by the host.  相似文献   

13.
We investigated the major histocompatibility complex (MHC) class I-restricted presentation of an epitope of the hepatitis B virus small surface (S) antigen particle to cloned murine cytotoxic T lymphocytes (CTL). Efficient Ld-restricted presentation of the S28–39 epitope to CTL is observed in cells of different tissue origin pulsed in vitro, either with the antigenic S28–39 12-mer S-peptide, or with particulate S-antigen. The kinetics of epitope presentation differ in S-peptide-pulsed and in S-particle-pulsed cells: while a 15-min pulse with the antigenic peptide sensitizes targets for class I-restricted CTL lysis, presentation of S-particles requires 30–60 min to sensitize cells for CTL lysis. Uptake of antigenic material and active metabolism of the presenting cell are required for processing of S-particles, but not for sensitizing targets with S-peptides. Intracellular processing and presentation of S-particles is blocked in cells treated with chloroquine, NH4Cl, primaquine, or leupeptin, but not by treatment with cycloheximide or brefeldin A. This processing pathway operates efficiently in peptide-transporter-deficient, Ld-transfected T2 cells, revealing a novel endosomal/lysosomal processing pathway for class I-restricted presentation of peptides derived from exogenous S-particles.  相似文献   

14.
Antigen presentation by Major Histocompatibility Complex (MHC) class II molecules plays an important role in controlling immunity and autoimmunity. Multiple co-factors including the invariant chain (Ii), HLA-DM and HLA-DO are involved in this process. While the role for Ii and DM has been well defined, the biological function of DO remains obscure. Our data indicate that DO inhibits presentation of endogenous self-antigens and that developmentally-regulated DO expression enables antigen presenting cells to preferentially present different sources of peptide antigens at different stages of development. Disruption of this regulatory mechanism can result in not only immunodeficiency but also autoimmunity. Despite the fact that deletion of each of the three genes in experimental animals is associated with profound immunological abnormalities, no corresponding human diseases have been reported. This discrepancy suggests the possibility that primary immunodeficiencies due to a genetic defect of Ii, DM and DO in humans are under diagnosed or diagnosed as “common variable immunodeficiency”, a category of immunodeficiency of heterogeneous or undefined etiology. Clinical tests for any of these potential genetic defects are not yet available. We propose the use of multi-color flow cytometry in conjunction with intracellular staining to detect expression of Ii, DM, DO in peripheral blood B cells as a convenient reliable screening test to identify individuals with defects in antigen presentation.  相似文献   

15.
The heat shock protein (HSP) Hsp90 is known to chaperone cytosolic peptides for MHC class I (MHCI)-restricted antigen presentation to T lymphocytes. We now demonstrate a role for Hsp90 activity in presentation of antigens on MHCII. Treatment of mouse antigen-presenting cells (APC) with the pharmacological Hsp90 inhibitor, geldanamycin, inhibited MHCII-mediated presentation of endocytosed and cytosolic proteins as well as synthetic peptides to specific T cells. Ectopic expression of human Hsp90 in APC enhanced MHCII-mediated antigen presentation. Further, pharmacological Hsp90 inhibition reduced, while retroviral Hsp90 overexpression enhanced, the levels of stable compact MHCII heterodimers correlating with the antigen presentation phenotype. Pharmacological inhibition of Hsp90 activity in IFN-gamma-treated APC resulted in severe abrogation of MHCII-restricted presentation of cytosolic antigen, but only partially inhibited exogenous antigen presentation. Our data suggest a major role for Hsp90 activity in MHCII-mediated antigen presentation pathways, and implicate IFN-gamma-inducible Hsp90-independent mechanisms.  相似文献   

16.
Major histocompatibility complex (MHC) class I and II products are specialized to present antigens via different intracellular processing routes. Peptides originating from proteins in the cytoplasm can gain access to class I peptide-binding grooves, most likely in the rough endoplasmic reticulum. Peptides from proteins in acidic endocytic vacuoles gain access to class II. It has been proposed that MHC class I products also can capture peptides from “exogenous” or noninfectious sources, and this assumption underlies the use of intact proteins as vaccines for CD8+ cytotoxic T lymphocytes. Here we describe quantitative information comparing the efficacy of peptide presentation from exogenous proteins by administering a class I- and II-restricted peptide within the same context, the CDR3 loop of the VH domain of a self immunoglobulin. Antigen-presenting cells (APC), including primary dendritic cells, efficiently present an influenza hemagglutinin peptide from the immunoglobulin (Ig) carrier (50% maximal response at 10 nM Ig-HA) to an MHC class II-restricted T cell. In contrast, these same APC are unable to present an influenza nucleoprotein (NP) peptide from the same context (1 μM Ig-NP) to an MHC class I-restricted T cell. Ig-NP DNA transfectants do present the nucleoprotein viral peptide on class I. Thus, peptides within the complementarity-determining region loops of Ig carriers can be presented on class I or II MHC products, but the endocytic compartment, when offered MHC class I- and II-restricted peptides within the same carrier protein context, favors presentation by class II by at least 1000-fold.  相似文献   

