共查询到20条相似文献,搜索用时 15 毫秒
1.
Extensive evidence suggests that BDNF regulates neural function and architecture after depolarization. Expression of BDNF is increased after depolarization, and the ability of BDNF to modulate synaptic function is well documented. To further investigate BDNF signaling after activity, we analyzed the effects of depolarization or BDNF treatment on receptor mRNA expression in cultured basal forebrain neurons. Levels of mRNA coding for the cognate BDNF receptor, trkB, as well as the common neurotrophin receptor, p75, were quantitated simultaneously using a sensitive solution hybridization technique. Depolarization or BDNF treatment increased p75 mRNA expression 94% and 195%, respectively. In contrast, trkB message decreased 23% after depolarization but was unchanged by BDNF treatment. Together, these changes resulted in significant increases in the p75/trkB ratio after depolarization or BDNF treatment that could alter BDNF binding or signal transduction. 相似文献
2.
The actions of nerve growth factor (NGF) are mediated by two receptor proteins, trk and p75. Recent evidence indicates that NGF upregulates the expression of both trk and p75 in responsive neurons including rat dorsal root ganglion (DRG) neurons. Axotomy by disconnecting the neuron from its source of target-derived NGF is predicted to lead to the downregulation of trk and p75 expression. However, previous studies of the effects of axotomy on trk and p75 mRNA expression in rat DRG have yielded discrepant results. We report that following sciatic nerve crush, trk and p75 mRNA levels in L4-L6 DRG decrease to ~50% of control levels at 4–14 days, return to control levels by 30 days, and are increased by ~30% at 60 days. Similar changes are observed following nerve transection although mRNA levels are slower in returning to normal and do not exceed control levels at later timepoints. Thus, trk and p75 expression decline early following target disconnection and later recover irrespective of target reinnervation. These observations indicate that target derived NGF is required for the maintenance of NGF receptor expression in adult rat DRG neurons and that non-target derived factors can appropriate this function following peripheral nerve injury. © 1996 Wiley-Liss, Inc. 相似文献
3.
Jeffery L. Twiss H. Garrett Wada Katherine S. Fok Samuel D.H. Chan A. Neil Verity Gregory T. Baxter Eric M. Shooter Howard H. Sussman 《Journal of neuroscience research》1998,51(4):442-453
The role of the low affinity neurotrophin receptor p75LNTR in neurotrophin signal transduction remains open. Recent reports show that this receptor generates intracellular signals independent of Trk activity, and others imply that it collaborates with Trk(s) to enhance cellular responses to low neurotrophin concentrations. We have used the Cytosensor microphysiometer as a direct marker of intracellular metabolic activity to address the physiologic role of p75LNTR in nerve growth factor (NGF) signal transduction. NGF treatment of PC12 or TrkA-transfected Chinese hamster ovary (CHO) cells results in a rapid, transient increase in the extracellular acidification rate as measured by the Cytosensor; in both cell types, p75LNTR enhances this response. p75LNTR affects both the magnitude of and the duration of the extracellular acidification response to NGF. Moreover, it is not merely the presence of p75LNTR, but also the ratio of p75LNTR:TrkA which determines cellular responsiveness to NGF. In transiently transfected CHO cells, a 5:1 ratio of p75LNTR:trkA cDNAs produced the greatest change in NGF-induced acid secretion. Pretreatment of PC12 cells with anti-p75LNTR antibodies decreased the responsiveness to NGF. However, long-term NGF exposure to PC12 cells in which p75LNTR expression was decreased to approximately 10% of wild-type levels showed a longer duration of acid secretion compared to wild-type PC12 cells. Together, these data suggest that p75LNTR may play a dual role in modulating NGF signal transduction by enhancing and extending cellular responses to short-term ligand exposures while attenuating the metabolic response to long-term ligand exposures. With regard to potential Trk-independent p75LNTR signal transduction mechanisms, we detected no change in extracellular acidification response in 75LNTR-transfected CHO cells, PCNA-15 fibroblasts, or Schwann cells, all of which express large amounts of p75LNTR and no Trk. Thus, p75LNTR cannot produce any signal detected by microphysiometry in the absence of TrkA. J. Neurosci. Res. 51:442–453, 1998. © 1998 Wiley-Liss, Inc. 相似文献
4.
