首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的探讨新型的有机羧酸氧钒配合物双(α-呋喃甲酸)氧钒(BFOV)对正常及胰岛素抵抗的3T3-L1脂肪细胞糖摄取的影响。方法采用地塞米松诱导3T3-L1脂肪细胞建立胰岛素抵抗的细胞模型,研究双(α-呋喃甲酸)氧钒对正常及胰岛素抵抗3T3-L1脂肪细胞葡萄糖消耗的影响。结果双(α-呋喃甲酸)氧钒(2.5μmol·L-1~40μmol·L-1)对正常的3T3-L1脂肪细胞仅有增加葡萄糖消耗量的趋势,与空白对照组比较,差异无显著性;但能明显增加地塞米松诱导的胰岛素抵抗3T3-L1脂肪细胞的葡萄糖消耗量,改善模型细胞的胰岛素抵抗状态。结论双(α-呋喃甲酸)氧钒能促进胰岛素抵抗脂肪细胞的葡萄糖摄取,改善胰岛素抵抗状态。  相似文献   

2.
Berberine activates GLUT1-mediated glucose uptake in 3T3-L1 adipocytes   总被引:1,自引:0,他引:1  
It has recently been known that berberine, an alkaloid of medicinal plants, has anti-hyperglycemic effects. To explore the mechanism underlying this effect, we used 3T3-L1 adipocytes for analyzing the signaling pathways that contribute to glucose transport. Treatment of berberine to 3T3-L1 adipocytes for 6 h enhanced basal glucose uptake both in normal and in insulin-resistant state, but the insulin-stimulated glucose uptake was not augmented significantly. Inhibition of phosphatidylinositol 3-kinase (PI 3-K) by wortmannin did not affect the berberine effect on basal glucose uptake. Berberine did not augment tyrosine phosphorylation of insulin receptor (IR) and insulin receptor substrate (IRS)-1. Further, berberine had no effect on the activity of the insulin-sensitive downstream kinase, atypical protein kinase C (PKCzeta/lambda). However, interestingly, extracellular signal-regulated kinases (ERKs), which have been known to be responsible for the expression of glucose transporter (GLUT)1, were significantly activated in berberine-treated 3T3-L1 cells. As expected, the level of GLUT1 protein was increased both in normal and insulin-resistant cells in response to berberine. But berberine affected the expression of GLUT4 neither in normal nor in insulin-resistant cells. In addition, berberine treatment increased AMP-activated protein kinase (AMPK) activity in 3T3-L1 cells, which has been reported to be associated with GLUT1-mediated glucose uptake. Together, we concluded that berberine increases glucose transport activity of 3T3-L1 adipocytes by enhancing GLUT1 expression and also stimulates the GLUT1-mediated glucose uptake by activating GLUT1, a result of AMPK stimulation.  相似文献   

3.
In this study, the effect of cyanidin-3-rutinoside (C3R) on glucose uptake by 3T3-L1 adipocytes was studied. C3R significantly increased glucose uptake, which was associated with enhanced plasma membrane glucose transporter type 4 (PM-GLUT4) expression in 3T3-L1 adipocytes. The potentiating effect of C3R on glucose uptake and PM-GLUT4 expression was related to enhanced phosphorylation of insulin receptor substrate 1 (IRS-1) and Akt, as well as augmented activation of phosphatidylinositol-3-kinase (PI3K) in the insulin signaling pathway. C3R induced glucose uptake was inhibited only by the PI3K inhibitor, but not by an AMPK inhibitor in 3T3-L1 adipocytes. Therefore, C3R likely up-regulates glucose uptake and PM-GLUT4 expression in 3T3-L1 adipocytes by activating the PI3K/Akt pathways.  相似文献   