17.
We studied the functional consequences of targeting class II molecules to either the cell surface or to endocytic structures by expressing HLA-DR1 in human kidney cells in the presence or absence of different forms of the invariant chain (Ii). Transfectants expressing class II molecules in the absence of Ii present influenza virus efficiently and co-expression of full length Ii does not further increase antigen presentation. Chimeric Ii containing the cytoplasmic domain of the transferrin receptor (Tfr-Ii) delivers class II molecules associated with Tfr-Ii to endosomal compartments, but this does not result in efficient antigen presentation. When class II molecules are targeted to the cell surface by Ii lacking either 15 (Δ15Ii) or 23 (Δ23Ii) amino acids from the cytoplasmic domain, a fraction of free class II molecules is also observed. Whereas Δ15Ii did not affect antigen presentation by class II molecules, Δ23Ii inhibited, but did not abrogate, the response. We show that class II molecules expressed in the presence of Δ23Ii can be internalized, followed by degradation of Δ23Ii and return of free class II αβ heterodimers to the cell surface. A fraction of the resulting free class II molecules is sodium dodecyl sulfate stable, indicating that internalization and reappearance of class II molecules at the cell surface can be an alternative route for antigen presentation. In all transfectants, class II molecules were found in endocytic compartments that labeled for CD63 and resembled the multilaminar MIIC compartments found in B cell lines. Ii is not required for endosomal targeting of class II molecules. The number of class II molecules observed in the multilaminar compartments correlates with the efficiency of antigen presentation.  相似文献   

18.
The aim of this work is to induce tumor resistance to a B cell lymphoma in BALB/c mice using elements of the immune system. It has indeed been shown by us and by others that antigen-presenting cells (APC) like dendritic cells can induce efficient immune responses and can even substitute for Freund's adjuvant. Here we show that mice immunized with syngeneic dendritic cells pulsed in vitro with tumor antigen (BCL1 idiotype expressed by lymphoma cells) are protected against a subsequent tumor inoculation. The in vivo resistance can be correlated with the induction of a humoral response specific for the idiotype expressed by the tumor. No such protection can be achieved when B cells are used as APC. These data show that effector cells in tumor-bearing animals can be recruited and activated using dendritic cells, providing long-lasting immune surveillance.  相似文献   

19.
Statins are widely used hypocholesterolemic drugs that inhibit 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase, a rate-limiting enzyme of the mevalonate pathway whose biosynthetic endproduct is cholesterol. As a result of this activity, statins may perturb the composition of cell membranes, resulting in lipid raft disruption. Furthermore, by inhibiting protein prenylation, a process also dependent on mevalonate, statins block membrane targeting and activity of small GTPases. Antigen uptake, processing and presentation involve the interplay of Rab and Rho family GTPases. Furthermore, lipid rafts have been implicated both in antigen internalization by the BCR and in MHC class II clustering at the immunological synapse. Here we have addressed the effects of simvastatin on antigen processing and presentation by human B cells and dendritic cells. The results show that simvastatin potently suppresses tetanus toxoid processing and presentation to CD4+ T cells by HLA-DR by inhibiting protein antigen uptake through both receptor-mediated endocytosis and macropinocytosis. This effect can be largely accounted for by defective prenylation of Rho and Rab GTPases in the absence of any measurable perturbation of lipid rafts. In addition, simvastatin was found to preferentially affect the invariant chain-dependent MHC class II pathway, thereby identifying this route of antigen processing and presentation as a selective target of statins.  相似文献   

20.
We studied major histocompatibility complex class II-dependent presentation of two T cell epitopes delivered as synthetic peptides by fixed macrophages. Treatment of bone marrow macrophages with inhibitors of proteinases of the metallo-, aspartic and serine proteinase families enhanced presentation of peptides, indicating that several enzyme families participate in destructive antigen processing of exogenous peptides. High performance liquid chromatography and mass spectrometry analysis demonstrated the presence of peptide fragments in macrophage supernatants, and permitted identification of the cleavage sites which confirmed the enzyme families involved. Peptide fragments were shown to be competitive inhibitors of presentation of the full-length peptide to CD4 T cells by fixed and live macrophages. The results indicate that several classes of proteinases can modulate antigen presentation by at least two mechanisms: (1) degradation of extracellular oligopeptides and (2) generation of natural peptide ligands that block antigen presentation to CD4 T cells. The generation of inhibitory natural peptide ligands is a new mechanism of immunoregulation which could operate during the induction of T cell responses in a variety of situations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号