首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We developed a screening procedure to identify small-molecule compounds that altered infection by Listeria monocytogenes to gain insights into bacterial/host cellular processes required for intracellular pathogenesis. A small-molecule library of 480 compounds with known biological functions was screened, and 21 compounds that altered the L. monocytogenes infection of murine bone marrow-derived macrophages (BMM) were identified. The identified compounds affected various cellular functions, such as actin polymerization, kinase/phosphatase activity, calcium signaling, and apoptosis. Pimozide, an FDA-approved drug used to treat severe Tourette's syndrome and schizophrenia, was further examined and shown to decrease the bacterial uptake and vacuole escape of L. monocytogenes in BMM. The inhibitory effect of pimozide on internalization was not specific for L. monocytogenes, as the phagocytosis of other bacterial species (Bacillus subtilis, Salmonella enterica serovar Typhimurium, and Escherichia coli K12) was significantly inhibited in the presence of pimozide. The invasion and cell-to-cell spread of L. monocytogenes during the infection of nonprofessional phagocytic cells also was decreased by pimozide treatment. Although pimozide has been reported to be an antagonist of mammalian cell calcium channels, the infection of BMM in a calcium-free medium did not relieve the inhibitory effects of pimozide on L. monocytogenes infection. Our results provide a generalizable screening approach for identifying small-molecule compounds that affect cellular pathways that are required for intracellular bacterial pathogenesis. We also have identified pimozide, a clinically approved antipsychotic drug, as a compound that may be suitable for further development as a therapeutic for intracellular bacterial infections.  相似文献   

2.
A variety of bacteriocins originate from lactic acid bacteria, which have recently been modified by scientists. Many strains of lactic acid bacteria related to food groups could produce bacteriocins or antibacterial proteins highly effective against foodborne pathogens such as Staphylococcus aureus, Pseudomonas fluorescens, P. aeruginosa, Salmonella typhi, Shigella flexneri, Listeria monocytogenes, Escherichia coli O157:H7, and Clostridium botulinum. A wide range of bacteria belonging primarily to the genera Bifidobacterium and Lactobacillus have been characterized with different health‐promoting attributes. Extensive studies and in‐depth understanding of these antimicrobials mechanisms of action could enable scientists to determine their production in specific probiotic lactic acid bacteria, as they are potentially crucial for the final preservation of functional foods or for medicinal applications. In this review study, the structure, classification, mode of operation, safety, and antibacterial properties of bacteriocins as well as their effect on foodborne pathogens and antibiotic‐resistant bacteria were extensively studied.  相似文献   

3.
Biofilms have been widely implicated in chronic infections and environmental persistence of Salmonella enterica, facilitating enhanced colonization of surfaces and increasing the ability of the bacteria to be transmitted to new hosts. Salmonella enterica serovar Typhi biofilm formation on gallstones from humans and mice enhances gallbladder colonization and bacterial shedding, while Salmonella enterica serovar Typhimurium biofilms facilitate long-term persistence in a number of environments important to food, medical, and farming industries. Salmonella regulates expression of many virulence- and biofilm-related processes using kinase-driven pathways. Kinases play pivotal roles in phosphorylation and energy transfer in cellular processes and possess an ATP-binding pocket required for their functions. Many other cellular proteins also require ATP for their activity. Here we test the hypothesis that pharmacological interference with ATP-requiring enzymes utilizing adenosine mimetic compounds would decrease or inhibit bacterial biofilm formation. Through the screening of a 3,000-member ATP mimetic library, we identified a single compound (compound 7955004) capable of significantly reducing biofilm formation by S. Typhimurium and S. Typhi. The compound was not bactericidal or bacteriostatic toward S. Typhimurium or cytotoxic to mammalian cells. An ATP-Sepharose affinity matrix technique was used to discover potential protein-binding targets of the compound and identified GroEL and DeoD. Compound 7955004 was screened against other known biofilm-forming bacterial species and was found to potently inhibit biofilms of Acinetobacter baumannii as well. The identification of a lead compound with biofilm-inhibiting capabilities toward Salmonella provides a potential new avenue of therapeutic intervention against Salmonella biofilm formation, with applicability to biofilms of other bacterial pathogens.  相似文献   

