首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The intrinsic organization of the main olfactory bulb in the snake was studied using the rapid Golgi method. A distinct laminar structure was recognized. From the periphery inward, the following layers were distinguished: the layer of the olfactory fibers, the olfactory glomeruli, the mitral cells, the deep fiber plexus, the granule cells and the ependymal cells. Olfactory fibers derived from the nasal cavity reached the entire surface of the bulb, forming a dense fiber plexus, then swung deeply and terminated in the olfactory glomeruli which were arranged in 2-4 rows. The mitral cell layer occupied a wide zone and was composed of scattered mitral cells. The mitral cells had 2-9 primary dendrites proceeding externally to terminate in the olfactory glomeruli and 2-4 secondary dendrites extending tangentially in the mitral cell layer to be distributed therein. The axons of the mitral cells travelled deeply and entered the layer of the deep fiber plexus. The deep fiber plexus was the path for the bulbar efferent and afferent fibers and could be traced caudally as the main olfactory tract, up to the anterior olfactory nucleus and vicinity. The granule cell layer was composed of small cells, the granule cells, packed closely with no special arrangement. The granule cells had long processes which extended superficially to be distributed mainly in the mitral cell layer. The ependymal cells were located at the deepest layer forming the wall of the olfactory ventricle and generated a long process which extended towards the surface to terminate in the peripheral portion of the bulb. In the snake bulb, the well-documented external and internal plexiform layers were considered to be included in the wide mitral cell layer. Thus, while several specific structures were observed, the fundamental organization of the main olfactory bulb in the snake seemed to be identical to that of the main olfactory bulb in various other vertebrate species.  相似文献   

2.
The intrinsic organization of the accessory olfactory bulb (AOB) in the snake was studied using the rapid Golgi method. A distinct laminar organization was observed in the snake AOB. Beginning with the most superficial surface, the following layers were distinguished: the layer of the vomeronasal fibers, the olfactory glomeruli, the mitral cells, the deep fiber plexus, the granule cells and the ependymal cells. While the general organizational pattern of the snake AOB resembles that of the main olfactory bulb (MOB) and the AOB reported in various vertebrate species, the present study shows that: (1) the external and internal plexiform layers cannot be identified as independent layers and are considered to be included in the mitral cell layer; (2) the afferent and efferent paths, which are disseminated in the granule cell layer in the mammalian MOB, accumulate external to the granule cell layer to form the layer of the deep fiber plexus: and (3) as a result of accumulation of the afferent and efferent paths in the layer of the deep fiber plexus, the granule cell layer is very fiber-sparse. These structural patterns are quite similar to those of the snake MOB.  相似文献   

3.
The present study describes the distribution of tyrosine hydroxylase (TH)-immunoreactive (IR) elements in the olfactory bulb of the common marmoset monkey (Callithrix jacchus), a primate species by immunohistochemistry. We identified six layers of the olfactory bulb of the common marmoset monkey in sections stained with cresyl violet. The majority of TH-IR cells were found in the glomerular layer. A few TH-IR cells were present in the external plexiform and granule cell layers. TH-IR fibers were identified in all layers of the olfactory bulb. The density of these nerve fibers was high in the internal plexiform and granule cell layers. The results in the olfactory bulb of the common marmoset monkey are generally similar to previous reports in some mammals. These data suggest that TH in the olfactory bulb of the common marmoset monkey may play a role in olfactory transmission via the glomeruli like in other mammals.  相似文献   

4.
Kosaka T  Deans MR  Paul DL  Kosaka K 《Neuroscience》2005,134(3):757-769
In the present study we analyzed the structural features of extraglomerular gap junction-forming processes in mouse olfactory bulb electron microscopically. This work complements a previous study in which we analyzed the structural features of neuronal gap junction-forming processes within the glomerulus itself. Furthermore we examined connexin 36 expressing cells in the mouse olfactory bulb by analyzing transgenic mice in which the connexin 36 coding sequence was replaced with histological reporters. In extraglomerular regions, the mitral/tufted cell somata, dendrites and axon hillocks made gap junctions and mixed synapses with interneuronal processes. These gap junctions and synapses were associated with various types of interneuronal processes, including a particular type of sheet-like or calyx-like process contacting the somata or large dendrites of mitral/tufted cells. In the olfactory bulbs of the transgenic mice, connexin 36 was expressed in mitral cells, tufted cells, presumed granule cells and periglomerular cells. Multiple immunofluorescent labelings further revealed that presumed interneurons expressing connexin 36 in the periglomerular region rarely expressed calbindin, calretinin or tyrosine hydroxylase and are likely to comprise a chemically uncharacterized class of neurons. Similarly, interneurons expressing connexin 36 in the granule cell layer were rarely positive for calretinin, which was expressed in numerous presumed granule cells in the mouse main olfactory bulb. In summary, these findings revealed that mitral/tufted cells make gap junctions with diverse types of neurons; in the glomeruli gap junction-forming interneuronal processes originated from some types of periglomerular cells but others from a hitherto uncharacterized neuron type(s), and in the extraglomerular region gap-junction forming processes originate mainly from a subset of cells within the granule cell layer.  相似文献   

