首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We compared the results obtained with six commercial MIC test systems (Etest, MicroScan, Phoenix, Sensititre, Vitek Legacy, and Vitek 2 systems) and three reference methods (agar dilution, disk diffusion, and vancomycin [VA] agar screen [VScr]) with the results obtained by the Clinical and Laboratory Standards Institute broth microdilution (BMD) reference method for the detection of VA-intermediate Staphylococcus aureus (VISA). A total of 129 S. aureus isolates (VA MICs by previous BMD tests, ≤1 μg/ml [n = 60 strains], 2 μg/ml [n = 24], 4 μg/ml [n = 36], or 8 μg/ml [n = 9]) were selected from the Centers for Disease Control and Prevention strain collection. The results of BMD with Difco Mueller-Hinton broth were used as the standard for data analysis. Essential agreement (percent ±1 dilution) ranged from 98 to 100% for all methods except the method with the Vitek Legacy system, for which it was 90.6%. Of the six commercial MIC systems tested, the Sensititre, Vitek Legacy, and Vitek 2 systems tended to categorize VISA strains as susceptible (i.e., they undercalled resistance); the MicroScan and Phoenix systems and Etest tended to categorize susceptible strains as VISA; and the Vitek Legacy system tended to categorize VISA strains as resistant (i.e., it overcalled resistance). Disk diffusion categorized all VISA strains as susceptible. No susceptible strains (MICs ≤ 2 μg/ml) grew on the VScr, but all strains for which the VA MICs were 8 μg/ml grew on the VScr. Only 12 (33.3%) strains for which the VA MICs were 4 μg/ml grew on VScr. The differentiation of isolates for which the VA MICs were 2 or 4 μg/ml was difficult for most systems and methods, including the reference methods.In January 2006, the Clinical and Laboratory Standards Institute (CLSI) published new interpretive criteria for vancomycin and Staphylococcus aureus. The breakpoints were lowered from ≤4 μg/ml to ≤2 μg/ml for susceptible, 8 to 16 μg/ml to 4 to 8 μg/ml for intermediate, and ≥32 μg/ml to ≥16 μg/ml for resistant (2). The vancomycin breakpoints for coagulase-negative staphylococci were not changed. The rationale for lowering the S. aureus intermediate breakpoint to 4 μg/ml was (i) that intermediate S. aureus isolates, although they are rare, likely represented a population of organisms that demonstrate heteroresistance, and (ii) limited outcome data suggested that infections with these isolates are likely to fail vancomycin therapy (9). The results of broth microdilution performed by use of the CLSI reference method were the primary S. aureus susceptibility data evaluated before the CLSI breakpoint change was made. We undertook the study described here to determine the accuracy of commercial systems and reference methods for the detection of decreased vancomycin susceptibility among isolates of S. aureus.(This work was presented in part at the 47th Interscience Conference on Antimicrobial Agents and Chemotherapy, Chicago, IL, 17 to 20 September 2007.)  相似文献   

2.
The current surveillance establishes the activity profile of tigecycline against recent clinical U.S. isolates of target pathogens. Findings from a distributed surveillance that utilized Etest yielded a tigecycline activity profile that varied from that observed in a separate centralized broth microdilution (BMD) surveillance (D. C. Draghi et al., Poster D-0701, 46th Intersci. Conf. Antimicrob. Agents Chemother., San Francisco, CA). Differences were noted among Acinetobacter spp. and Serratia marcescens and, to a lesser extent, with Streptococcus pyogenes. To address whether these differences were due to discordance in testing methodology or to variations among the analyzed populations, isolates from the current surveillance were concurrently tested by BMD and Etest. In all, 1,800 Staphylococcus aureus, 259 S. pyogenes, 226 Streptococcus pneumoniae, 93 Enterococcus faecalis, 1,356 Enterobacteriaceae, and 227 Acinetobacter baumannii strains were evaluated. Tigecycline had potent activity by BMD, with >99.6% susceptibility (%S) observed for all pathogens with interpretive criteria, excluding Enterobacter cloacae (98.3% S) and E. faecalis (86.0% S), and MIC90s ranged from 0.03 μg/ml (S. pyogenes/S. pneumoniae) to 1 μg/ml (Enterobacteriaceae/A. baumannii). Similar profiles were observed by Etest, with the exception of A. baumannii, although for most evaluated pathogens Etest MICs trended one doubling-dilution higher than BMD MICs. Major or very major errors were infrequent, and a high degree of essential agreement was observed, excluding A. baumannii, S. marcescens, and S. pneumoniae, for which ≥4-fold differences in MICs were observed for 29, 27.1, and 34% of the isolates, respectively. Further analysis regarding the suitability of the tigecycline Etest for testing S. marcescens, Acinetobacter spp., and S. pneumoniae is warranted.  相似文献   