4.
吡格列酮改善氧化应激导致的脂肪细胞胰岛素抵抗   总被引:4,自引:0,他引:4  
目的:观察吡格列酮对氧化应激导致的脂肪细胞胰岛素抵抗的作用,初步探讨其机制。方法:葡萄糖氧化酶(GO)作用培养于高糖DMEM的3T3-L1细胞产生H2O212小时后观察胰岛素刺激的葡萄糖摄取(ISGU)和胰岛素信号通路主要分子的活化状态以及吡格列酮的影响。结果:GO导致的氧化应激抑制ISGU和IRS-1酪氨酸及PKB磷酸化,其机制可能与氧化应激导致IRS-1丝氨酸307磷酸化有关;氧化应激的作用可被吡格列酮部分逆转。结论:吡格列酮可以减轻氧化应激导致的脂肪细胞胰岛素抵抗,改善胰岛素信号传导。  相似文献   

5.
目的探讨脂肪组织甘油三酯酶(adipose triglyceridelipase,ATGL)及激素敏感性脂肪酶(hormone-sensitive lipase,HSL)在褪黑素非选择性受体激动剂Neu-p11改善高糖高胰岛素(high glucose and insulin,HGI)诱导的3T3-L1脂肪细胞胰岛素抵抗(insulin resistance,IR)中的作用及机制。方法培养3T3-L1脂肪细胞,HGI诱导IR模型。以葡萄糖消耗量及细胞内甘油三酯(triglyceride,TG)定量测定作为检测指标,Western blot检测蛋白水平的表达情况。结果 HGI孵育减少脂肪细胞葡萄糖摄取,促进细胞内TG积聚,同时伴有ATGL及HSL的蛋白表达下调。Neu-p11干预逆转了HGI对脂肪细胞的作用效应,而MT2竞争性拮抗剂luzindole却拮抗了Neu-p11的上述效应。结论 Neu-p11以MT2受体依赖性方式抑制IR脂肪细胞TG沉积,可能与其上调AT-GL、HSL蛋白的表达,促进TG水解相关。  相似文献   

6.
目的:观察梓醇与小檗碱及其配伍对胰岛素抵抗3T3-L1脂肪细胞葡萄糖消耗及这一过程中葡萄糖转运子-4(Glut-4)、胰岛素受体底物-1(IRS-1)和胰岛素受体底物-1丝氨酸307(IRS-1Ser307)磷酸化蛋白表达的影响。方法:采用高糖联合高胰岛素诱导3T3-L1脂肪细胞产生胰岛素抵抗,分别给予小檗碱、梓醇、小檗碱+梓醇、盐酸罗格列酮进行干预,以葡萄糖氧化酶法检测培养液中葡萄糖消耗量,以WesternBlot法检测蛋白的表达。结果:与模型组相比,小檗碱能增加培养液中葡萄糖的消耗(P〈0.01),但对Glut,4蛋白的表达无影响;梓醇、小檗碱+梓醇均能显著增加培养液中葡萄糖的消耗(P〈0.01),并使细胞中Glut-4蛋白的表达增强(P〈0.05),且小檗碱+梓醇组的效应优于梓醇组及小檗碱组;与模型组相比,小檗碱与梓醇及其配伍对IRS-1的表达没有显著性影响,但能降低IRS-1 Ser307磷酸化蛋白表达。结论:小檗碱、梓醇及其配伍能改善胰岛素抵抗3T3-L1脂肪细胞的胰岛素敏感性,其作用机制与罗格列酮不同。  相似文献   

7.
Angiotensin II is a peptide hormone with strong vasoconstrictive action, and recent reports have shown that Angiotensin II receptor type 1 antagonists (angiotensin II receptor blockers) also improve glucose metabolism. The angiotensin II receptor blocker telmisartan acts as an agonistic ligand of the peroxisome proliferator-activated receptor gamma (PPARγ). In this study, we investigated the effects of telmisartan on glucose uptake and insulin sensitivity in 3T3-L1 adipocytes and compared it with the action of other angiotensin II receptor blockers. Telmisartan treatment dose-dependently increased (from 1 μM) protein expression of PPARγ-regulated molecules such as fatty acid binding protein 4 (FABP4), insulin receptor, and glucose transporter 4 (GLUT4). Telmisartan increased glucose uptake both with and without insulin stimulation in 3T3-L1 adipocytes. Telmisartan increased the up-regulation of phosphorylated insulin receptor, insulin receptor substrate-1 (IRS-1) and Akt by insulin, suggesting that telmisartan increases insulin sensitivity. Furthermore, in the absence of insulin, telmisartan, but not candesartan, increased GLUT4 levels at the plasma membrane. These effects by 10 μM telmisartan were similar potency to those of 1 μM troglitazone, an activator of PPARγ. In addition, up-regulation of glucose uptake by telmisartan was inhibited by a PPARγ antagonist, T0070907 (2-chloro-5-nitro-N-4-pyridinyl-benzamide). These results indicate that telmisartan acts via PPARγ activation in adipose tissue and may be an effective therapy for the metabolic syndrome.  相似文献   

