首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Long-term memory underlying Pavlovian fear conditioning is believed to involve plasticity at sensory input synapses in the lateral nucleus of the amygdala (LA). A useful physiological model for studying synaptic plasticity is long-term potentiation (LTP). LTP in the LA has been studied only in vitro or in anaesthetized rats. Here, we tested whether LTP can be induced in auditory input pathways to the LA in awake rats, and if so, whether it persists over days. In chronically implanted rats, extracellular field potentials evoked in the LA by stimulation of the auditory thalamus and the auditory association cortex, using test simulations and input/output (I/O) curves, were compared in the same animals after tetanization of either pathway alone or after combined tetanization. For both pathways, LTP was input-specific and long lasting. LTP at cortical inputs exhibited the largest change at early time points (24 h) but faded within 3 days. In contrast, LTP at thalamic inputs, though smaller initially than cortical LTP, remained stable until at least 6 days. Comparisons of I/O curves indicated that the two pathways may rely on different mechanisms for the maintenance of LTP and may benefit differently from their coactivation. This is the first report of LTP at sensory inputs to the LA in awake animals. The results reveal important characteristics of synaptic plasticity in neuronal circuits of fear memory that could not have been revealed with in vitro preparations, and suggest a differential role of thalamic and cortical auditory afferents in long-term memory of fear conditioning.  相似文献   

2.
In the maintenance phase of fear memory, synaptic transmission is potentiated and the stimulus requirements and signalling mechanisms are altered for long-term potentiation (LTP) in the cortico-lateral amygdala (LA) pathway. These findings link amygdala synaptic plasticity to the coding of fear memories. Behavioural experiments suggest that the amygdala serves to store long-term fear memories. Here we provide electrophysiological evidence showing that synaptic alterations in rats induced by fear conditioning are evident in vitro 10 days after fear conditioning. We show that synaptic transmission was facilitated and that high-frequency stimulation dependent LTP (HFS-LTP) of the cortico-lateral amygdala pathway remained attenuated 10 days following fear conditioning. Additionally, we found that the low-frequency stimulation dependent LTP (LFS-LTP) measured 24 h after fear conditioning was absent 10 days post-training. The persistent facilitation of synaptic transmission and occlusion of HFS-LTP suggests that, unlike hippocampal coding of contextual fear memory, the cortico-lateral amygdala synapse is involved in the storage of long-term fear memories. However, the absence of LFS-LTP 10 days following fear conditioning suggests that amygdala physiology 1 day following fear learning may reflect a dynamic state during memory stabilization that is inactive during the long-term storage of fear memory. Results from these experiments have significant implications regarding the locus of storage for maladaptive fear memories and the synaptic alterations induced by these memories.  相似文献   

3.
Activity-dependent modification of synapses is fundamental for information storage in the brain and underlies behavioral learning. Fear conditioning is a model of emotional memory and anxiety that is expressed as an enduring increase in synaptic strength in the lateral amygdala (LA). Here we analysed synaptic plasticity in the rat cortico-LA pathway during maintenance of fear memory. We show for the first time that the stimulus frequency for synaptic potentiation is switched during maintenance of fear memory, and the underlying signaling mechanisms are altered in the cortico-LA pathway. In slices from fear-conditioned animals, high-frequency stimulation-induced (HFS) long-term potentiation (LTP) was attenuated, whereas low-frequency stimulation (LFS) elicited a long-lasting potentiation. HFS generates robust LTP that is dependent on N-methyl-d-aspartate receptor (NMDAR) and L-type voltage-gated calcium channel (VGCC) activation in control animals, whereas in fear-conditioned animals HFS LTP is NMDAR- and VGCC-independent. LFS-LTP is partially NMDAR-dependent, but VGCCs are necessary for potentiation in fear memory. Collectively, these results show that during maintenance of fear memory the stimulus requirements for amygdala afferents and critical signaling mechanisms for amygdala synaptic potentiation are altered, suggesting that cue-engaged synaptic mechanisms in the amygdala are dramatically affected as a result of emotional learning.  相似文献   