3.
Tigecycline is one of the few remaining therapeutic options for extensively drug-resistant (XDR) Gram-negative bacilli (GNB). MICs of tigecycline to Acinetobacter baumannii have been reported to be elevated when determined by the Etest compared to determinations by the broth microdilution (BMD) method. The study aim was to compare the susceptibility of GNB to tigecycline by four different testing methods. GNB were collected from six health care systems (25 hospitals) in southeast Michigan from January 2010 to September 2011. Tigecycline MICs among A. baumannii, carbapenem-resistant Enterobacteriaceae (CRE), extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae, and susceptible Enterobacteriaceae isolates were determined by Etest, BMD, Vitek-2, and MicroScan. Nonsusceptibility was categorized as a tigecycline MIC of ≥4 μg/ml for both A. baumannii and Enterobacteriaceae. The study included 4,427 isolates: 2,065 ESBL-producing Enterobacteriaceae, 1,105 A. baumannii, 888 susceptible Enterobacteriaceae, and 369 CRE isolates. Tigecycline nonsusceptibility among A. baumannii isolates was significantly more common as determined by Etest compared to that determined by BMD (odds ratio [OR], 10.3; P < 0.001), MicroScan (OR, 12.4; P < 0.001), or Vitek-2 (OR, 9.4; P < 0.001). These differences were not evident with the other pathogens. Tigecycline MICs varied greatly according to the in vitro testing methods among A. baumannii isolates. Etest should probably not be used by laboratories for tigecycline MIC testing of A. baumannii isolates, since MICs are significantly elevated with Etest compared to those determined by the three other methods.  相似文献   

4.
Candida auris is a multidrug-resistant yeast that causes a wide spectrum of infections, especially in intensive care settings. We investigated C. auris prevalence among 102 clinical isolates previously identified as Candida haemulonii or Candida famata by the Vitek 2 system. Internal transcribed spacer region (ITS) sequencing confirmed 88.2% of the isolates as C. auris, and matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) easily separated all related species, viz., C. auris (n = 90), C. haemulonii (n = 6), C. haemulonii var. vulnera (n = 1), and Candida duobushaemulonii (n = 5). The in vitro antifungal susceptibility was determined using CLSI broth microdilution (CLSI-BMD), the Vitek 2 antifungal susceptibility test, and the Etest method. C. auris isolates revealed uniformly elevated fluconazole MICs (MIC50, 64 μg/ml), and an alarming percentage of isolates (37%) exhibited elevated caspofungin MICs by CLSI-BMD. Notably, 34% of C. auris isolates had coexisting elevated MICs (≥2 μg/ml) for both fluconazole and voriconazole, and 10% of the isolates had elevated coexisting MICs (≥2 μg/ml) to two additional azoles, i.e., posaconazole and isavuconazole. In contrast to reduced amphotericin B MICs by CLSI-BMD (MIC50, 1 μg/ml) for C. auris, elevated MICs were noted by Vitek 2 (MIC50, 8 μg/ml), which were statistically significant. Candida auris remains an unnoticed pathogen in routine microbiology laboratories, as 90% of the isolates characterized by commercial identification systems are misidentified as C. haemulonii. MALDI-TOF MS proved to be a more robust diagnostic technique for rapid identification of C. auris. Considering that misleading elevated MICs of amphotericin B by the Vitek AST-YS07 card may lead to the selection of inappropriate therapy, a cautionary approach is recommended for laboratories relying on commercial systems for identification and antifungal susceptibility testing of rare yeasts.  相似文献   

5.
Ceftolozane MIC50/MIC90s were 4/8 μg/ml when tested against 26 CTX-M-14-type-producing isolates and 64/>64 μg/ml against 219 CTX-M-15-type-producing isolates. The addition of 4 μg/ml tazobactam lowered the ceftolozane MIC50/MIC90s to ≤0.25/0.5 μg/ml by broth microdilution and Etest. The zone diameters for the ceftolozane-tazobactam disks were 23 to 29 mm for 92.2% of the isolates.  相似文献   