8.
Recently, it has been demonstrated that fibroin and fibroin-derived peptides enhances insulin sensitivity and glucose metabolism in adipocytes. Here, we show that a synthetic hexapeptide Gly-Ala-Gly-Val-Gly-Tyr (GAGVGY) derived from repetitive amino acid sequence of fibroin improves glucose transport and exerts beneficial lipid metabolic effects in 3T3-L1 adipocytes. GAGVGY increases both basal and insulin-stimulated glucose uptake through enhancement of GLUT1 expression and PI 3-K-dependent GLUT4 translocation, respectively. GAGVGY treatment also led to a significant reduction in the expression of lipogenic genes including sterol regulatory element binding protein-1c (SREBP1c), peroxisome proliferator-activated receptor-γ (PPARγ), and fatty acid synthase (FAS) in mature 3T3-L1 adipocytes, which was corroborated with decreased lipid accumulation by GAGVGY treatment. Additionally, in cells undergoing differentiation, mRNA levels of adipogenic genes including PPARγ and CCAAT/enhancer binding protein α (C/EBPα), stearoyl-CoA desaturase 1 (SCD1), and FAS were suppressed by GAGVGY. Furthermore, GAGVGY increased AMP-activated protein kinase (AMPK) phosphorylation and adiponectin secretion in 3T3-L1 adipocytes. The latter effect was supported with evidence showing increased AMPK activation in C2C12 myocytes treated with 3T3-L1-adipocyte-conditioned medium. Together, our data suggest that GAGVGY has multiple beneficial effects on glucose and lipid metabolism, and would control hyperglycemia without the adverse effect of weight gain.  相似文献   

9.
Thiazolidinediones (TZDs) such as rosiglitazone are antidiabetic peroxisome proliferator-activated receptor gamma (PPARgamma) agonists. PPARgamma agents improve diabetes by increasing insulin sensitivity and enhancing the differentiation of preadipocytes into adipocytes. The present study aimed to identify if 1-(4-chlorobenzoyl)-5-hydroxy-2-methyl-3-indoleacetitic acid (GY3), a newly synthesized indole compound, could enhance adipocytes differentiation and insulin sensitivity. The results showed that both GY3 and rosiglitazone significantly increased the lipid accumulating of 3T3-L1 adipocytes induced by isobutylmethylxanthine, dexamethasone and insulin mixture, but GY3 (not rosiglitazone) failed to increase the lipid accumulation when induced by insulin alone. In addition, GY3- or rosiglitaozne-induced protein expression of GLUT4 and adiponectin was determined by Western blot analysis. GY3 activated PPARalpha weakly but did not affect PPARgamma, while rosiglitazone activated PPARgamma significantly, suggesting different mechanisms between GY3 and rosiglitazone on adipocyte differentiation. Furthermore, both GY3 and rosiglitazone enhanced the adiponectin and insulin pathway proteins expression and adiponectin secretion in mature adipocytes, but only GY3 not rosiglitazone elevated gene expression of leptin and resistin. Both GY3 and rosiglitazone enhanced glucose consumption in HepG2 cells especially in the presence of insulin. In the in vivo study, GY3 decreased serum glucose and insulin in db/db mice, indicating the insulin sensitizing effect might contribute to its antidiabetic mechanism. Altogether, these results suggest that GY3 could improve insulin resistance and lower glucose level, GY3 and its derivatives might be developed as a substitution therapy for diseases with insulin resistance.  相似文献   