Nerve growth factor regulates substance P in adult sensory neurons through both TrkA and p75 receptors 总被引:3,自引:0,他引:3
Expression of the nociceptive peptide, substance P (SP) is regulated by the neurotrophin, nerve growth factor (NGF), and exogenous exposure to high levels of NGF increases its cellular content and release. NGF utilizes two receptors, the NGF-specific tyrosine kinase receptor, TrkA, and also the non-specific neurotrophin receptor, p75(NTR) (p75). The purpose of this study is to determine the relative involvement of these receptors in nociception. To investigate the role of TrkA in SP signaling, sensory neurons from adult rats were grown in vitro and exposed to a TrkA-blocking antibody. Pretreatment with the antibody inhibited NGF-induced SP elevation. Furthermore, when neurons were exposed to K252a, a relatively specific TrkA kinase inhibitor, the NGF effect on SP was also inhibited. K252a did not prevent SP up-regulation in cells exposed to forskolin or glial cell line-derived neurotrophic factor (GDNF), two agents which increase SP expression independently of TrkA. When p75 was blocked by antiserum, SP up-regulation by NGF was also inhibited. The antiserum neither impacted neuronal survival or basal levels of SP expression, nor did it inhibit SP up-regulation induced by forskolin. Two other neurotrophins, which are also ligands for p75, brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) did not block NGF-induced SP up-regulation, raising the possibility that activated p75 is able to cooperate in SP regulation regardless of which neurotrophin ligand occupies it. Our data suggest that NGF up-regulation of SP expression requires the involvement of both TrkA and p75, although the specific contribution of each receptor to SP signaling remains to be determined. 相似文献
5.
This study demonstrated that brain areas surrounding the site of hematoma following intracerebral hemorrhage are characterized by significantly increased apoptosis and expression of neurotrophin receptor p75 and sortilin. However, as detected by terminal deoxynucleotidyl transferase dUTP nick end labeling and immunohistochemical staining, there was no significant change in nerve growth factor precursor expression levels. The appearance of neurotrophin receptor p75 expressing cells was positively correlated with cells that were detected by terminal deoxynucleotidyl transferase dUTP nick end labeling. These findings confirm that the nerve growth factor precursor-neurotrophin receptor p75-sortilin heterotrimeric complex-mediated apoptosis pathway may play an important role in cellular apoptosis following intracerebral hemorrhage. 相似文献
6.
Miriam Karlsson Douglas O. Clary Frances B. Lefcort Louis F. Reichardt Harvey J. Karten Finn Hallbk 《The Journal of comparative neurology》1998,400(3):408-416
Nerve growth factor is known to stimulate neurite outgrowth and support neuronal survival during embryonic development. We have studied the expression of the nerve growth factor receptor, TrkA, at both mRNA and protein levels during the course of chicken retinal development. Furthermore, we have compared the expression of trkA mRNA with that of the 75-kD low-affinity neurotrophin receptor (p75NTR). RNase protection assay identified peak-levels of trkA mRNA in the late embryonic retina. Using in situ hybridization and immunohistochemistry, we found cells expressing TrkA in both the internal and the external part of the inner nuclear layer, corresponding to amacrine and horizontal cells, respectively. The TrkA-expressing amacrine cell has a unistratified dendritic arborization in the second sublamina of the inner plexiform layer, and may represent the stellate amacrine cell described by Cajal. The horizontal cells, possessing arciform dendrite processes in the outer plexiform layer, showed strong TrkA immunoreactivity in both dendrites and cell bodies. During the course of retinal development, the TrkA-expressing amacrine cells decreased in number, whereas the TrkA-expressing horizontal cells persisted. Because nerve growth factor was expressed where the horizontal cells, but not where the amacrine cells were located, these findings raise the question of whether nerve growth factor could locally support the survival of TrkA-expressing interneurons during retinal development. J. Comp. Neurol. 400:408–416, 1998. © 1998 Wiley-Liss, Inc. 相似文献
7.
The p75 neurotrophin receptor has been implicated in the regulation of multiple cellular functions that differ depending on the cell context. We have observed that p75NTR is strongly induced on astrocytes as well as neurons in the hippocampal CA3 region after seizures; however, the function of this receptor on these glial cells has not been defined. We have employed a primary culture system to investigate the effects of neurotrophins on astrocytes. Treatment of hippocampal astrocytes with nerve growth factor (NGF) caused a reduction in cell number, but did not elicit an apoptotic response, in contrast to hippocampal neurons. Instead, activation of p75NTR by NGF attenuated proliferation induced by mitogens such as EGF or serum. These studies demonstrate the cell type specificity of neurotrophin functions in the brain. © 2009 Wiley‐Liss, Inc. 相似文献
8.