4.
Okada N  Nishio M  Danbara H 《Chemotherapy》2003,49(1-2):49-55
We studied the effect of fosfomycin (FOM) on the intracellular growth of two different facultative intracellular bacteria, Salmonella enterica serovar Typhimurium and Listeria monocytogenes, in an enterocyte-like cell line, Caco-(2). These bacteria replicate in different compartments within the host cells; Salmonella serovar Typhimurium grow inside phagosomes, whereas L. monocytogenes escape the phagosomal environment and multiply in the cytosol of the host cells. At concentrations equal to 0.25 of the MIC and 4 times the MIC, respectively, FOM effectively decreased the number of intracellular Salmonella serovar Typhimurium. Although FOM was ineffective at inhibiting the extracellular growth of L. monocytogenes in vitro, this antibiotic induced a marked reduction in intracellular L. monocytogenes, indicating that, comparatively, FOM may be more effectively taken up by L. monocytogenes in the intracellular environment.  相似文献   

5.
Brazilian poultry meat samples were screened for colistin-resistant Salmonella enterica. Sixty Salmonella isolates were tested for in vitro colistin resistance and mcr-1, mcr-2, mcr-3 and mcr-4 genes. Two isolates harbored the mcr-1 gene and whole-genome analysis determined the serovar to be Schwarzengrund, ST96, harboring the IncX4 plasmid. This is the first report of mcr-1-harboring Salmonella enterica serovar Schwarzengrund in Brazil.  相似文献   

6.
The increasing resistance of bacteria to conventional antibiotics and the challenges posed by intracellular bacteria, which may be responsible for chronic and recurrent infections, have driven the need for advanced antimicrobial drugs for effective elimination of both extra- and intracellular pathogens. The purpose of this study was to determine the killing efficacy of cationic antimicrobial peptide LL-37 compared to conventional antibiotics against extra- and intracellular Staphylococcus aureus. Bacterial killing assays and an infection model of osteoblasts and S. aureus were studied to determine the bacterial killing efficacy of LL-37 and conventional antibiotics against extra- and intracellular S. aureus. We found that LL-37 was effective in killing extracellular S. aureus at nanomolar concentrations, while lactoferricin B was effective at micromolar concentrations and doxycycline and cefazolin at millimolar concentrations. LL-37 was surprisingly more effective in killing the clinical strain than in killing an ATCC strain of S. aureus. Moreover, LL-37 was superior to conventional antibiotics in eliminating intracellular S. aureus. The kinetic studies further revealed that LL-37 was fast in eliminating both extra- and intracellular S. aureus. Therefore, LL-37 was shown to be very potent and prompt in eliminating both extra- and intracellular S. aureus and was more effective in killing extra- and intracellular S. aureus than commonly used conventional antibiotics. LL-37 could potentially be used to treat chronic and recurrent infections due to its effectiveness in eliminating not only extracellular but also intracellular pathogens.  相似文献   

7.
We successfully produced two human β-defensins (hBD-1 and hBD-2) in bacteria as functional peptides and tested their antibacterial activities against Salmonella enterica serovar Typhi, Escherichia coli, and Staphylococcus aureus employing both spectroscopic and viable CFU count methods. Purified peptides showed approximately 50% inhibition of the bacterial population when used individually and up to 90% when used in combination. The 50% lethal doses (LD50) of hBD-1 against S. Typhi, E. coli, and S. aureus were 0.36, 0.40, and 0.69 μg/μl, respectively, while those for hBD-2 against the same bacteria were 0.38, 0.36, and 0.66 μg/μl, respectively. Moreover, we observed that bacterium-derived antimicrobial peptides were also effective in increasing survival time and decreasing bacterial loads in the peritoneal fluid, liver, and spleen of a mouse intraperitoneally infected with S. Typhi. The 1:1 hBD-1/hBD-2 combination showed maximum effectiveness in challenging the Salmonella infection in vitro and in vivo. We also observed less tissue damage and sepsis formation in the livers of infected mice after treatment with hBD-1 and hBD-2 peptides individually or in combination. Based on these findings, we conclude that bacterium-derived recombinant β-defensins (hBD-1 and hBD-2) are promising antimicrobial peptide (AMP)-based substances for the development of new therapeutics against typhoid fever.  相似文献   