5.
Kosaka T  Kosaka K 《Neuroscience》2005,131(3):611-625
Glomeruli of the main olfactory bulb are considered to serve as functional units in processing the olfactory information. Thus the fine tuning of the output level from each glomerulus is important to the information processing in the olfactory system. The interactions among neuronal elements in glomeruli might be one of main mechanisms regulating this output level. In the mouse main olfactory bulb neuronal connections via chemical synapses and gap junction in glomeruli were analyzed by the serial electron microscopical reconstruction. Gap junctions were encountered between diverse types of dendritic processes, between mitral/tufted cell dendrites, between mitral/tufted cell dendrites and periglomerular cell dendrites and between mitral/tufted cell dendrites and dendrites of some interneurons different from periglomerular cells. Then these morphological observations indicate that we must consider both direct coupling between mitral/tufted cells via gap junctions and indirect coupling between mitral/tufted cells via intervening interneuronal processes. One of gap junction-forming processes presynaptic in asymmetrical synapses was traced back to the soma of its origin located in the glomerular layer, which was thus identified as an external tufted cell. However, interestingly, it showed apparently different ultrastructural features from other external tufted cells located at the border between the glomerular and external plexiform layers; the latter resemble so-called mitral/tufted cells located in the external plexiform and mitral cell layers. Then external tufted cells were assumed to be heterogeneous in their ultrastructural features. We occasionally encountered several dendrites connected by gap junctions, which furthermore made chemical synapses with each other and with other surrounding processes. Thus both chemical synapses and gap junctions interconnect complexly various processes in the glomerulus, where the local circuit among intermingled olfactory nerves, mitral/tufted cell dendrites and interneuron dendrites is far more complex than previously schematized.  相似文献   

6.
Main olfactory bulb (MOB) granule cells receive spatially segregated glutamatergic synaptic inputs from the dendrites of mitral/tufted cells as well as from the axons of centrifugal fibers (CFFs) originating in olfactory cortical areas. Dendrodendritic synapses from mitral/tufted cells occur on granule cell distal dendrites in the external plexiform layer (EPL), whereas CFFs preferentially target the somata/proximal dendrites of granule cells in the granule cell layer (GCL). In the present study, tract tracing, and recordings of field potentials and voltage-sensitive dye optical signals were used to map activity patterns elicited by activation of these two inputs to granule cells in mouse olfactory bulb slices. Stimulation of the lateral olfactory tract (LOT) produced a negative field potential in the EPL and a positivity in the GCL. CFF stimulation produced field potentials of opposite polarity in the EPL and GCL to those elicited by LOT. LOT-evoked optical signals appeared in the EPL and spread subsequently to deeper layers, whereas CFF-evoked responses appeared in the GCL and then spread superficially. Evoked responses were reduced by N-methyl-d-aspartate (NMDA) receptor antagonists and completely suppressed by AMPA receptor antagonists. Reduction of extracellular Mg(2+) enhanced the strength and spatiotemporal extent of the evoked responses. These and additional findings indicate that LOT- and CFF-evoked field potentials and optical signals reflect postsynaptic activity in granule cells, with moderate NMDA and dominant AMPA receptor components. Taken together, these results demonstrate that LOT and CFF stimulation in MOB slices selectively activate glutamatergic inputs to the distal dendrites versus somata/proximal dendrites of granule cells.  相似文献   