M Fusco P Polato G Vantini L Cavicchioli M Bentivoglio A Leon 《The Journal of comparative neurology》1991,312(3):477-491
The effect of nerve growth factor on the expression of nerve growth factor receptor in the central nervous system of newborn and adult rats was studied by means of immunohistochemistry with the monoclonal antibody 192-IgG. Both during development and in adulthood, the intracerebroventricular administration of nerve growth factor elicited a pronounced increase of nerve growth factor receptor-like immunoreactivity in the cell bodies and neural processes of the basal forebrain cholinergic nuclei, as compared to cytochrome c-treated rats (controls). A pronounced nerve growth factor-induced increase of nerve growth factor receptor-like immunoreactivity was also observed in central regions innervated by trigeminal and spinal ganglia. A moderate to a marked increase of nerve growth factor receptor-like immunoreactivity was evident in some mesencephalic visual system-related structures and thalamic nuclei expressing nerve growth factor receptor. In contrast, NGF treatment did not induce appreciable modification of nerve growth factor receptor-like immunoreactivity in cerebellar, brainstem, and spinal motor structures of newborn rats. In adult nerve growth factor-treated rats, a decrease of nerve growth factor receptor-like immunoreactivity was detected in the cerebellum, whereas no re-expression of nerve growth factor receptor-like immunoreactivity occurred in the motor structures that had expressed it in the first postnatal week. Finally, nerve growth factor was also found to enhance, in both adult and newborn rats, nerve growth factor receptor-like immunoreactivity associated with ependymal and subependymal cellular elements of the lateral and third ventricles, as well as with the leptomeninges overlying the superior colliculus and supraoptic area. The present results indicate that endogenous nerve growth factor or nerve growth factor-like molecules may play a dynamic role in a variety of cell populations of both the developing and mature mammalian central nervous system. We thus propose the nerve growth factor ability to modulate its receptor in vivo as a novel criterion to define nerve growth factor or nerve growth factor-like molecules, sensitive neuronal, and non-neuronal cells. Whereas this criterion does not intrinsically possess absolute physiological validity, its pharmacological concomitants might be relevant in view of the proposed therapeutical use of this trophic factor. 相似文献
9.
This study examined the growth capacity of nerve growth factor (NGF)-responsive dorsal root ganglion (DRG) central processes using mice of the following genotypes: wildtype, p75 neurotrophin receptor (p75NTR) exon III null mutant, NGF transgenic, and NGF transgenic with p75NTR exon III null mutation (NGF/p75(-/-)). In wildtype and p75NTR exon III null mutant mice calcitonin gene-related peptide (CGRP) immunoreactivity in the dorsal horn is dramatically reduced at both 3 and 28 days after rhizotomy. NGF transgenic and NGF/p75(-/-) mice also display reduced CGRP immunoreactivity 3 days after rhizotomy, but by postsurgical day 28 significant increases in the density of CGRP-positive axons are observed in the injured dorsal horns of these mice. Interestingly, NGF/p75(-/-) mice displayed significantly more new axonal growth when compared to NGF transgenic mice expressing full-length p75NTR. Immunohistochemical and ultrastructural analyses revealed that this axonal growth is not the result of regeneration but rather injury-induced sprouting by intact DRG central processes into the lesion site. This collateral growth is restricted to deafferentated areas of the dorsal horn, and we therefore propose that this is an example of compensatory sprouting by NGF-sensitive axons in the spinal cord, a response that is enhanced in the absence of NGF binding to p75NTR. 相似文献
10.
We have investigated the role of the low-affinity nerve growth factor (NGF) receptor p75NGFR in determining the death of neuronally differentiated PC12 cells after withdrawal of NGF. A range of high and low p75NGFR-expressing cells were obtained by a combination of fluorescence activated cell sorting (FACS) and stable transfection with a p75NGFR expression vector. Cells were readily differentiated to a neuronal phenotype irrespective of the level of p75NGFR expression. However, the rate and extent of neuronal death following NGF deprivation were extremely sensitive to the level of p75NGFR expression. The highest expressing cells died most rapidly. Cells selected for very low levels of p75NGFR expression exhibited resistance to NGF withdrawal, and remained as viable, differentiated neurons, with minimal cell death, for at least 5 days in the absence of NGF. Antisense oligonucleotides against p75NGFR were shown to down-regulate p75NGFR in PC12 cells and, further, to significantly enhance survival in the absence of NGF. These results consolidate and generalize our previous findings that p75NGFR induces cell death in postnatal sensory neurons in the absence of NGF. The ability to induce cell death in the absence of NGF appears to be a more general role of p75NGFR in differentiated neurons, and an important new paradigm for the mechanism of NGF-dependent survival. © 1996 Wiley-Liss, Inc. 相似文献
11.