8.
Human isolates of Salmonella enterica serovars Hadar, Kentucky, Virchow, Schwarzengrund, and the monophasic variant of S. Typhimurium, Salmonella enterica subsp. enterica serovar 4,5,12:i:− were examined for mutations within the quinolone resistance target genes gyrA, gyrB, parC, and parE and for plasmid-mediated resistance genes. Differences were observed among the serovars. A novel variant of qnrD, qnrD2, was detected in an S. Hadar isolate.  相似文献   

9.
10.
We investigated the capability of biodegradable silica xerogel as a novel carrier of antibiotic and the efficacy of treatment compared to that with the same dose of free drug against murine salmonellosis. The drug molecules (31%) entrapped in the sol-gel matrix remained in biologically active form, and the bactericidal effect was retained upon drug release. The in vitro drug release profiles of the gentamicin from the xerogel and that from the xerogel-polyethylene glycol (PEG) were distinctly different at pH 7.4. A delayed release of gentamicin was observed from the silica xerogel network (57% in 33 h), and with the addition of 2% PEG, the release rate reached 90% in 33 h. Administration of two doses of the silica xerogel significantly reduced the Salmonella enterica serovar Typhimurium load in the spleens and livers of infected AJ 646 mice. The silica xerogel and xerogel-PEG achieved a 0.45-log and a 0.41-log reduction in the spleens, respectively, while for the free drug there was no reduction. On the other hand, silica xerogel and xerogel-PEG achieved statistically significant 1.13-log and 1.15-log reductions in the livers, respectively, while for the free drug the reduction was a nonsignificant value of 0.07 log. This new approach, which utilizes a room-temperature synthetic route for incorporating therapeutic drugs into the silica matrix, should improve the capability for targeting intracellular pathogens.Targeting intracellular pathogens like Salmonella, Brucella, and Mycobacterium species remains a medical challenge. These intracellular pathogens can cause persistent infection due to their ability to maintain infections even in the presence of inflammation, specific antimicrobial mechanisms, and a robust adaptive immune response of the host (12). Some individuals who are infected with Salmonella enterica serovar Typhi become lifelong carriers, periodically shedding large numbers of bacteria (11). In host-adapted salmonelloses such as typhoid fever, the Salmonella-infected phagocytes gain access to the lymphatics and bloodstream, allowing the bacteria to spread to the liver and the spleen (20). Treatment and eradication are difficult since infections are localized within phagocytic cells, and it is difficult to achieve the optimum relatively high concentration of therapeutics within the infected cells (15). Thus, an optimum strategy to treat these infections should address targeting of active drugs to the intracellular compartment where bacteria replicate and should prolong release of the antibiotics so that the number of doses and associated drug toxicity can be reduced. The associated problems with delivering free antibiotics to the intracellular space have led to the investigations of improved drug carriers for treating intracellular pathogens, including antibiotics loaded into liposomes, microspheres, polymeric carriers, and nanoplexes (15).The success of any approach for drug delivery to intracellular pathogens depends on the ability to construct a biocompatible carrier with a high loading capacity of therapeutic drugs with no or minimum premature release of the cargo before reaching the replicative niche of the bacteria. The recently developed sol-gel technique has shown great promise for biomedical applications by offering new possibilities for embedding antibiotics within silica and for controlling their release from the host matrix into the surrounding medium (7, 16, 19, 22, 23). The composition of silica xerogels that can be tuned and the fabrication method at low temperatures enable them to carry biologically active agents and to be useful as a drug delivery system (8). Sol-gel silica materials have been shown to be biocompatible in vivo as they are readily degradable inside the body (6), which eliminates the problem of accumulation that has remained a major drawback for many other nanoparticle delivery systems. The various glass compositions cause no adverse tissue reactions and are easily eliminated from the body through the kidneys as they degrade into Si(OH)4 (1, 18, 21).Also, the size, zeta potential, pore structure, and the surface characteristics of silica xerogel make it a suitable carrier for therapeutics to target the replicative niche of intracellular pathogens.Although gentamicin exhibits several characteristics that make it a useful antimicrobial agent in vitro, it does not kill intracellular Salmonella due to the polar nature of the drug and the associated low level of intracellular penetration. Therefore, the usefulness of gentamicin seems to be limited to eradication of the extracellular pathogens. In the present study, we used a mouse model of human typhoid fever to investigate the capability of sol-gel processed silica as a carrier for gentamicin and the efficacy of treatment compared to that with the free form of the same drug against Salmonella enterica serovar Typhimurium, a leading cause of human gastroenteritis (10).  相似文献   

