首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To investigate how early events in antigen processing affect the repertoire of peptides presented by MHC class I molecules, we compared the presentation of the influenza A nucleoprotein epitope 265 – 273 by HLA-A3 class I molecules in human and mouse cells. Mouse cells that express HLA-A3 failed to present the NP265 – 273 peptide when contained within the full-length nucleoprotein, to HLA-A3-restricted human cytotoxic T lymphocytes. However, when the epitope was generated directly in the cytosol using a recombinant vaccinia virus that expressed the nonamer peptide, mouse cells were recognized by HLA-A3-restricted CTL. Poor transport of the peptide by mouse TAP was not responsible for the defect as co-infection of mouse cells with recombinant vaccinia viruses encoding the full-length nucleoprotein and the human TAP1 and TAP2 peptide transporter complex failed to restore presentation. These results therefore demonstrate a differential processing of the influenza nucleoprotein in mouse and human cells. This polymorphism influences the repertoire of peptides presented by MHC class I molecules at the cell surface.  相似文献   

2.
A mutation of the HLA-A*0201 heavy chain at position 74 from histidine to leucine (H74L) resulted in a molecule with an interesting phenotype. H74L-expressing targets were recognized by peptide-specific HLA-A*0201-restricted cytotoxic T lymphocytes at lower peptide concentrations than wild type HLA-A*0201. H74L's improved ability to sensitize cells for tysis was due to its enhanced capability to bind exogenous peptide. Furthermore, this phenotype of improved exogenous binding and functional recognition was not peptide-specific. In contrast, the H74L molecule failed to present the HIV- HLA-A2-restricted pol peptide when expressed and processed endogenously. The inability to bind endogenous pol could be rescued by preceding the pol peptide with a signal sequence. The defect affecting endogenous presentation, therefore, appeared to be limited to the TAP-dependent pathway. Surprisingly, the H74L heavy chain was able to enter the defined MHC class I pathway and associate with beta2M, calreticulin, tapasin, and TAP. Despite the presence of the H74L heavy chain at the TAP complex, H74L was functionally inefficient at loading TAP-dependent peptides. H74L may help elucidate further steps in the process of loading TAP-dependent peptides into the class I cleft.  相似文献   

3.
CD8+ T lymphocytes recognize antigenic peptides presented by major histocompatibility complex (MHC) class I molecules. Individual peptide termini appear to be fixed at the C- and N-terminal ends. In contrast, central peptide side chains residues may point in different directions and exhibit limited flexibility, dependent on the MHC class I structural variation. For instance, position 97 in HLA-A201 has been shown to shift individual peptide species into different coordinations, one oriented towards the peptide N terminus, or more towards the C-terminal end. The conformational shape of such non-anchor peptide residues may affect the affinity of MHC/peptide / TCR interaction, resulting in quantitative, or qualitative different T cell effector functions. To characterize the impact of different amino acid residues occupying position 97 in HLA-A2 on peptide binding and presentation to CTL, we generated a panel of mutated HLA-A2 molecules containing either M, K, T, V, G, Q, W, P or H at position 97. The HLA-A0201 presented melanoma-associated MART-1/Melan-A derived peptide AAGIGILTV was employed to assess the impact of such position-97 mutations on HLA-A2 in peptide binding measured in an HLA-A2 reconstitution assay and presentation to AAGIGILTV-specific polyclonal or clonal T lymphocytes as measured by cytotoxicity, or interferon (IFN)-γ and granulocyte/macrophage colony-stimulating factor (GM-CSF) secretion. The high-affinity AAGIGILTV peptide bound to all position-97 mutants, albeit with differential efficiencies, and elicited specific release of IFN-γ and GM-CSF by CTL. CTL responses were triggered only by the HLA-A2 wild type, by HLA-A2-H97 (histidine position 97 mutant), and HLA-A2-W97. The HLA-A2-M97 presenting molecule elicited enhanced cytokine release and CTL effector functions by polyclonal and by clonal effector T cells. These results indicate that MHC class I-bound peptides can trigger specific cytokine release by effector T cells independently of their ability to induce cytolysis. We conclude that relatively minor changes in the MHC class I peptide binding groove, including substitutions at position 97, can affect recognition by antigen-specific T cells. Mutant MHC class I molecules, such as those described here, may act as partial peptide antagonists and could be usefol for inducing T lymphocytes with qualitatively different effector functions.  相似文献   