7.
The effects of centrifugal afferents on single unit discharge in the main olfactory bulb were studied in anaesthetized rats. Recording with extracellular micropipettes revealed spontaneous firing in all bulb layers. Units were located to different laminae using evoked field-potential profiles and histological verification. Output neurons were identified by antidromic response to stimulation of the lateral olfactory tract. Single- or brief multiple-pulse stimulation in the nucleus of the horizontal limb of the diagonal band, but not in adjacent regions, facilitated 17 out of 27 mitral cells with no effect on 10, but inhibited 21 out of 33 granule cell layer units with no effect on 12. Of 13 presumed tufted cells, six were facilitated and the rest unaffected. In contrast, stimulation of olfactory cortex inhibited mitral cells and facilitated most granule layer cells. The results are consistent with an inhibition of tonic granule cell discharge by the horizontal diagonal band nucleus, with resultant disinhibition of mitral cells via the dendrodendritic synapses of granule cells on mitral cell secondary dendrites.  相似文献   

8.
The intrinsic organization of the olfactory bulb (OB) was studied in the red stingray using the rapid Golgi method. The OB is horse shoe-shaped, surrounding the equator region of the nasal capsule. As seen in the sagittal sections, the OB is round with the long olfactory peduncle extending from the dorsocaudal region and the olfactory fibers in a thick bundle entering from the rostroventral aspect. Although not so distinct, the following areas are distinguished. A rostroventral ovoid area adjacent to the entrance of the olfactory fibers consists exclusively of the olfactory fibers running in various directions. Dorsocaudal to the olfactory fiber area is a wide crescent region containing thin bundles of olfactory fibers, olfactory glomeruli, mitral cells and a few disseminated granule cells. A narrow crescent area made up of scattered granule cells is located dorsocaudally to the above wide crescent area. The outermost region consists of a fiber layer encapsulating the dorsal to caudal aspect of the OB. Thus, while the major constituents of the vertebrate OB are recognized, the lamination is very obscure.  相似文献   

9.
Summary The distribution and structural features of tyrosine hydroxylase-like immunoreactive (TH-LI) neurons were studied in the olfactory bulb of a snake, Elaphe quadrivirgata, by using pre-and post-embedding immunocytochemistry at the light microscopic level. In contrast to rodent olfactory bulbs previously reported, many TH-LI neurons were seen not only in the main olfactory bulb (MOB) but also in the accessory olfactory bulb (AOB). With regard to the TH-like immunoreactivity, there appeared no appreciable differences between MOB and AOB. As in mammalian MOB, the majority of TH-LI neurons were clustered in the periglomerular region and appeared to send their dendritic branches into glomeruli, which as a whole make an intense TH-LI band in the glomerular layer (GML). In the external plexiform/mitral cell layer (EPL/ML) of MOB and AOB as well as in the outer sublamina of the internal plexiform layer (OSL) of AOB, an appreciable number of TH-LI neurons were scattered, extending dendritic processes which appeared to make a loose meshwork. TH-LI neurons in EPL/ML (including OSL) appeared to consist of at least two morphologically different types. The first had a small perikaryon and one or two smooth dendrites which usually extended to GML and were frequently confirmed to enter into glomeruli. The second had a larger perikaryon and 2–3 dendrites which branched into several varicose processes extending in EPL/ML/OSL but appeared not to enter into glomeruli. The TH-like immunoreactivity was rarely seen in the internal plexiform layer and internal granule cell layer. The colocalization of GABA-like and TH-like immunoreactivities was further studied. Almost all TH-LI neurons in both EPL/ ML/OSL and GML contained GABA-like immunoreactivity irrespectively of the type of TH-LI cells.Abbreviations in Figures AOB accessory olfactory bulb - MOB main olfactory bulb - Hem hemisphere - ON olfactory nerve layer - VN vomeronasal nerve layer - GM glomerular layer - EP/M external plexiform layer/Mitral cell layer - IP internal plexiform layer - IG internal granular layer - OS outer sublamina of the IPL of AOB - MS middle sublamina of the IPL of AOB - IS inner sublamina of the IPL of AOB  相似文献   

10.
Uptake and retention of exogenous tritiated dopamine and L-dopa was observed within turtle olfactory bulb slices. In the more superficial layers, periglomerular and superficial tufted cells, as well as their processes, and intraglomerular dendrites were recognized as labeled. Within the deeper part of the bulb, some labeled cells between the tanycytes, as well as nerve fibers and terminals within the granule cell layer, are reported. The results confirm the presence of specific intrinsic dopaminergic cells within the reptilian olfactory bulb.  相似文献   