10.
OBJECTIVE To explore increasingly exosomal serum miR-27 a derived from adipocytes could be taken up by skeletal muscle tissue and induce insulin resistance in skeletal muscle in obese state. METHODS The association between miR-27 a and insulin resistance in skeletal muscle was determined in obese children,high-fat diet-induced miR-27 a knockdown obese mice,db/db mice and C2C12 cells overexpressing miR-27 a.The crosstalk mediated by exosomal miR-27 a between adipose tissue and skeletal muscle was determined in C2C12 cel s incubated with conditioned medium prepared from palmitate-treated 3 T3-L1 adipocytes. RESULTS After knockdown miR-27 a in obese insulin resistance mice,impaired insulin resistance, glucose intolerance and insulin resistance of skeletal muscle were partly restored. In high-fat diet group, the expressions of IRS-1 and GLUT4 in glucose uptake signal pathway of skeletal muscle were significantly decreased, while the expression of IRS-1 and GLUT4 was restored after miR-27 a knockdown. The content of FABP4, a marker specific for exosomes from adipocytes, was detected in sera, skeletal muscle, supernatant of adipocytes and co-cultured C2C12 cells; furthermore,exosomal miR-27 a in serum and adipocyte supernatants were detect, and fluorescence co-localization experiments were conducted to detect whether the exosomal miR-27 a in serum is mainly derived from adipocyte; finally,we used the supernatant of adipose tissue to construct conditioned media to treat with C2C12 cells, and detected whether adipocytes derived exosomal miR-27 a could impaired glucose uptake signaling pathway of skeletal muscle. the expressions of PPARγ silencing high-fat diet induced C57 BL/6 J obese mouse model and adenovirus intervention miR-27 a knockdown model were examined,and a C2C12 cell model overexpressing miR-27 a in the absence or presence with rosiglitazone(PPARγ activator)were established to test glucose consumption, glucose uptake, and glucose uptake signaling pathways of skeletal muscle cells. CONCLUSION These results identify a novel crosstalk signaling pathway between adipose tissue and skeletal muscle in the development of insulin resistance, and indicate that adipose tissue-derived miR-27 a may play a key role in the development of obesity-triggered insulin resistance in skeletal muscle.  相似文献   

11.
The aim of this article was to investigate the influence and the related mechanism of the Retn gene on glucose uptake and insulin resistance in 3T3-L1 cells. Radioimmuno-assay was used to determine glucose uptake in 3T3-L1 cells with different Retn gene expression levels, whether cells were stimulated by insulin or not. RT-PCR and real-time RT-PCR analysis were used to determine the mRNA levels of several glucose transport proteins in 3T3-L1 cells with different Retn gene expression levels, including insulin receptor substrate-1(IRS-1), phosphatidylinositol 3-kinase (PI-3K), AKT-2, glucose transporter-4 (GLUT-4), p38 mitogen-activated protein kinase (p38MAPK) and glycogen synthase kinase-3β (GSK-3β). The glucose uptake decreased with the increase in Retn gene expression in 3T3-L1 cells, which was independent of whether the cells were stimulated by insulin or not. The mRNA expression of two signal proteins PI-3K and AKT-2 decreased and the other two signal proteins, GSK-3β and p38MAPK, increased with Retn overexpression in 3T3-L1 cells. Resistin could induce insulin resistance in adipocytes, which might be related to the changes of some proteins in PI-3K and Ras pathways. Translated from Academic Journal of Second Military Medical University, 2006, 27(10): 1,067–1,071 [译自: 第二军医大学学报] The authors contributed equally to the study.  相似文献   