4.
BACKGROUND: Formation of long-term memories is critically dependent on extracellular-regulated kinase (ERK) signaling. Activation of the ERK pathway by the sequential recruitment of mitogen-activated protein kinases is well understood. In contrast, the proteins that inactivate this pathway are not as well characterized. METHODS: Here we tested the hypothesis that the brain-specific striatal-enriched protein tyrosine phosphatase (STEP) plays a key role in neuroplasticity and fear memory formation by its ability to regulate ERK1/2 activation. RESULTS: STEP co-localizes with the ERKs within neurons of the lateral amygdala. A substrate-trapping STEP protein binds to the ERKs and prevents their nuclear translocation after glutamate stimulation in primary cell cultures. Administration of TAT-STEP into the lateral amygdala (LA) disrupts long-term potentiation (LTP) and selectively disrupts fear memory consolidation. Fear conditioning induces a biphasic activation of ERK1/2 in the LA with an initial activation within 5 minutes of training, a return to baseline levels by 15 minutes, and an increase again at 1 hour. In addition, fear conditioning results in the de novo translation of STEP. Inhibitors of ERK1/2 activation or of protein translation block the synthesis of STEP within the LA after fear conditioning. CONCLUSIONS: Together, these data imply a role for STEP in experience-dependent plasticity and suggest that STEP modulates the activation of ERK1/2 during amygdala-dependent memory formation. The regulation of emotional memory by modulating STEP activity may represent a target for the treatment of psychiatric disorders such as posttraumatic stress disorder (PTSD), panic, and anxiety disorders.  相似文献   

5.
Long-term potentiation (LTP) in the amygdala is a leading candidate mechanism to explain fear conditioning, a prominent model of emotional memory. LTP occurs in the pathway from the auditory thalamus to the lateral amygdala, and during fear conditioning LTP-like changes occur in the synapses of this pathway. Nevertheless, LTP has not been investigated in the thalamoamygdala pathway using in vitro recordings; hence little is known about the underlying mechanisms. We therefore examined thalamoamygdala LTP in vitro using visualized whole-cell patch recording. LTP at these synapses was dependent on postsynaptic calcium entry, similar to synaptic plasticity in other regions of the brain. However, unlike many forms of synaptic plasticity, thalamoamygdala LTP was independent of NMDA receptors, despite their presence at these synapses, and instead was dependent on L-type voltage-gated calcium channels. This was true when LTP was induced by pairing presynaptic activity with either action potentials or constant depolarization in the postsynaptic cell. In addition, the LTP was associative, in that it required concurrent pre- and postsynaptic activity, and it was synapse specific. Thus, although this LTP is different from that described at other synapses in the brain, it is nonetheless well suited to mediate classical fear conditioning.  相似文献   

6.
Fear conditioning leads to long-term fear memory formation and is a model for studying fear-related psychopathologies conditions such as phobias and posttraumatic stress disorder. Long-term fear memory formation is believed to involve alterations of synaptic efficacy mediated by changes in synaptic transmission and morphology in lateral amygdala (LA). EphrinA4 and its cognate Eph receptors are intimately involved in regulating neuronal morphogenesis, synaptic transmission and plasticity. To assess possible roles of ephrinA4 in fear memory formation we designed and used a specific inhibitory ephrinA4 mimetic peptide (pep-ephrinA4) targeted to EphA binding site. We show that this peptide, composed of the ephrinA4 binding domain, interacts with EphA4 and inhibits ephrinA4-induced phosphorylation of EphA4. Microinjection of the pep-ephrinA4 into rat LA 30 min before training impaired long- but not short-term fear conditioning memory. Microinjection of a control peptide derived from a nonbinding E helix site of ephrinA4, that does not interact with EphA, had no effect on fear memory formation. Microinjection of pep-ephrinA4 into areas adjacent to the amygdala had no effect on fear memory. Acute systemic administration of pep-ephrinA4 1 h after training also impaired long-term fear conditioning memory formation. These results demonstrate that ephrinA4 binding sites in LA are essential for long-term fear memory formation. Moreover, our research shows that ephrinA4 binding sites may serve as a target for pharmacological treatment of fear and anxiety disorders.  相似文献   