4.
To understand better the specificity of peptide binding by MHC class I molecules, we have evaluated the capacity of a panel of unrelated peptides to compete for the presentation of viral peptides presented by HLA-A3 and HLA-B27. The HIV-Nef7F peptide (74-82) was presented by HLA-A3 to Nef-specific HLA-A3-restricted CTL lines, and the influenza nucleoprotein peptide NP(380-393) was presented by HLA-B27 to NP(380-393)-specific HLA-B27-restricted CTL lines. In addition, we have extended studies from our group that have evaluated the capacity of a similar panel of peptides to inhibit presentation of an influenza nucleoprotein peptide NP (335-349) by HLA-B37 and a matrix peptide, M1 (57-68), by HLA-A2 to the appropriate peptide-specific CTL lines. Out of 41 peptides tested, only five bound to more than one of the MHC molecules analyzed. Pairwise comparisons of the peptide binding specificities among these four different class I molecules revealed no common competitor peptides in four of the six possible comparisons. Thus, each class I molecule appears to have a functionally distinct peptide binding site, as reflected by the ability to bind largely non-overlapping sets of peptides.  相似文献   

5.
In the class II region of the major histocompatibility complex (MHC), four genes implicated in MHC class I-mediated antigen processing have been described. Two genes (TAP 1 and TAP 2) code for multimembrane-spanning ATP-binding transporter proteins and two genes (LMP 2 and LMP 7) code for subunits of the proteasome. While TAP 1 and TAP 2 have been shown to transport antigenic peptides from the cytosol into the endoplasmic reticulum, where the peptides associate with MHC class I molecules, the role of LMP 2/7 in antigen presentation is less clear. Using antigen processing mutant T2 cells that lack TAP 1/2 and LMP 2/7 genes, it was recently shown that expression of TAP 1/2 alone was sufficient for processing and presentation of the influenza matrix protein M1 as well as the minor histocompatibility antigen HA-2 by HLA-A2. To understand if presentation of a broader range of viral antigens occurs in the absence of LMP 2/7, we transfected T2 cells with TAP 1, TAP 2 and either of the H-2Kb, Db or Kd genes and tested their ability to present vesicular stomatitis vires and influenza virus antigens to virus-specific cytotoxic T lymphocytes. We found that T2 cells, expressing TAP 1/2 gene products, presented all tested viral antigens restricted through either the H-2Kb, Db or Kd class I molecules. We conclude that the proteasome subunits LMP 2/7 as well as other gene products in the MHC class II region, except from TAP 1/2, are not generally necessary for presentation of a broader panel of viral antigens to cytotoxic T cells. However, the present results do not exclude that LMP 2/7 in a more subtle way may, or in rare cases completely, affect processing of antigen for presentation by MHC class I molecules.  相似文献   

6.
The central event in the cellular immune response to invading pathogens is the presentation of non-self antigenic peptides by major histocompatibility complex (MHC) class I molecules to cytotoxic T lymphocytes (CTLs). As peptide binding and transport proteins, MHC class I molecules have evolved distinct biochemical and cellular strategies for acquiring antigenic peptides, providing CTLs an extracellular representation of the intracellular antigen content. Whereas efficient generation of MHC class I binding peptides depends on the intracellular, immunoproteasome-mediated proteolysis machinery, translocation of peptides into the lumen of the endoplasmic reticulum requires the endoplasmic reticulum-resident, adenosine 5'-triphosphate (ATP) binding cassette transporter associated with antigen processing (TAP). Here we show, for the first time, that immunoproteasomes, TAP complexes, and MHC class I molecules are physically associated, providing an effective means of transporting MHC class I binding peptides from their sites of generation into the lumen of the endoplasmic reticulum for loading onto MHC class I molecules. In this review, we assess the current understanding of the functional regulation of immunoproteasomes and transporter associated with antigen processing.  相似文献   