11.
The ultrastructure of the elasmobranch olfactory bulb was examined in order to determine the synaptology of the olfactory circuitry in the bonnethead shark, Sphyrna tiburo. The compartmentalization of the bulb, together with the lack of mitral cell basal dendrites, suggests a different way of performing lateral communication between mitral cells of the olfactory bulb. The results show that granule cells assume an important role by directly interlinking mitral cells. A corollary of this is the segregation of the input onto the mitral cell dendritic arborization: afferent fibers synapse onto the intraglomerular mitral terminals, whereas most local circuit interactions utilize extraglomerular synapses located on the shafts and the somas of the mitral dendrites. Therefore, the elasmobranch synaptic pattern is different from that of higher vertebrates; This might represent the use of a different neural route to achieve the same processing task.  相似文献   

12.
The ultrastructure of the elasmobranch olfactory bulb was examined in order to determine the synaptology of the olfactory circuitry in the bonnethead shark, Sphyrna tiburo. The compartmentalization of the bulb, together with the lack of mitral cell basal dendrites, suggests a different way of performing lateral communication between mitral cells of the olfactory bulb. The results show that granule cells assume an important role by directly interlinking mitral cells. A corollary of this is the segregation of the input onto the mitral cell dendritic arborization: afferent fibers synapse onto the intraglomerular mitral terminals, whereas most local circuit interactions utilize extraglomerular synapses located on the shafts and the somas of the mitral dendrites. Therefore, the elasmobranch synaptic pattern is different from that of higher vertebrates; This might represent the use of a different neural route to achieve the same processing task.  相似文献   

13.
The olfactory bulb of the rat contains chromogranin A at a similar level as the adrenal gland or the hypophysis as revealed by immunoblots. Olfactory chromogranin A also displays the same size as chromogranin A of endocrine cells. In the hippocampus and other brain regions, we could not detect chromogranin A by immunoblotting. In contrast, chromogranin A messenger ribonucleic acid (using S1 nuclease protection assays) was observed in all brain regions examined, including the olfactory bulb. By in situ hybridization histochemistry with a complementary ribonucleic acid probe (280 nucleotides), and by immunocytochemistry, chromogranin A synthesis could be localized to cell bodies of the mitral cell layer, of the external plexiform layer and of the periglomerular region of the olfactory bulb. Immunocytochemically, chromogranin A was also detected in the central projection areas of mitral and tufted cells in the primary olfactory cortex and the anterior amygdaloid area but not in the olfactory glomeruli, where the incoming olfactory nerve fibers of the primary olfactory neurons establish synaptic contacts. Taken together the data show that chromogranin A, following biosynthesis in the perikarya of the mitral and tufted cells, is specifically transported into their axonal terminals but not into their primary dendrites. We propose that the rat olfactory system could serve as a model for the study of chromogranin A regulation and function in neurons.  相似文献   

14.
Egaña JI  Aylwin ML  Maldonado PE 《Neuroscience》2005,134(3):1069-1080
Olfactory perception initiates in the nasal epithelium wherefrom olfactory receptor neurons--expressing the same receptor protein--project and converge in two different glomeruli within each olfactory bulb. Recent evidence suggests that glomeruli are isolated functional units, arranged in a chemotopic manner in the olfactory bulb. Exposure to odorants leads to the activation of specific populations of glomeruli. In rodents, about 25-50 mitral/tufted cells project their primary dendrites to a single glomerulus receiving similar sensory input. Yet, little is known about the properties of neighboring mitral/tufted cells connected to one or a few neighboring glomeruli. We used tetrodes to simultaneously record multiple single-unit activity in the mitral cell layer of anesthetized, freely breathing rats while exposed to mixtures of chemically related compounds. First, we characterized the odorant-induced modifications in firing rate of neighboring mitral/tufted cells and found that they do not share odorant response profiles. Individual units showed a long silent (11.01 ms) period with no oscillatory activity. Cross-correlation analysis between neighboring mitral/tufted cells revealed negligible synchronous activity among them. Finally, we show that respiratory-related temporal patterns are dissimilar among neighboring mitral/tufted cells and also that odorant stimulation results in an individual modification that is not necessarily shared by neighboring mitral/tufted cells. These results show that neighboring mitral/tufted cells frequently exhibit dissimilar response properties, which are not consistent with a precise chemotopic map at the mitral/tufted cell layer in the olfactory bulb.  相似文献   