7.
Post-encoding coordinated reactivation of memory traces distributed throughout interconnected brain regions is thought to be critical for consolidation of memories. However, little is known about the role of neural circuit pathways during post-learning periods for consolidation of memories. To investigate this question, we optogenetically silenced the inputs from both auditory cortex and thalamus in the lateral amygdala (LA) for 15 min immediately following auditory fear conditioning (FC) and examined its effect on fear memory formation in mice of both sexes. Optogenetic inhibition of both inputs disrupted long-term fear memory formation tested 24 h after FC. This effect was specific such that the same inhibition did not affect short-term memory and context-dependent memory. Moreover, long-term memory was intact if the inputs were inhibited at much later time points after FC (3 h or 1 d after FC), indicating that optical inhibition for 15 min itself does not produce any nonspecific deleterious effect on fear memory retrieval. Selective inhibition of thalamic input was sufficient to impair consolidation of auditory fear memory. In contrast, selective inhibition of cortical input disrupted remote fear memory without affecting recent memory. These results reveal a dissociated role of thalamic and cortical input to the LA during early post-learning periods for consolidation of long-term fear memory.SIGNIFICANCE STATEMENT Coordinated communications between brain regions are thought to be essential during post-learning periods for consolidation of memories. However, the role of specific neural circuit pathways in this process has been scarcely explored. Using a precise optogenetic inhibition of auditory input pathways, either thalamic or cortical or both, to the LA during post-training periods, we here show that thalamic input is required for consolidation of both recent and remote fear memory, whereas cortical input is crucial for consolidation of remote fear memory. These results reveal a dissociated role of auditory input pathways to the LA for consolidation of long-term fear memory.  相似文献   

8.
N‐methyl‐d ‐aspartic acid (NMDA) receptor‐dependent long‐term potentiation (LTP) at the thalamus–lateral amygdala (T‐LA) synapses is the basis for acquisition of auditory fear memory. However, the role of the NMDA receptor NR2B subunit in synaptic plasticity at T‐LA synapses remains speculative. In the present study, using transgenic mice with forebrain‐specific overexpression of the NR2B subunit, we have observed that forebrain NR2B overexpression results in enhanced LTP but does not alter long‐term depression (LTD) at the T‐LA synapses in transgenic mice. To elucidate the cellular mechanisms underlying enhanced LTP at T‐LA synapses in these transgenic mice, AMPA and NMDA receptor‐mediated postsynaptic currents have been measured. The data show a marked increasing in the amplitude and decay time of NMDA receptor‐mediated currents in these transgenic mice. Consistent with enhanced LTP at T‐LA synapses, NR2B‐transgenic mice exhibit better performance in the acquisition of auditory fear memory than wild‐type littermates. Our results demonstrate that up‐regulation of NR2B expression facilitates acquisition of auditory cued fear memory and enhances LTP at T‐LA synapses.  相似文献   

9.
Converging lines of evidence suggest that synaptic plasticity at auditory inputs to the lateral amygdala (LA) is critical for the formation and storage of auditory fear memories. Auditory information reaches the LA from both thalamic and cortical areas, raising the question of whether they make distinct contributions to fear memory storage. Here we address this by comparing the induction of long‐term potentation (LTP) at the two inputs in vivo in anesthetized rats. We first show, using field potential measurements, that different patterns and frequencies of high‐frequency stimulation (HFS) consistently elicit stronger LTP at cortical inputs than at thalamic inputs. Field potential responses elicited during HFS of thalamic inputs were also smaller than responses during HFS of cortical inputs, suggesting less effective postsynaptic depolarization. Pronounced differences in the short‐term plasticity profiles of the two inputs were also observed: whereas cortical inputs displayed paired‐pulse facilitation, thalamic inputs displayed paired‐pulse depression. These differences in short‐ and long‐term plasticity were not due to stronger inhibition at thalamic inputs: although removal of inhibition enhanced responses to HFS, it did not enhance thalamic LTP and left paired‐pulse depression unaffected. These results highlight the divergent nature of short‐ and long‐term plasticity at thalamic and cortical sensory inputs to the LA, pointing to their different roles in the fear learning system.  相似文献   