11.
Escherichia coli O157:H7, Salmonella enterica, Listeria monocytogenes and Campylobacter jejuni are considered important pathogens causing the most food-related human illnesses worldwide. Current methods for pathogen detection have limitations in the effectiveness of identifying multiple foodborne pathogens. In this study, a pathogen detection microarray was developed using various 70-mer oligonucleotides specifically targeting the above pathogens. To reduce the cost of detection, each microarray chip was designed and fabricated to accommodate 12 identical arrays which could be used for screening up to 12 different samples. To achieve high detection sensitivity and specificity, target-specific DNA amplification instead of whole genome random amplification was used prior to microarray analysis. Combined with 14-plex PCR amplification of target sequences, the microarray unambiguously distinguished all 4 pathogens with a detection sensitivity of 1 × 10?4 ng (approximately 20 copies) of each genomic DNA. Applied the assay to 39 fresh meat samples, 16 samples were found to be contaminated by either 1 or 2 of these pathogens. The co-occurrences of Salmonella and E. coli O157:H7, Salmonella and L. monocytogenes in the same meat samples were also observed. Overall, the microarray combined with multiplex PCR method was able to effectively screen single or multiple pathogens in food samples and to provide important genotypic information related to pathogen virulence.  相似文献   

12.
Cell membranes are relatively impermeable to the antibiotic gentamicin, a factor that, along with the toxicity of gentamicin, precludes its use against many important intracellular bacterial infections. Liposomal encapsulation of this drug was used in order to achieve intracellular antibiotic delivery and therefore increase the drug’s therapeutic activity against intracellular pathogens. Gentamicin encapsulation in several dipalmitoylphosphatidylcholine (DPPC) and pH-sensitive dioleoylphosphatidylethanolamine (DOPE)-based carrier systems was characterized. To systematically test the antibacterial efficacies of these formulations, a tissue culture assay system was developed wherein murine macrophage-like J774A.1 cells were infected with bacteria and were then treated with encapsulated drug. Of these formulations, DOPE–N-succinyl-DOPE and DOPE–N-glutaryl-DOPE (70:30;mol:mol) containing small amounts of polyethyleneglycol-ceramide showed appreciable antibacterial activities, killing greater than 75% of intracellular vacuole-resident wild-type Salmonella typhimurium compared to the level of killing of the control formulations. These formulations also efficiently eliminated intracellular infections caused by a recombinant hemolysin-expressing S. typhimurium strain and a Listeria monocytogenes strain, both of which escape the vacuole and reside in the cytoplasm. Control non-pH-sensitive liposomal formulations of gentamicin had poor antibacterial activities. A fluorescence resonance energy transfer assay indicated that the efficacious formulations undergo a pH-dependent lipid mixing and fusion event. Intracellular delivery of the fluorescent molecules encapsulated in these formulations was confirmed by confocal fluorescence microscopy and was shown to be dependent on endosomal acidification. This work shows that encapsulation of membrane-impermeative antibiotics in appropriately designed lipid-based delivery systems can enable their use in treating intracellular infections and details the development of a general assay for testing the intracellular delivery of encapsulated drug formulations.  相似文献   

13.
The genus Salmonella includes many pathogens of great medical and veterinary importance. Bacteria belonging to this genus are very closely related to those belonging to the genus Escherichia. lacZYA operon and lacI are present in Escherichia coli, but not in Salmonella enterica. It has been proposed that Salmonella has lost lacZYA operon and lacI during evolution. In this study, we have investigated the physiological and evolutionary significance of the absence of lacI in Salmonella enterica. Using murine model of typhoid fever, we show that the expression of LacI causes a remarkable reduction in the virulence of Salmonella enterica. LacI also suppresses the ability of Salmonella enterica to proliferate inside murine macrophages. Microarray analysis revealed that LacI interferes with the expression of virulence genes of Salmonella pathogenicity island 2. This effect was confirmed by RT-PCR and Western blot analysis. Interestingly, we found that SBG0326 of Salmonella bongori is homologous to lacI of Escherichia coli. Salmonella bongori is the only other species of the genus Salmonella and it lacks the virulence genes of Salmonella pathogenicity island 2. Overall, our results demonstrate that LacI is an antivirulence factor of Salmonella enterica and suggest that absence of lacI has facilitated the acquisition of virulence genes of Salmonella pathogenicity island 2 in Salmonella enterica making it a successful systemic pathogen.  相似文献   