Michael A. Henry Lesnick E. Westrum Mark Bothwell Lonnie R. Johnson 《The Journal of comparative neurology》1993,335(3):425-436
The 75 kDa protein nerve growth factor receptor [NGFr(p75)] is a neurotrophin receptor that is able to bind different members of the neurotrophin family of molecules implicated in affecting neruronal survival. Here we describe the light microscopic distribution of NGFr(p75)-immunoreactivity (IR) within the feline trigeminal brainstem sensory nuclear complex and trigeminal ganglion of normal adult subjects and in subjects 10 and 30 days following retrogasserian rhizotomy. Within the trigeminal ganglion of normal subjects, numerous fibers and most of the neuronal cell bodies showed NGFr(p75)-IR that varied in intensity, while cells and fibers with NGFr(p75)-IR were less numerous within the mesencephalic trigeminal nucleus. Within the main sensory and spinal trigeminal nuclei, NGFr(p75)-IR formed a reproducible pattern that varied between the different subnuclei. The NGFr(p75)-IR consisted both of dense pockets and a low level NGFr(p75)-IR that was selective to the trigeminal neuropil. Following rhizotomy, most of the NGFr(p75)-IR was lost from the main sensory and spinal trigeminal nuclei, except in regions where the upper cervical roots and cranial nerves VII, IX, and X project. In contrast, examination of the central root that was still attached to the trigeminal ganglion showed increased NGFr(p75)-IR in fibers and supporting cells, as did the motor root within the peripheral mandibular division. These results indicate that the majority of the NGFr(p75)-IR within the main sensory and spinal trigeminal nuclei originates from primary trigeminal afferents and that retrogasserian rhizotomy leads to an up-regulation of NGFr(p75)-IR in the part of the central root that is contiguous with the ganglion. © 1993 Wiley-Liss, Inc. 相似文献
12.
J. Nanduri S. M. Vroegop S. E. Buxser K. E. Neet 《Journal of neuroscience research》1994,37(4):433-444
Monoclonal anti-NGF antibodies that specifically inhibit the biological activity of mouse β-NGF were used to study the structural determinants involved in the interaction of NGF with its receptors gp75LNGFR and Trk. None of the three antibodies–N60, M15, and 27/21–showed any reactivity toward denatured NGF. Three experimental methods–radioim-munoassay (RIA), enzyme-linked immunoassay (ELISA), and slot blots–detected no significant cross reactivity between the antibodies and BDNF or NT-3. RIA showed that M15 and N60 recognize the same or an overlapping antigenic site, but 27/21 recognizes a different epitope. Only 27/21, and not N60 or M15, immunoprecipitated β-NGF crosslinked to LNGFR receptor. Thus, the epitope recognized by 27/12 does not overlap the LNGFR receptor binding site. N60, M15, and 27/21 all block binding of NGF to Trk in a manner consistent with competitive inhibition. Purified Fab fragments of N60 and M15 gave similar results to the intact antibodies. The other subunits present in the 7S complex of NGF, i.e. the α and γ subunits, competitively inhibited binding of antibodies to β-NGF. Only the γ subunit inhibited phosphorylation of Trk and biological activity of β-NGF. These findings suggest that the M15, N60, and 27/21 antibodies bind to a specific site on the surface of NGF where they competitively inhibit binding to the Trk NGF receptor. The region encompassing the N-terminus, the C-terminus, and the loop on the surface of β-NGF containing residues 60–80 is proposed as important for binding to the Trk receptoe. © 1994 Wiley-Liss, Inc. 相似文献
13.