7.
Tapasin is a 48-kDa endoplasmic reticulum (ER)-resident glycoprotein that binds to the transporter associated with antigen processing (TAP) and mediates an interaction between TAP and newly synthesized MHC class I molecules. It is also essential for the proper antigen presenting function of HLA-A*0101 (HLA-A1), HLA-A*0801 (HLA-B8) and HLA-B*4402 (HLA-B4402). We show here that while tapasin is required for HLA-A*0201 (HLA-A2) molecules to bind to TAP, its absence does not block the presentation of HLA-A2-restricted TAP-dependent epitopes to cytotoxic T lymphocytes indicating that, unlike HLA-A1, HLA-B8 and HLA-B4402, HLA-A2 has access to the TAP-dependent peptide pool even in the absence of tapasin. Nevertheless, the overall efficiency with which HLA-A2 was loaded with optimal, stabilizing peptides was impaired in the cell line .220, resulting in a significant increase in the fraction of HLA-A2 molecules being released from the ER in a “peptide-receptive” state.  相似文献   

8.
An assay for peptide binding to HLA-Cw*0102   总被引:3,自引:0,他引:3  
The assembly assay for peptide binding to class I major histocompatibility complex (MHC) molecules is based on the ability of peptides to stabilize MHC class I molecules synthesized by transporter associated with antigen processing (TAP)-deficient cell. The TAP-deficient cell line T2 has previously been used in the assembly assay to analyze peptide binding to HLA-A*0201 and -B*5101. In this study, we have extended this technique to assay for peptides binding to endogenous HLA-Cw*0102 molecules. We have analyzed the peptide binding of 20 peptides with primary anchor motifs for HLA-Cw*0102. One-third of the peptides analyzed bound with high affinity, half of the peptides examined did not bind, whereas the remaining peptides displayed intermediate binding activity. Interest in HLA-C molecules has increased significantly in recent years, since it has been shown that HLA-C molecules both can present peptides to cytotoxic T lymphocytes (CTL) and in addition are able to inhibit natural killer (NK)-mediated lysis.  相似文献   

9.
Prior to loading antigenic peptides, assembled major histocompatibility complex (MHC) class I molecules associate with the transporter associated with antigen processing (TAP) in a complex which also includes calreticulin and a recently described component, tapasin. The interaction of MHC class I molecules has been characterized as occurring exclusively with the TAP1 chain of the TAP heterodimer. In contrast, as described here, in the TAP-deficient human cell line T2, MHC class I molecules interact with a transfected rat TAP2 polypeptide in addition to rat TAP1. Furthermore, this interaction with TAP2 also involves calreticulin and tapasin. An association with both TAP polypeptides would presumably further enhance the efficiency of peptide loading of MHC class I molecules by allowing more than one MHC class I allele proximity to the site of peptide supply on each TAP complex.  相似文献   

10.
Presentation of antigenic peptides by MHC II molecules is required to initiate CD4 T(h) cell responses. Some peptides, however, because of low affinity for MHC II, are not efficiently presented. A segment of the MHC II chaperon molecule, invariant chain (Ii), is known to bind early in biosynthesis with low affinity to the peptide binding groove. Here we have exploited the properties of Ii to manipulate the MHC II-loading pathway and to present low-affinity sequences. We used a deletion mutant of Ii where the promiscuous binding site to MHC II, which is adjacent to the groove binding segment, was deleted. A recombinant Ii (rIi) chimera, derived from this construct, was made in which the class II binding segment was exchanged for wild-type or single amino acid substitution variants of an HLA-DR1-restricted sequence from influenza matrix protein (MAT), which leads to MHC II allotype-specific binding. This rIi was expressed in antigen-presenting cells (APC) and introduced the MAT sequence into the MHC II-processing pathway. As expected, rIiMAT elicited antigen-specific, DR1-restricted T cell cytokine production and proliferation. Significantly, rIiMAT, that binds the HLA-DR4 allele with low affinity, elicited DR4-restricted IL-2 production but not proliferation. In contrast, exogenously provided MAT peptide failed to elicit any responses from DR4-restricted T cells. Compatible results were obtained with a single amino acid substitution variant (MAT(T)), which binds with high affinity to DR4 but low affinity to DR1. We conclude that loading of MHC II with antigenic peptides from endogenously synthesized rIi chimeras allows presentation of low-affinity sequences that cannot be presented if provided exogenously as peptides. Ii fusion proteins containing low-affinity antigenic sequences might be useful for vaccination with tumor antigens to overcome deficiencies in antigen presentation.  相似文献   