12.
Zhang WY  Lee JJ  Kim IS  Kim Y  Myung CS 《Pharmacology》2011,88(5-6):266-274
Agents that stimulate glucose uptake and improve insulin resistance may be useful in the management of type 2 diabetes mellitus (DM). Thus, the aims of this study were to assess the effects of aromadendrin, a flavonoid from Gleditsia sinensis Lam., on stimulation of glucose uptake and improvement of insulin resistance and to characterize the molecular mechanisms underlying these activities. Insulin-stimulated glucose uptake was measured in HepG2 cells and in differentiated 3T3-L1 adipocytes using 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-D-glucose (2-NBDG), a fluorescent D-glucose analog. Expression of the peroxisome proliferator-activated receptor-γ2 (PPARγ2) and adipocyte-specific fatty acid binding protein (aP2) mRNAs and the PPARγ2 protein was analyzed in adipocytes using RT-PCR and immunoblotting, respectively. Insulin-stimulated protein kinase B (Akt/PKB) phosphorylation was measured in high glucose-induced, insulin-resistant HepG2 cells. Similar to 30 μmol/l rosiglitazone, treatment with 30 μmol/l aromadendrin significantly stimulated insulin-sensitive glucose uptake in both HepG2 cells and 3T3-L1 adipocytes. Aromadendrin treatment also enhanced adipogenesis and caused increases in the expression of PPARγ2 and aP2 mRNAs and the PPARγ2 protein in differentiated 3T3-L1 adipocytes. In high glucose-induced, insulin-resistant HepG2 cells, aromadendrin reversed the inhibition of Akt/PKB phosphorylation in response to insulin, which could be abrogated by pretreatment with LY294002, a phosphatidylinositol 3-kinase (PI3K) inhibitor. Aromadendrin treatment induced adipogenesis by increases in PPARγ2 expression, resulting in stimulation of glucose uptake and ameliorated insulin resistance. These findings suggest that aromadendrin may represent a potential therapeutic candidate for the management of type 2 DM.  相似文献   

13.
Insulin resistance is characterized as one of crucial pathological changes in type 2 diabetes mellitus (T2DM), and dyslipidaemia is frequently detected in T2DM. A variety of vanadium compounds have been studied as drug candidates for diabetes based on their insulin-like action. However, few studies focus on their antilipolytic effect. In the present study, we established an insulin-resistant model in 3T3-L1 adipocytes to mimic pathological conditions of T2DM according to a well-established method by the treatment of high concentrations of glucose and insulin, which was validated by oil red O staining and the decreased levels of phosphorylated Akt, AS160 and GSK3 after insulin treatment. The results demonstrated that bis(acetylacetonato)-oxidovanadium (IV) (VO(acac)2) could inhibit isoproterenol-stimulated lipolysis through the reduction of the phosphorylated HSL and perilipin levels in both insulin-sensitive and insulin-resistant 3T3-L1 adipocytes. Moreover, although the levels of phosphorylated Akt induced by VO(acac)2 were decreased, the rates of lipolytic inhibition were not significantly altered compared with those under insulin-sensitive condition, indicating that the anti-lipolytic effect of VO(acac)2 might also function in an Akt-independent way in insulin-resistant adipocytes. Our work here help elucidate the anti-diabetic effects of vanadium compounds. It may not only shed light on the utility of vanadium-based compounds as potential anti-diabetic drugs but also serve as a useful screening model for new anti-diabetic drugs.  相似文献   