The p75 neurotrophin receptor,which is a member of the tumor necrosis factor receptor superfamily,facilitates apoptosis during development and following central nervous system injury.Previous studies have shown that programmed cell death is likely involved in the neurotoxic effects of 3,4-methylenedioxy-N-methylamphetamine (MDMA),because MDMA induces apoptosis of immortalized neurons through regulation of proteins belonging to the Bcl-2 family.In the present study,intraperitoneal injection of different doses of MDMA (20,50,and 100 mg/kg) induced significant behavioral changes,such as increased excitability,increased activity,and irritability in rats.Moreover,changes exhibited dose-dependent adaptation.Following MDMA injection in rat brain tissue,the number of apoptotic cells dose-dependently increased and p75 neurotrophin receptor expression significantly increased in the prefrontal cortex,cerebellum,and hippocampus.These findings confirmed that MDMA induced neuronal apoptosis,and results suggested that this effect was related by upregulated protein expression of the p75 neurotrophin receptor. 相似文献
14.
15.
Sáez ET Pehar M Vargas MR Barbeito L Maccioni RB 《Journal of neuroscience research》2006,84(5):1098-1106
Reactive astrocytes surround amyloid depositions and degenerating neurons in Alzheimer's disease (AD). It has been previously shown that beta-amyloid peptide induces inflammatory-like responses in astrocytes, leading to neuronal pathology. Reactive astrocytes up-regulate nerve growth factor (NGF), which can modulate neuronal survival by signaling through TrkA or p75 neurotrophin receptor (p75NTR). Here, we analyzed whether soluble Abeta peptide 25-35 (Abeta) stimulated astrocytic NGF expression, modulating the survival of cultured embryonic hippocampal neurons. Hippocampal astrocytes incubated with Abeta up-regulated NGF expression and release to the culture medium. Abeta-stimulated astrocytes increased tau phosphorylation and reduced the survival of cocultured hippocampal neurons. Neuronal death and tau phosphorylation were reproduced by conditioned media from Abeta-stimulated astrocytes and prevented by caspase inhibitors or blocking antibodies to NGF or p75NTR. Moreover, exogenous NGF was sufficient to induce tau hyperphosphorylation and death of hippocampal neurons, a phenomenon that was potentiated by a low steady-state concentration of nitric oxide. Our findings show that Abeta-activated astrocytes potently stimulate NGF secretion, which in turn causes the death of p75-expressing hippocampal neurons, through a mechanism regulated by nitric oxide. These results suggest a potential role for astrocyte-derived NGF in the progression of AD. 相似文献
16.
17.
Effect of p75 neurotrophin receptor antagonist on disease progression in transgenic amyotrophic lateral sclerosis mice 总被引:3,自引:0,他引:3
Turner BJ Murray SS Piccenna LG Lopes EC Kilpatrick TJ Cheema SS 《Journal of neuroscience research》2004,78(2):193-199
Neurotrophin level imbalances and altered p75 neurotrophin receptor (p75(NTR)) expression are implicated in spinal motor neuron degeneration in human and mouse models of amyotrophic lateral sclerosis (ALS). Recently, elevated reactive astrocyte-derived nerve growth factor (NGF) was linked to p75(NTR)-expressing motor neuron death in adult transgenic ALS mice. To test the role of NGF-dependent p75(NTR)-mediated signalling in ALS, we examined the effects of a cyclic decapeptide antagonist of p75(NTR) ligand binding by using neurotrophin-stimulated cell death assays and transgenic ALS mice. Murine motor neuron-like (NSC-34) cell cultures expressed full-length and truncated p75(NTR), tyrosine receptor kinase B (TrkB), and the novel neurotrophin receptor homolog-2 (NHR2) but were TrkA deficient. Accordingly, treatment of cells with NGF induced dose-dependent cell death, which was significantly blocked by the cyclic decapeptide p75(NTR) antagonist. Application of brain-derived neurotrophic factor, neurotrophin-3, or neurotrophin-4 to cultures increased cell proliferation, and such trophic effects were abolished by pretreatment with the tyrosine kinase inhibitor K-252a. Systemic administration of a modified cyclic decapeptide p75(NTR) antagonist conjugated to the TAT4 cell permeabilization sequence to presymptomatic transgenic SOD1(G93A) mice affected neither disease onset nor disease progression, as determined by hindlimb locomotor, grip strength, and survival analyses. These studies suggest that disrupting NGF-p75(NTR) interactions by using this approach is insufficient to alter the disease course in transgenic ALS mice. Thus, alternate ligand-independent pathways of p75(NTR) activation or additional NGF receptor targets may contribute to motor neuron degeneration in ALS mice. 相似文献
18.