11.
Two soluble invariant chain (Ii) peptides with overlapping sequences had contrasting effects on the presentation of antigenic peptides by murine Ad, Ak, Ed, and Ek major histocompatibility complex (MHC) class II molecules. Naturally produced class II-associated invariant chain peptides human (h)Ii81–104/murine (m)Ii80–103 inhibited antigen presentation on these MHC class II alleles in a manner consistent with competitive inhibition. The Ii-4 peptides hIi77–92/mIi76–91 enhanced presentation of antigenic peptides on I-E class II alleles by promoting the exchange of peptides at the cell surface. Treatment of antigenpresenting cells (APC) with Ii-4 before the addition of antigenic peptide greatly enhanced subsequent T cell responses, while treatment of APC with Ii–4 after antigenic peptide binding decreased subsequent T cell responses. The hIi81–104 and mIi80–103 peptides inhibited T cell responses in both types of assays. The binding of biotinylated antigenic peptide to MHC class II-transfected L cells, as measured by flow cytometry, was inhibited by mIi80-103 and enhanced by mIi-4. Segments of Ii fragments remaining associated with MHC class II, or released Ii peptides, appear to regulate the formation of stable antigenic peptide/MHC class II complexes either positively or negatively through interactions at or near the antigenic peptide binding site. These findings open a pathway for the design of novel therapeutics based on the structure and function of natural and rationally designed fragments of Ii.  相似文献   

12.
In order to determine how T cell-presented peptides associate with the antigen binding sites (desetopes) of class I major histocompatibility complex (MHC) molecules and how they might be scavenged from an endogenous processing pathway for transfer to those molecules, we characterized the binding of two synthetic peptides restricted by HLA-B37 or HLA-A2 to class I MHC molecules and to cellular proteins of histotyped cell lines, by gel filtration and photo-affinity labeling techniques. In gel filtration binding studies, each peptide associated with immunopurified class I MHC molecules from cells with its restricting, histotype, but little was bound to class I MHC molecules from cells without the restricting histotype and none was bound to bovine serum albumin. After crosslinkage of a radioiodinated photoreactive derivative of influenza virus nucleoprotein peptide NP(336-355Y) and immunoprecipitations with antibodies to class I MHC molecules, that peptide was found to bind to immunopurified class I MHC molecules from HLA-B37+ but not HLA-B37- cells. Binding of the [125I]NP peptide increased from 6 to 12 hr of incubation and was competed by unlabeled, NP peptide but not by HLA-A2-restricted, influenza virus matrix MA(57-73). The principal microsomal membrane proteins binding [125I]NP were about 65, 45 and 33 kD.  相似文献   

13.
The HLA-B*4402 and B*4403 molecules differ only at residue 156, which borders the peptide binding site. Strong in vivo allogeneic reactions mediated by cytolytic T lymphocytes (CTLs) were reported in patients who received a bone marrow graft mismatched for these B44 subtypes, indicating that HLA-B*4402 and B*4403 molecules present distinct antigens. This could be due either to the presentation of different sets of antigenic peptides or to the recognition by CTLs of conformational epitopes formed by the MHC molecules alone or in association with antigenic peptides. To address this question, we compared the two B44 subtypes in their presentation to tumor-specific CTLs of three peptides, encoded by genes MAGE-3, MUM-1 and Tyrosinase. The peptides bound with similar affinities to B*4402 or B*4403 molecules, as assessed by lytic competition assays. One HLA-B*4402-restricted and one HLA-B*4403-restricted CTL clone were derived against each peptide. When tested for lysis of B*4402 and B*4403 cells incubated with the antigenic peptides, most CTLs showed a marked preference for one of the two B44 subtypes. Using variant peptides incorporating single alanine substitutions, we compared a given CTLs' recognition of its antigenic peptide presented by both B44 subtypes. Some substitutions, which had no effect on the binding of the peptide, affected its recognition by the same CTL differently on B*4402 and B*4403 molecules. These results imply that the conformations adopted by the same peptide on the two HLA-B44 subtypes are different. We conclude that the B44 subtype specificity of T cells results mostly from distinct conformations adopted by the same peptides in the two B44 molecules. This does not exclude the possibility that in some cases the B44 subtype specificity results from the selective binding of a peptide to one subtype. We found several peptides, different from the three mentioned above, that contain the canonical HLA-B44 binding motif and bind to B*4403 but not to B*4402 molecules.  相似文献   