14.
敖文  徐在革  白杨  刘惠双 《天津医药》2022,50(2):131-136
目的 探究长链非编码RNA(LncRNA)生长抑制特异因子5(GAS5)靶向微小RNA(miR)-103,从而减轻 3T3L1脂肪细胞胰岛素抵抗(IR)的机制。方法 培养并诱导分化3T3L1小鼠前脂肪细胞,油红O染色鉴定细胞分化 情况。建立3T3L1脂肪细胞IR模型。实验分为对照组、模型组、空载体组(转染pEGFP-C1空载体)、GAS5过表达组 (转染 pEGFP-C1-GAS5 载体)、GAS5 过表达+mimic NC 组(转染 pEGFP-C1-GAS5+mimic NC)、GAS5 过表达+miR- 103 mimic组(转染pEGFP-C1-GAS5+miR-103 mimic)。实时荧光定量PCR检测细胞中GAS5、miR-103 mRNA水平; 液体闪烁法检测葡萄糖摄取能力;蛋白质免疫印迹检测细胞中胰岛素受体底物-1(IRS-1)、p-IRS-1、过氧化物酶体 增殖物激活受体γ(PPARγ)、葡萄糖转运蛋白4(GLUT4)、蛋白激酶B(AKT)、p-AKT蛋白表达水平;双荧光素酶鉴定 miR-103与GAS5的靶向位点。结果 诱导后脂肪细胞呈圆形、胞体变大,胞浆丰富,含有大量脂滴,油红染色明显, 呈“指环样”结构,模型构建成功。与对照组比较,模型组、空载体组、GAS5过表达+miR-103 mimic 组细胞中GAS5 mRNA水平、葡萄糖摄取能力、p-IRS-1/IRS-1、PPARγ、GLUT4、p-AKT/AKT蛋白水平降低,细胞中miR-103 mRNA水 平升高(P<0.05);与模型组、空载体组比较,GAS5过表达组、GAS5过表达+mimic NC组细胞中GAS5 mRNA水平、葡萄糖摄取能力、p-IRS-1/IRS-1、PPARγ、GLUT4、p-AKT/AKT蛋白水平升高,而miR-103 mRNA水平降低(P<0.05); 与GAS5过表达组、GAS5过表达+mimic NC组比较,GAS5过表达+miR-103 mimic组细胞中GAS5 mRNA水平、葡萄糖 摄取能力、p-IRS-1/IRS-1、PPARγ、GLUT4、p-AKT/AKT 蛋白水平降低,miR-103 mRNA 水平升高(P<0.05)。miR- 103与GAS5存在互补的结合位点并经双荧光素酶靶向关系验证。结论 过表达GAS5后靶向下调miR-103的表达 可减轻3T3L1脂肪细胞IR。  相似文献   

15.
目的 探讨促甲状腺激素(TSH)对3T3-L1脂肪细胞葡萄糖转运蛋白4(GLUT4)表达的影响.方法 体外诱导3T3-L1前脂肪细胞为成熟脂肪细胞.以不同浓度牛TSH(0.01 IU/L、0.1 IU/L、1 IU/L)刺激成熟脂肪细胞,蛋白质印迹法分别检测48 h后成熟脂肪细胞GLUT4蛋白表达水平,ELISA方法检测细胞培养液中自细胞介素6(IL-6)水平.结果 与空白对照组相比,以不同浓度(0.01、0.1、1 IU/L)牛TSH刺激成熟脂肪细胞48 h后GLUT4蛋白表达呈下降趋势,分别下降约23%、44%、74%(均P<0.05),细胞培养液中IL-6水平明显增加[(101.9300±6.8396)、(104.1533±5.9619)、(129.0167±6.4232)比/L比(93.2500±2.6695)μg/L,P<0.05].结论 TSH可下调3T3-L1脂肪细胞GLUT4蛋白的表达.
Abstract:
Objective To test if thyroid-stimulating hormone(TSH) can suppress expression of glucose transporter 4(GLUT4)in 3T3-L1 adipocytes. Methods 3T3-L1 preadipocytes were induced to differentiate into adipocytes. These adipocytes were treated with 0 to 1.0 IU/L TSH for up to 48 hours. Protein levels of total GLUT4 were quantified by western blotting. Culture medium interleukin-6 level was assessed by enzyme-linked immunosor-bent assay(ELI(S)A). Results The GLUT4 protein level after 48 hours induced with different dose(0. 01 IU/L, 0.1 IU/L, 1 IU/L) of TSH presented a significant 23% , 44% , 74% ( all P < 0.05 ) reduction compared with control group. While the interleukin-6 level of culture medium increased significantly [( 101. 9300 ± 6. 8396), (104.1533 ±5.9619), (129.0167 ±6.4232) μg/L vs (93.2500 ±2.6695)μg/L, P<0.05]. Conclusion In 3T3-L1 adipocytes, TSH can decrease expression of GLUT43.  相似文献   

16.