In situ hybridization techniques were used to examine the distribution and the nerve growth factor (NGF) regulation of trkA mRNA in the adult rat brain in order to identify neurons in discrete regions of the brain that may be NGF responsive. In agreement with previous studies, trkA mRNA was detected within cells located in the medial septum (MS), diagonal band of Broca (DBB), and caudate. trkA mRNA was also detected in many other regions of the brain, including the nucleus basalis of Meynert, substantia innominata, paraventricular nucleus of the thalamus, interpeduncular nucleus, prepositus hypoglossal nucleus, vestibular nudei raphe obscuris, cochlear nucleus, sensory trigeminal nuclei, and gigantocellular as well as perigigantocellular neurons in the medullary reticular formation. By combining in situ hybridization detection of trkA mRNA with immunocytochemical detection ofp75NGFR, it was determined that the vast majority (> 90%) of the trkA mRNA-containing cells detected in the MS and DBB also express p75NGFR. Likewise, the vast majority of p75NGFR-IR cells detected in the MS and DBB expressed trkA mRNA. Intracerebroventricular infusions of NGF into the third ventricle adjacent to the preoptic area resulted in a 58% increase in relative cellular levels of trkA mRNA in the horizontal limb of the DBB. These data provide evidence that both p75NGFR and trkA are expressed by NGF-responsive neurons in the MS and DBB. In addition, we note that areas that contained trkA mRNA and that also have been reported to contain p75NGFR are areas where high-affinity NGF binding sites have been observed autoradio-graphically, whereas areas that contain either trkA or p75NGFR alone are areas where no high-affinity NGF binding has been reported. Together, these findings suggest that both trkA and p75NGFR play an important role in the formation of high-affinity NGF receptors in brain and, furthermore, suggest that NGF may have physiological effects within many regions of the brain outside of the basal forebrain. 相似文献
19.
Induction of nerve growth factor receptor (p75NGFr) mRNA within hypoglossal motoneurons following axonal injury. 总被引:1,自引:0,他引:1
The hypoglossal nerve is a useful model system for analysis of gene expression in injured motoneurons. In particular, we sought to determine whether the increased appearance of the low affinity nerve growth factor receptor (p75NGFr) observed immunocytochemically following nerve injury can be directly correlated to increased levels of the p75NGFr mRNA. The present study also examined the relative effects of nerve crush versus nerve transection on the expression of p75NGFr mRNA. In sham-operated or intact animals, p75NGFr mRNA is detected rarely and then only at levels slightly higher than background. Following unilateral transection or crush of the rat hypoglossal nerve, the levels of p75NGFr mRNA increase in a time dependent fashion that parallels the appearance of the protein as reported previously. Moreover, this increase in p75NGFr mRNA following transection is dependent on a signal from the injured site, since blockage of axonal transport with vincristine also blocks the increased p75NGFr mRNA levels. When comparing the effect of nerve crush to nerve transection, we observed that the intensity of the response was greater in the crush paradigm versus that observed following transection. The duration of the response following nerve crush was shorter than that observed following transection of the nerve. The increase in p75NGFr mRNA after crush was most robust 4 days postlesion and appeared more robust primarily due to a 90-150% increased number of motoneurons expressing p75NGFr mRNA when compared to nerve transection. These data suggest that nerve crush is more effective than nerve transection in eliciting increased p75NGFr mRNA levels. 相似文献
20.
目的研究脑出血后血肿周围组织中神经营养因子受体p75(p75NTR)、神经生长因子前体(pro NGF)、酪氨酸激酶A(TrkA)的表达及细胞凋亡率,进一步探讨其在脑出血后的细胞凋亡中所发挥的作用。方法制作大鼠脑出血模型,于术后6 h、24 h、72 h、10 d处死各组大鼠获取所需脑组织标本,应用流式细胞仪检测细胞凋亡率,免疫组化SP法检测p75 NTR、TrkA、pro NGF的蛋白表达水平,实时荧光定量PCR检测p75 NTR、TrkA的基因表达水平。结果脑出血后p75 NTR、proNGF表达水平及p75 NTR/TrkA值与对照组比较显著升高(P 0. 01),且动态变化规律与脑细胞凋亡率相似;72 h后TrkA的动态变化规律与细胞凋亡率相反。结论脑出血后pro NGF与p75 NTR的结合可能参与介导脑细胞凋亡,p75 NTR/TrkA值增高时,pro NGF及p75 NTR以介导细胞凋亡为主; TrkA在脑出血后72 h内神经营养作用被抑制,72 h后可能发挥神经营养作用。 相似文献