10.
Liu L  Zhang S  Zhu Y  Fu Q  Zhu Y  Gong Y  Ohtsu H  Luo J  Wei E  Chen Z 《Hippocampus》2007,17(8):634-641
Some studies suggest that the histaminergic system plays an important role in learning and memory. However, the results seem to be controversial in many behavioral tasks. In the present study, we used HDC knockout (HDC-KO) mice to investigate the effects of long-term histamine deficiency on learning and memory in contextual fear conditioning. We found that HDC-KO mice exhibited improved contextual fear from 1 day after training and this lasted for at least 14 days when compared with the wild-type (WT) controls. Cued fear was also improved 2 days after training in HDC-KO mice. Moreover, injection of histamine (intracerebroventricularly, 10 microg/mouse) immediately after training reversed the improvement in contextual fear conditioning when tested 1 day after training. Electrophysiological data showed that hippocampal CA1 long-term potentiation (LTP) in HDC-KO mice was much greater than that in WT mice, and paired-pulse facilitation decreased 2 h after LTP induction in HDC-KO mice. In contrast, HDC-KO mice showed smaller LTP than did WT mice 1 day after training. Hippocampal glutamate levels significantly increased in HDC-KO mice 1 and 4 days after training. The results indicated that histamine deficiency may improve consolidation of contextual fear conditioning. This improvement may be due to the increased hippocampal CA1 LTP, and presynaptic glutamate release. The relationship between behavior and synaptic plasticity provides support for the involvement of activity-dependent LTP in learning and memory.  相似文献   

11.
Fyn-tyrosine-kinase-deficient mice exhibit defects in the Morris water maze test and long-term potentiation (LTP) induction in the hippocampus, and given that LTP has been postulated as the neural basis for memory formation, Fyn may be required for hippocampus-dependent memory formation. However, how Fyn is involved in the process of memory formation is unclear. To investigate the role of Fyn in hippocampal memory formation, we first tested the behavior of Fyn-deficient mice by contextual fear conditioning. A mouse was placed in a context and a foot shock was delivered, so that the mouse associated the context with the shock. We found that the freezing response of Fyn-deficient mice to the context was impaired at 24 h after conditioning. We then measured freezing at 1 h after conditioning, and found that their short-term contextual fear memory was also impaired. We used Western blotting to examine the mode of Fyn activation in dorsal hippocampal tissue following contextual fear conditioning. Fyn activation peaked as early as 5–10 min after contextual fear conditioning and persisted for at least 40 min. Concomitant increases in tyrosine phosphorylation of several proteins, including NR2B, were also observed, but no increases in tyrosine phosphorylation were observed in Fyn-deficient mice. Thus, both short-term and long-term (24-h) contextual fear memory were impaired in Fyn-deficient mice, and Fyn activation in the dorsal hippocampus transiently increased after contextual fear conditioning. These findings strongly suggest that activation of the Fyn signaling pathway is involved in hippocampus-dependent formation of contextual fear memory.  相似文献   

12.
Recent studies show contradictory results regarding the contribution of endocannabinoids in fear memory formation and long-term synaptic plasticity. In this study, we investigated the effects of both cannabinoid receptor type 1 (CB1 receptor) antagonist AM281 and anandamide reuptake inhibitor AM404 on the formation of contextual fear memory in adult mice. Both i.p. and intra-hippocampal injections of AM281 promoted contextual fear memory while a high dose of AM404 inhibited it. These findings demonstrate that CB1 receptor-mediated signaling negatively contributes to contextual fear memory formation. We further investigated the induction of long-term potentiation (LTP) in CA1 pyramidal neurons of hippocampal slices and found that AM281 impaired the induction of LTP. Additionally, the blockade of LTP by AM281 was completely prevented by bath application of picrotoxin, a selective antagonist of GABA(A) receptor. Taken together, these results indicate that activation of CB1 receptor contributes to induction of LTP via a GABA(A) receptor-mediated mechanism.  相似文献   