BACKGROUND AND PURPOSE

Genistein is an isoflavone phytoestrogen found in a number of plants such as soybeans and there is accumulating evidence that it has beneficial effects on the regulation of glucose homeostasis. In this study we evaluated the effect of genistein on glucose homeostasis and its underlying mechanisms in normal and insulin-resistant conditions.

EXPERIMENTAL APPROACH

To induce insulin resistance, mice or differentiated 3T3-L1 adipocytes were treated with macrophage-derived conditioned medium. A glucose tolerance test was used to investigate the effect of genistein. Insulin signalling activation, glucose transporter-4 (GLUT4) translocation and AMP-activated PK (AMPK) activation were detected by Western blot analysis or elisa.

KEY RESULTS

Genistein impaired glucose tolerance and attenuated insulin sensitivity in normal mice by inhibiting the insulin-induced phosphorylation of insulin receptor substrate-1 (IRS1) at tyrosine residues, leading to inhibition of insulin-mediated GLUT4 translocation in adipocytes. Mac-CM, an inflammatory stimulus induced glucose intolerance accompanied by impaired insulin sensitivity; genistein reversed these changes by restoring the disturbed IRS1 function, leading to an improvement in GLUT4 translocation. In addition, genistein increased AMPK activity under both normal and inflammatory conditions; this was shown to contribute to the anti-inflammatory effect of genistein, which leads to an improvement in insulin signalling and the amelioration of insulin resistance.

CONCLUSION AND IMPLICATIONS

Genistein showed opposite effects on insulin sensitivity under normal and inflammatory conditions in adipose tissue and this action was derived from its negative or positive regulation of IRS1 function. Its up-regulation of AMPK activity contributes to the inhibition of inflammation implicated in insulin resistance.  相似文献   

17.
Insulin induces a translocation of the glucose transporter GLUT4 from intracellular storage compartments towards the cell surface in adipocytes and skeletal muscle cells, allowing the cells to take up glucose. In type 2 diabetes-associated insulin resistance, the efficiency of this process is reduced. The thiazolidinediones, widely prescribed as anti-diabetic therapy, are generally regarded as insulin-sensitizers. The aim of this study was to evaluate the effect of the thiazolidinedione rosiglitazone (BRL 49653) on GLUT4 in adipocytes. When applied during differentiation, rosiglitazone dose dependently augmented GLUT4 expression along with the formation of lipid droplets. Intriguingly, its presence during differentiation led to increases in both cell surface GLUT4 levels and insulin sensitivity of GLUT4 translocation in mature adipocytes. Treatment of fully differentiated adipocytes with rosiglitazone also led to increases in GLUT4 at the plasma membrane. Rosiglitazone similarly affected cell surface levels of the endosomal transferrin receptor, but did not alter the GLUT4 internalization rate. The augmentation in cell surface GLUT4 levels was maintained in adipocytes that were rendered insulin-resistant in vitro by a 24 h insulin treatment and moreover in these cells rosiglitazone also fully restored insulin-induced GLUT4 translocation. We conclude that in adipocytes, rosiglitazone increases cell surface GLUT4 levels by increasing its endosomal recycling and restores insulin-induced GLUT4 translocation in insulin resistance. These results implicate novel modes of action on GLUT4 that are all likely to contribute to the insulin-sensitizing effect of rosiglitazone in type 2 diabetes.  相似文献   