14.
Hsp70 molecules are capable of binding antigenic peptides and eliciting CTL responses to the bound peptide. However, the precise mechanism for the induction of CTL has not been determined. One possibility is that hsp molecules can directly shuttle peptides in the MHC class I antigen processing and presentation pathway, as previously postulated. Here, we have addressed this issue by testing the effect of purified hsp70 molecules on peptide binding and transport by the transporter associated with antigen processing (TAP). Our results indicate that purified hsp70 molecules moderately enhance TAP function. In addition, we detect a physical association between hsp70 molecules and TAP, as well as the homologous drug transporter P-glycoprotein. We conclude that while hsp70 molecules may not be directly involved in the delivery of peptide to TAP, they may play an important role in TAP transport by binding to TAP and promoting its function.  相似文献   

15.
For many years the crucial components involved in MHC class II mediated antigen presentation have been thought to be known: polymorphic MHC class II molecules, the monomorphic invariant chain (li) and a set of conventional proteases that cleave antigenic proteins thereby generating ligands able to associate with MHC class II molecules. However, in 1994 it was found that without an additional molecule, HLA-DM (DM), efficient presentation of protein antigens cannot be achieved. Biochemical studies showed that DM acts as a molecular chaperone protecting empty MHC class II molecules from functional inactivation. In addition, it serves as a peptide editor: DM catalyzes not only the release of the invariant chain remnant CLIP, but of all sorts of low-stability peptides, and simultaneously favors binding of high-stability peptides. Through this quality control of peptide loading, DM enables APCs to optimize MHC restriction and to display their antigenic peptide cargo on the surface for prolonged periods of time to be scrutinized by T cells.  相似文献   

16.
Antoniou AN  Ford S  Pilley ES  Blake N  Powis SJ 《Immunology》2002,106(2):182-189
The transporter associated with antigen processing (TAP) supplies peptides into the lumen of the endoplasmic reticulum (ER) for binding by major histocompatibility complex (MHC) class I molecules. TAP comprises two polypeptides, TAP1 and TAP2, each a 'half-transporter' encoding a transmembrane domain and a nucleotide-binding domain. Immunoprecipitation of rat TAP1 and TAP2 expressed individually in the human TAP-deficient cell line, T2, revealed that both bound the endogenously expressed HLA-A2 and -B51 class I molecules. Using HLA-encoding recombinant vaccinia viruses HLA-A*2501, -B*2704, -B*3501 and -B*4402, alleles also associated with both TAP1 and TAP2. Thus, TAP1 and TAP2 do not appear to differ in their ability to interact with MHC class I alleles. Single TAP polypeptide subunits also formed MHC class I peptide-loading complexes, and their nucleotide-binding domains retained the ability to interact with ATP, and may permit the release of peptide-loaded MHC class I molecules in the absence of a peptide transport cycle. It is also demonstrated by chemical cross-linking that TAP2, but not TAP1, has the ability to form a homodimer complex both in whole cells and in detergent lysates. Together these data indicate that single TAP polypeptide subunits possess many of the features of the TAP heterodimer, demonstrating them to be useful models in the study of ATP-binding cassette (ABC) transporters.  相似文献   