13.
Li YK  Wang F  Wang W  Luo Y  Wu PF  Xiao JL  Hu ZL  Jin Y  Hu G  Chen JG 《Neuropsychopharmacology》2012,37(8):1867-1878
Astrocytes are implicated in information processing, signal transmission, and regulation of synaptic plasticity. Aquaporin-4 (AQP4) is the major water channel in adult brain and is primarily expressed in astrocytes. A growing body of evidence indicates that AQP4 is a potential molecular target for the regulation of astrocytic function. However, little is known about the role of AQP4 in synaptic plasticity in the amygdala. Therefore, we evaluated long-term potentiation (LTP) in the lateral amygdala (LA) and associative fear memory of AQP4 knockout (KO) and wild-type mice. We found that AQP4 deficiency impaired LTP in the thalamo-LA pathway and associative fear memory. Furthermore, AQP4 deficiency significantly downregulated glutamate transporter-1 (GLT-1) expression and selectively increased NMDA receptor (NMDAR)-mediated EPSCs in the LA. However, low concentration of NMDAR antagonist reversed the impairment of LTP in KO mice. Upregulating GLT-1 expression by chronic treatment with ceftriaxone also reversed the impairment of LTP and fear memory in KO mice. These findings imply a role for AQP4 in synaptic plasticity and associative fear memory in the amygdala by regulating GLT-1 expression.  相似文献   

14.
The amygdala is essential for fear learning and memory. Synaptic transmission is enhanced in two pathways in the amygdala in fear conditioning. In this study we examined whether lateral (LA) to basolateral (BLA) amygdala synapses are potentiated and participate in intra-amygdala plasticity during the maintenance of fear memory. Our data showed that synaptic strength from the LA (ventrolateral) to the BLA (parvicellular) pathway was not increased after fear conditioning and suggests that this pathway does not integrate information relevant to the coding of memories in auditory fear learning.  相似文献   

15.
Deep brain stimulation (DBS) of the amygdala has been demonstrated to modulate hyperactivity of the amygdala, which is responsible for the symptoms of post-traumatic stress disorder (PTSD), and thus might be used for the treatment of PTSD. However, the underlying mechanism of DBS of the amygdala in the modulation of the amygdala is unclear. The present study investigated the effects of DBS of the amygdala on synaptic transmission and synaptic plasticity at cortical inputs to the amygdala, which is critical for the formation and storage of auditory fear memories, and fear memories. The results demonstrated that auditory fear conditioning increased single-pulse-evoked field excitatory postsynaptic potentials in the cortical–amygdala pathway. Furthermore, auditory fear conditioning decreased the induction of paired-pulse facilitation and long-term potentiation, two neurophysiological models for studying short-term and long-term synaptic plasticity, respectively, in the cortical–amygdala pathway. In addition, all these auditory fear conditioning-induced changes could be reversed by DBS of the amygdala. DBS of the amygdala also rescued auditory fear conditioning-induced enhancement of long-term retention of fear memory. These findings suggested that DBS of the amygdala alleviating fear conditioning-induced alterations in synaptic plasticity in the cortical–amygdala pathway and fear memory may underlie the neuromodulatory role of DBS of the amygdala in activities of the amygdala.  相似文献   

16.
Pavlovian fear conditioning has emerged as a leading behavioral paradigm for studying the neurobiological basis of learning and memory. Although considerable progress has been made in understanding the neural substrates of fear conditioning at the systems level, until recently little has been learned about the underlying cellular and molecular mechanisms. The success of systems-level work aimed at defining the neuroanatomical pathways underlying fear conditioning, combined with the knowledge accumulated by studies of long-term potentiation (LTP), has recently given way to new insights into the cellular and molecular mechanisms that underlie acquisition and consolidation of fear memories. Collectively, these findings suggest that fear memory consolidation in the amygdala shares essential biochemical features with LTP, and hold promise for understanding the relationship between memory consolidation and synaptic plasticity in the mammalian brain.  相似文献   