14.
The pore-forming toxin listeriolysin O (LLO) is a major virulence factor implicated in escape of Listeria monocytogenes from phagocytic vacuoles. Here we describe the pH-dependence of vacuolar perforation by LLO, using the membrane-impermeant fluorophore 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS) to monitor the pH and integrity of vacuoles in mouse bone marrow–derived macrophages. Perforation was observed when acidic vacuoles containing wild-type L. monocytogenes displayed sudden increases in pH and release of HPTS into the cytosol. These changes were not seen with LLO-deficient mutants. Perforation occurred at acidic vacuolar pH (4.9–6.7) and was reduced in frequency or prevented completely when macrophages were treated with the lysosomotropic agents ammonium chloride or bafilomycin A1. We conclude that acidic pH facilitates LLO activity in vivo.  相似文献   

15.
The 47-kbp plasmid pGFT1 from Salmonella enterica subsp. enterica serovar Dublin mediated tetracycline resistance via a tet(A) gene located on an integrated copy of a Tn1721-analogous transposon. The integration site of the transposon was located within the reading frame of a fip gene. Plasmid pGFT1 was shown to be conjugative and to be able to replicate and express tetracycline resistance in Escherichia coli.  相似文献   

16.
17.
A salmonella genomic island, designated SGI11, was found in 18 of 26 multidrug-resistant Salmonella enterica serovar Typhi isolates from Bangladesh. SGI11 was an IS1 composite transposon and carried 7 resistance genes that conferred resistance to 5 first-line antimicrobials. Eleven of the 18 SGI11-carrying S. Typhi isolates had developed resistance to high levels of ciprofloxacin.  相似文献   

18.
pUO-StVR2 is a virulence-resistance plasmid which originated from pSLT of Salmonella enterica serovar Typhimurium through acquisition of a complex resistance island, flanked by regions that provide a toxin-antitoxin system and an iron uptake system. The presence of resistance and virulence determinants on the same plasmid allows coselection of both properties, potentially increasing health risks.  相似文献   

19.
In this study, we tested the antimicrobial activity of three metal nanoparticles (NPs), ZnO, MgO, and CaO NPs, against Salmonella enterica serovar Enteritidis in liquid medium and on solid surfaces. Out of the three tested metal NPs, ZnO NPs exhibited the most significant antimicrobial effect both in liquid medium and when embedded on solid surfaces. Therefore, we focused on revealing the mechanisms of surface-associated ZnO biocidal activity. Using the global proteome approach, we report that a great majority (79%) of the altered proteins in biofilms formed by Salmonella enterica serovar Enteritidis were downregulated, whereas a much smaller fraction (21%) of proteins were upregulated. Intriguingly, all downregulated proteins were enzymes involved in a wide range of the central metabolic pathways, including translation; amino acid biosynthetic pathways; nucleobase, nucleoside, and nucleotide biosynthetic processes; ATP synthesis-coupled proton transport; the pentose phosphate shunt; and carboxylic acid metabolic processes, indicating that ZnO NPs exert a panmetabolic toxic effect on this prokaryotic organism. In addition to their panmetabolic toxicity, ZnO NPs induced profound changes in cell envelope morphology, imposing additional necrotic effects and triggering the envelope stress response of Salmonella serovar Enteritidis. The envelope stress response effect activated periplasmic chaperones and proteases, transenvelope complexes, and regulators, thereby facilitating protection of this prokaryotic organism against ZnO NPs.  相似文献   

20.
PR-39 is a porcine antimicrobial peptide that kills bacteria with a mechanism that does not involve cell lysis. Here, we demonstrate that Salmonella enterica serovar Typhimurium can rapidly acquire mutations that reduce susceptibility to PR-39. Resistant mutants appeared at a rate of 0.4 × 10−6 per cell per generation. These mutants were about four times more resistant than the wild type and showed a greatly reduced rate of killing. Genetic analysis revealed mutations in the putative transport protein SbmA as being responsible for the observed resistance. These sbmA mutants were as fit as the wild-type parental strain as measured by growth rates in culture medium and mice and by long-term survival in stationary phase. These results suggest that resistance to certain antimicrobial peptides can rapidly develop without an obvious fitness cost for the bacteria and that resistance development could become a threat to the efficacy of antimicrobial peptides if used in a clinical setting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号