15.
Using a confocal laser scanning microscope (CLSM) and an electron microscope, we investigated the organization of the main olfactory bulb (MOB) of tenrecs, which were previously included into insectivores but now considered to be in a new order "Afrosoricida" in the superclade 'Afrotheria'. We confirmed that the overall structural organization of the tenrec MOB was similar to that of rodents: (1) the compartmental organization of glomeruli and two types of periglomerular cells we proposed as the common organizational principles were present; (2) there were characteristic dendrodendritic and axo-dendritic synapses in the glomerulus and external plexiform layer (EPL) and gap junctions in glomeruli; and (3) no nidi, particular synaptic regions reported only in laboratory musk shrew and mole MOBs, were encountered. However, instead of nidi, we often observed a few tangled olfactory nerves (ONs) with large irregular boutons in the glomerular-external plexiform layer border zone, with which dendrites of various displaced periglomerular cells were usually found to be intermingled. Electron microscopic (EM) examinations confirmed characteristic large mossy terminal-like ON terminals making asymmetrical synapses to presumed mitral/tufted cell and displaced periglomerular cell dendrites. In addition, gap junctions were also encountered between dendritic processes in these tiny particular regions, further showing their resemblance to glomeruli.  相似文献   

16.
Mouse olfactory receptor proteins have relatively broad odorant tuning profiles, so single odorants typically activate a substantial subset of glomeruli in the main olfactory bulb, resulting in stereotyped odorant- and concentration-dependent glomerular input maps. One of the functions of the olfactory bulb may be to reduce the extent of this rather widespread activation before transmitting the information to higher olfactory centers. Two circuits have been studied in vitro that could perform center-surround inhibition in the olfactory bulb, one circuit acting between glomeruli, the other through the classical reciprocal synapses between the lateral dendrites of mitral cells and the dendrites of granule cells. One unanswered question from these in vitro measurements was how these circuits would affect the response to odorants in vivo. We made measurements of the odorant-evoked increase in calcium concentration in the olfactory receptor neuron terminals in the anesthetized mouse to evaluate the role of presynaptic inhibition in reshaping the input to the olfactory bulb. We compared the glomerular responses in 2- to 4-wk-old mice before and after suppressing presynaptic inhibition onto the receptor neuron terminals with the GABAB antagonist, CGP46381. We find that the input maps are modified by an apparent center-surround inhibition: strongly activated glomeruli appear to suppress the release from receptor neurons terminating in surrounding glomeruli. This form of lateral inhibition has the effect of increasing the contrast of the sensory input map.  相似文献   

17.
According to the combinatorial receptor and glomerular codes for odors, the fine tuning of the output level from each glomerulus is assumed to be important for information processing in the olfactory system, which may be regulated by numerous elements, such as olfactory nerves (ONs), periglomerular (PG) cells, centrifugal nerves and even various interneurons, such as granule cells, making synapses outside the glomeruli. Recently, structural and physiological analyses at the cellular level started to reveal that the neuronal organization of the olfactory bulb may be more complex than previously thought. In the present paper, we describe the following six points of the structural organization of the glomerulus, revealed by confocal laser scanning microscopy and electron microscopy analyses of rats, mice and other mammals: (i) the chemical heterogeneity of PG cells; (ii) compartmental organization of the glomerulus, with each glomerulus consisting of two compartments, the ON zone and the non-ON zone; (iii) the heterogeneity of PG cells in terms of their structural and synaptic features, whereby type 1 PG cells send their intraglomerular dendrites into both the ON and non-ON zones and type 2 PG cells send their intraglomerular dendrites only into the non-ON zone, thus receiving either few synapses from the ON terminals, if present, or none at all; (iv) the spatial relationship of mitral/tufted cell dendritic processes with ON terminals and PG cell dendrites; (v) complex neuronal interactions via chemical synapses and gap junctions in the glomerulus; and (vi) comparative aspects of the organization of the main olfactory bulb.  相似文献   

18.
The presence of the neuropeptide C-terminal flanking peptide of neuropeptide-Y, C-PON, has been investigated in the main olfactory bulb of the rat using conventional fluorescence and peroxidase-antiperoxidase immunocytochemical techniques. The distribution of immunoreactive structures to C-PON was examined in both horizontal and coronal sections. Endogenous C-PON was localized within two types of short-axon cells including (1) superficial short-axon cells in the glomerular layer and (2) deep short-axon cells lying in the deepest portion of the granule cell layer and in the adjacent white matter. In addition, varicose immunoreactive processes were detected in all layers, although they were more numerous in the deepest portion of the granule cell layer. Immunoreactive cell bodies and processes were also observed in the nucleus olfactorius anterior and in the intrabulbar portion of the anterior commissure. Nevertheless, immunoreactive structures were not localized in the lateral olfactory tract. The indirect immunofluorescence technique to detect endogenous C-PON in combination with the enzyme histochemical demonstration of NADPH-diaphorase activity, in single sections, showed that the NADPH-diaphorase procedure is a reliable marker for these C-PON positive cells. Also, indirectly, that, in the rat main olfactory bulb, C-PON and neuropeptide-Y are contained in the same cell types. Many glomeruli were stained following the NADPH-diaphorase procedure, but they were not C-PON immunoreactives. Results of this study provide evidence suggesting that C-PON may influence polysynaptically the function of mitral cells and, therefore, the olfactory bulb output.  相似文献   