17.
L(d)- and K(b)-binding epitopes processed by murine dendritic cells (DC) pulsed with exogenous, particulate hepatitis B surface antigen (HBsAg) are presented to cytotoxic T lymphocytes (CTL). The specific and dose-dependent induction of IFN-gamma release and cytotoxicity in CTL by metabolically active DC did not depend on antigenic peptides contaminating the particles, was cytochalasin D resistant, independent of the maturation state of DC, and blocked by primaquine, amiloride and NH(4)Cl (indicating involvement of acid proteolysis). The specific immunostimulatory phenotype of pulsed DC was maintained for about 3 h after the end of the pulse but rapidly decayed thereafter. Processing of L(d)- and K(b)-binding epitopes from exogenous HBsAg particles by pulsed DC for presentation was TAP independent. Surface-associated 'empty' (presentation-deficient) 64(+) L(d) molecules (defined by the mAb 64-3-7), but not trimeric (presentation-competent) 30(+) L(d) molecules (defined by the mAb 30-5-7) had to be available during the pulse of DC with exogenous HBsAg particles to generate 30(+) L(d)molecules that present the antigenic S(28-39) peptide. Exogenous beta2-microglobulin present during the pulse of DC with HBsAg particles facilitated presentation of L(d)- and K(b)-restricted epitopes. DC generated from bone marrow progenitors in vitro, as well as splenic and liver DC (generated in vivo) presented epitopes to specific CTL. HBsAg particles thus efficiently enter an alternative processing pathway in DC that leads to presentation of epitopes to MHC class I-restricted CTL.  相似文献   

18.
The nature of the MHC class I peptide loading complex   总被引:14,自引:0,他引:14  
Summary: Peptide binding to major histocompatibility complex (MHC) dass I molecules occurs in the endoplasmic reticulum (ER). Efficient peptide binding requires a number of components in addition co the MHC class I-β2 microglobulin dimer (β2m). These include the two subunits of the transporter associated with antigen presentation (TAP1 and TAP2), which are essential for introducing peptides into the ER from the cytosol, and tapasin, an MHC-encoded membrane protein. Prior to peptide binding, MHC class I-β2m dimers form part of a large multisubnnit ER complex which includes TAP and tapasin. In addition to these specialized components two soluble 'house-keeping' proteins, the chaperone calreticulin and the thiol oxidoreductase ERp57, are also components of this complex. Our current understanding of the nature and function of the MHC class I peptide loading complex is the topic of this review.  相似文献   

19.
Although it is well established that CD4+ T cells generally recognize major histocompatibility complex (MHC) class II molecules, MHC class I-reactive CD4+ T cells have occasionally been reported. Here we describe the isolation and characterization of six MHC class I-reactive CD4+ T-cell lines, obtained by co-culture of CD4+ peripheral blood T cells with the MHC class II-negative, transporter associated with antigen processing (TAP)-negative cell line, T2, transfected with human leucocyte antigen (HLA)-B27. Responses were inhibited by the MHC class I-specific monoclonal antibody (mAb), W6/32, demonstrating the direct recognition of MHC class I molecules. In four cases, the restriction element was positively identified as HLA-A2, as responses by these clones were completely inhibited by MA2.1, an HLA-A2-specific mAb. Interestingly, three of the CD4+ T-cell lines only responded to cells expressing HLA-B27, irrespective of their restricting allele, implicating HLA-B27 as a possible source of peptides presented by the stimulatory MHC class I alleles. In addition, these CD4+ MHC class I alloreactive T-cell lines could recognize TAP-deficient cells and therefore may have particular clinical relevance to situations where the expression of TAP molecules is decreased, such as viral infection and transformation of cells.  相似文献   

20.
We investigated the major histocompatibility complex (MHC) class I-restricted presentation of an epitope of the hepatitis B virus small surface (S) antigen particle to cloned murine cytotoxic T lymphocytes (CTL). Efficient Ld-restricted presentation of the S28–39 epitope to CTL is observed in cells of different tissue origin pulsed in vitro, either with the antigenic S28–39 12-mer S-peptide, or with particulate S-antigen. The kinetics of epitope presentation differ in S-peptide-pulsed and in S-particle-pulsed cells: while a 15-min pulse with the antigenic peptide sensitizes targets for class I-restricted CTL lysis, presentation of S-particles requires 30–60 min to sensitize cells for CTL lysis. Uptake of antigenic material and active metabolism of the presenting cell are required for processing of S-particles, but not for sensitizing targets with S-peptides. Intracellular processing and presentation of S-particles is blocked in cells treated with chloroquine, NH4Cl, primaquine, or leupeptin, but not by treatment with cycloheximide or brefeldin A. This processing pathway operates efficiently in peptide-transporter-deficient, Ld-transfected T2 cells, revealing a novel endosomal/lysosomal processing pathway for class I-restricted presentation of peptides derived from exogenous S-particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号