17.
Consolidation of new fear memories has been shown to require de novo RNA and protein synthesis in the lateral nucleus of amygdala (LA). Recently we have demonstrated that consolidated fear memories, when reactivated, return to a labile state which is sensitive to disruption by the protein synthesis inhibitor anisomycin. The specific molecular mechanisms that underlie this reconsolidation of fear memories are still largely unknown. The activation of extracellular signal-regulated kinase-mitogen-activated protein kinase (ERK-MAPK) pathway in the LA is required for the consolidation of auditory fear memories. In the present study, we examined the role of ERK-MAPK cascade in the LA during reconsolidation of auditory fear conditioning. We show that intra-LA infusions of the MAPK kinase (MEK) inhibitor U0126, a manipulation which inhibits activation of ERK-MAPK, impairs postreactivation long-term memory (PR-LTM) but leaves the postreactivation short-term memory (PR-STM) intact. The same treatment with U0126, in the absence of memory reactivation, has no effect. Furthermore, we verified that reconsolidation requires translation using a second protein synthesis inhibitor, cycloheximide. Post-reactivation infusions of cycloheximide blocked PR-LTM but not PR-STM and, in the absence of reactivation, had no effect. Our data show that activation of ERK-MAPK signalling pathway and protein synthesis in the LA are required for reconsolidation of auditory fear memories.  相似文献   

18.
Li Z  Zhou Q  Li L  Mao R  Wang M  Peng W  Dong Z  Xu L  Cao J 《Hippocampus》2005,15(6):815-824
Repeated vivid recalls or flashbacks of traumatic memories and memory deficits are the cardinal features of post-traumatic stress disorder (PTSD). The underlying mechanisms are not fully understood yet. Here, we examined the effects of very strong fear conditioning (20 pairings of a light with a 1.5-mA, 0.5-s foot shock) and subsequent reexposure to the conditioning context (chamber A), a similar context (chamber B), and/or to the fear conditioned stimulus (CS) (a light) on synaptic plasticity in the hippocampal CA1 area in anesthetized Sprague-Dawley rats. The conditioning procedure resulted in very strong conditioned fear, as reflected by high levels of persistent freezing, to both the contexts and to the CS, 24 h after fear conditioning. The induction of long-term potentiation (LTP) was blocked immediately after fear conditioning. It was still markedly impaired 24 h after fear conditioning; reexposure to the conditioning chamber A (CA) or to a similar chamber B (CB) did not affect the impairment. However, presentation of the CS in the CA exacerbated the impairment of LTP, whereas the CS presentation in a CB ameliorated the impairment so that LTP induction did not differ from that of control groups. The induction of long-term depression (LTD) was facilitated immediately, but not 24 h, after fear conditioning. Only reexposure to the CS in the CA, but not reexposure to either chamber A or B alone, or the CS in chamber B, 24 h after conditioning, reinstated the facilitation of LTD induction. These data demonstrate that unconditioned and conditioned aversive stimuli in an intense fear conditioning paradigm can have profound effects on hippocampal synaptic plasticity, which may aid to understand the mechanisms underlying impairments of hippocampus-dependent memory by stress or in PTSD.  相似文献   

19.
In the mammalian brain, LTP is an enduring form of synaptic plasticity that is posited to have a role in learning and memory. Compelling new evidence for this view derives from studies of LTP in the amygdala, a brain structure that is essential for simple forms of emotional learning and memory, such as Pavlovian fear conditioning in rats. More specifically, antagonists of the NMDA receptor block both amygdaloid LTP induction and fear conditioning, fear conditioning induces increases in amygdaloid synaptic transmission that resemble LTP, and genetic modifications that disrupt amygdaloid LTP eliminate fear conditioning. Collectively, these results provide the most-convincing evidence to date that LTP mediates learning and memory in mammals.  相似文献   

20.
Pavlovian or classical fear conditioning is recognized as a model system to investigate the neurobiological mechanisms of learning and memory in the mammalian brain and to understand the root of fear-related disorders in humans. In recent decades, important progress has been made in delineating the essential neural circuitry and cellular-molecular mechanisms of fear conditioning. Converging lines of evidence indicate that the amygdala is necessarily involved in the acquisition, storage and expression of conditioned fear memory, and long-term potentiation (LTP) in the lateral nucleus of the amygdala is often proposed as the underlying synaptic mechanism of associative fear memory. Recent studies further implicate the prefrontal cortex-amygdala interaction in the extinction (or inhibition) of conditioned fear. Despite these advances, there are unresolved issues and findings that challenge the validity and sufficiency of the current amygdalar LTP hypothesis of fear conditioning. The purpose of this review is to critically evaluate the strengths and weaknesses of evidence indicating that fear conditioning depend crucially upon the amygdalar circuit and plasticity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号