18.
Cirsium japonicum flavones have been demonstrated to possess anti-diabetic effects in diabetic rats, but the functional mechanism remains unknown. The nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ) plays an important role in glucose and lipid homeostasis. In this study, we report the effects of Cirsium japonicum flavones (pectolinarin and 5,7-dihydroxy-6,4-dimethoxy flavone) on PPARγ activation, adipocyte differentiation, and glucose uptake in 3T3-L1 cells. Reporter gene assays and Oil Red O staining showed that Cirsium japonicum flavones induced PPARγ activation and enhanced adipocyte differentiation of 3T3-L1 cells in a dose-dependent manner. In addition, Cirsium japonicum flavones increased the expression of PPARγ target genes, such as adiponectin and glucose transporter 4 (GLUT4), and enhanced the translocation of intracellular GLUT4 to the plasma membrane. In mature 3T3-L1 adipocytes, Cirsium japonicum flavones significantly enhanced the basal and insulin-stimulated glucose uptake. The flavones-induced effects in 3T3-L1 cells were abolished by the PPARγ antagonist, GW9662, and by the phosphatidylinositol 3-kinase (PI3K) inhibitor, wortmannin. This study suggests that Cirsium japonicum flavones promote adipocyte differentiation and glucose uptake by inducing PPARγ activation and then modulating the insulin signaling pathway in some way, which could benefit diabetes patients.  相似文献   

19.
目的研究胰高血糖素样肽-1(GLP 1)对胰岛素抵抗3T3 L1脂肪细胞脂肪酸代谢的作用及机制。方法采用高糖高胰岛素造成胰岛素抵抗3T3 L1脂肪细胞模型,通过ELISA及Western blot等方法观察GLP 1对此模型脂肪酸代谢的影响及机制。结果 ELISA结果显示,GLP 1对胰岛素抵抗3T3 L1脂肪细胞中游离脂肪酸(FFA)的含量影响与胰岛素相关:在有胰岛素(100 nmol.L-1)存在时,GLP 1可增加上清液中FFA含量;而无胰岛素存在时,GLP 1可减少上清液中FFA含量。GLP 1升高细胞中脂肪酸合成酶(FAS)表达量的作用也必须依赖胰岛素的存在。Western blot结果显示在有胰岛素存在时,GLP 1可促进蛋白激酶B(PKB)磷酸化;而无胰岛素存在时则无此作用。PKB磷酸化的抑制剂LY294002或Wortmannin可阻断胰岛素存在时GLP 1对PKB磷酸化的促进作用及对上清液FFA含量的升高作用。另外,在有(无)胰岛素存在时,GLP 1均可降低激素敏感性脂肪酶(HSL)的蛋白表达量。结论 GLP 1可增强胰岛素抵抗3T3 L1脂肪细胞对胰岛素的敏感性并降低HSL的含量;胰岛素可影响GLP 1对胰岛素抵抗3T3 L1脂肪细胞脂肪酸代谢的调节作用。  相似文献   

20.
The stromal MC3T3-G2/PA6 (PA6) cells from mouse clavaria did not require insulin for differentiation into mature adipose cells, although insulin is well known to play a key role in adipocyte differentiation. Large lipid droplets were observed in the cytoplasm of PA6 cells, and mRNA expression of the adipose specific proteins (aP2, PPARgamma, C/EBPalpha, FAS, GLUT4, leptin, and adiponectin) as differentiation markers appeared or increased clearly in the cells at 8 d after stimulation without insulin. In addition, the glycerol released from the cells (lipolysis) was increased in a concentration-dependent manner by isoproterenol. However, the isoproterenol-induced lipolysis in the cells was not influenced by treatment with insulin, although that was observed in extramedullary adipocytes, 3T3-L1 cells. On the other hand, the 2-deoxy-D-[1-3H]glucose uptake in differentiated PA6 cells also increased by insulin, as shown in other adipose cells. In the cells, insulin induced the phosphorylation of extracellular signal-regulated kinases (Erks), Akt at Ser 473 and ribosomal p70 S6 protein kinase (p70 S6K) at Thr 389, and the insulin-induced 2-deoxy-D-[1-3H]glucose uptake was inhibited by pre-treatment with wortmannin, an inhibitor of phosphatidylinositol 3-kinase (PI3K), or ML-9, an Akt inhibitor. These results suggest that the insulin signal for adipogenesis (lipogenesis) and lipolysis in bone marrow stroma PA6 cells differs from extramedullary adipocytes, such as 3T3-L1 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号