19.
The laminar distribution and morphological features of parvalbumin-immunoreactive [PV(+l)] neurons, one of the subpopulations of GABAergic neurons, were studied in the rat olfactory bulb at a light microscopic level. In the main olfactory bulb of adult rats, PV(+) neurons were mainly located in the external plexiform layer (EPL), and a few were scattered in the glomerular layer (GL), mitral cell layer (ML), and granule cell layer (GRL); whereas PV(+) neurons were rarely seen in the accessory olfactory bulb. The inner and outer sublayers of the EPL (ISL and OSL) appeared to be somewhat different in the distribution of PV(+) somata and features of PV(+) processes. PV(+) somata were located throughout the OSL, and PV(+) processes intermingled with one another, making a dense meshwork in the OSL; whereas, in the ISL, PV(+) somata were mainly located near the inner border of the EPL, and PV(+) processes made a sparser meshwork than that in the OSL. PV(+) neurons in the EPL were apparently heterogeneous in their structural features and appeared to be classifiable into several groups. Among them there appeared five distinctive types of PV(+) neurons. The most prominent group of PV(+) neurons in the OSL were superficial short-axon cells, located in the superficial portion of this sublayer and giving rise to relatively thick processes, in horizontal or oblique directions, which usually bore spines and varicosities. Another prominent group of PV(+) neurons extended several short, branched dendrites with spines and varicosities, which appeared to intermingle with one another, making a relatively small, spherical or ovoid dendritic field around the cell bodies; most of them resembled Van Gehuchten cells reported in previous Golgi studies. A third distinctive and most numerous group of PV(+) neurons were of the multipolar type; their somata and processes were located throughout the EPL. Their relatively smooth processes with frequent varicosities and a few spines were extended horizontally or diagonally throughout the EPL. A fourth group, which could be a subtype of the multipolar type, were located in or just above th ML and extended several thin, smooth dendrites in the EPL, some of which appeared to reach the border between the GL and EPL. Occasionally, axonlike processes arose from their cell bodies and extended into the ML. This fourth type of PV(+) neuron was named inner short-axon cells. A fifth group of neuron was located in the ML; processes of these neurons were extended horizontally, so they were named inner horizontal cells. PV(+) processes from the fourth and the fifth group of cells appeared to make contacts on mitral cell somata. In the GL some presumably periglomerular cells were also PV(+). In the GRL, PV(+) neurons were small in number, but they were also heterogeneous in their structural features; Some were identified as Golgi cells. This study shows a tremendous heterogeneity in morphological features of a chemically defined subpopulation of GABAergic interneurons in the olfactory bulb.  相似文献   

20.
H Kaba  E B Keverne 《Neuroscience》1992,49(2):247-254
The accessory olfactory bulb of the mouse was studied by current source-density analysis of field potentials to determine the laminar and temporal distribution of synaptic currents evoked by electrical stimulation of the vomeronasal organ. The one-dimensional current source-density analysis revealed two major spatially and temporally distinct inward membrane currents (sinks): one in the glomerular layer and the other in the external plexiform layer. The glomerular layer sink preceded the external plexiform layer sink by a mean of 5.5 ms. Local infusions of the broad-spectrum excitatory amino acid antagonist, kynurenate, into the accessory olfactory bulb blocked the external plexiform layer sink without an obvious effect on the glomerular layer sink. The selective non-N-methyl-D-aspartate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione produced a dose-dependent blockade of the external plexiform layer sink, whereas the selective N-methyl-D-aspartate receptor antagonist D-2-amino-5-phosphonovalerate was without effect. These results, taken together with the cytoarchitecture of the accessory olfactory bulb, suggest that the glomerular layer sink results mainly from synaptic excitation evoked in the glomerular dendritic branches of mitral cells by the vomeronasal afferent fibres and the external plexiform layer sink mainly from non-N-methyl-D-aspartate receptor-mediated synaptic excitation in the peripheral processes of granule cells via the mitral to granule cell dendrodendritic synapse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号