6.
During the last several years a series of staphylococcal isolates that demonstrated reduced susceptibility to vancomycin or other glycopeptides have been reported. We selected 12 isolates of staphylococci for which the vancomycin MICs were ≥4 μg/ml or for which the teicoplanin MICs were ≥8 μg/ml and 24 control strains for which the vancomycin MICs were ≤2 μg/ml or for which the teicoplanin MICs were ≤4 μg/ml to determine the ability of commercial susceptibility testing procedures and vancomycin agar screening methods to detect isolates with reduced glycopeptide susceptibility. By PCR analysis, none of the isolates with decreased glycopeptide susceptibility contained known vancomycin resistance genes. Broth microdilution tests held a full 24 h were best at detecting strains with reduced glycopeptide susceptibility. Disk diffusion did not differentiate the strains inhibited by 8 μg of vancomycin per ml from more susceptible isolates. Most of the isolates with reduced glycopeptide susceptibility were recognized by MicroScan conventional panels and Etest vancomycin strips. Sensititre panels read visually were more variable, although with some of the panels MICs of 8 μg/ml were noted for these isolates. Vitek results were 4 μg/ml for all strains for which the vancomycin MICs were ≥4 μg/ml. Vancomycin MICs on Rapid MicroScan panels were not predictive, giving MICs of either ≤2 or ≥16 μg/ml for these isolates. Commercial brain heart infusion vancomycin agar screening plates containing 6 μg of vancomycin per ml consistently differentiated those strains inhibited by 8 μg/ml from more susceptible strains. Vancomycin-containing media prepared in-house showed occasional growth of susceptible strains, Staphylococcus aureus ATCC 29213, and on occasion, Enterococcus faecalis ATCC 29212. Thus, strains of staphylococci with reduced susceptibility to glycopeptides, such as vancomycin, are best detected in the laboratory by nonautomated quantitative tests incubated for a full 24 h. Furthermore, it appears that commercial vancomycin agar screening plates can be used to detect these isolates.  相似文献   

7.
Invasive mold infections are life-threatening diseases for which appropriate antifungal therapy is crucial. Their epidemiology is evolving, with the emergence of triazole-resistant Aspergillus spp. and multidrug-resistant non-Aspergillus molds. Despite the lack of interpretive criteria, antifungal susceptibility testing of molds may be useful in guiding antifungal therapy. The standard broth microdilution method (BMD) is demanding and requires expertise. We assessed the performance of a commercialized gradient diffusion method (Etest method) as an alternative to BMD. The MICs or minimal effective concentrations (MECs) of amphotericin B, voriconazole, posaconazole, caspofungin, and micafungin were assessed for 290 clinical isolates of the most representative pathogenic molds (154 Aspergillus and 136 non-Aspergillus isolates) with the BMD and Etest methods. Essential agreements (EAs) within ±2 dilutions of ≥90% between the two methods were considered acceptable. EAs for amphotericin B and voriconazole were >90% for most potentially susceptible species. For posaconazole, the correlation was acceptable for Mucoromycotina but Etest MIC values were consistently lower for Aspergillus spp. (EAs of <90%). Excellent EAs were found for echinocandins with highly susceptible (MECs of <0.015 μg/ml) or intrinsically resistant (MECs of >16 μg/ml) strains. However, MEC determinations lacked consistency between methods for strains exhibiting mid-range MECs for echinocandins. We concluded that the Etest method is an appropriate alternative to BMD for antifungal susceptibility testing of molds under specific circumstances, including testing with amphotericin B or triazoles for non-Aspergillus molds (Mucoromycotina and Fusarium spp.). Additional study of molecularly characterized triazole-resistant Aspergillus isolates is required to confirm the ability of the Etest method to detect voriconazole and posaconazole resistance among Aspergillus spp.  相似文献   

8.
Isavuconazole is a new broad-spectrum triazole with a favorable pharmacokinetic and safety profile. We report the MIC distributions for isavuconazole and 111 isolates of Candida (42 Candida albicans, 25 Candida glabrata, 22 Candida parapsilosis, 14 Candida tropicalis, and 8 Candida krusei isolates), as determined by Clinical and Laboratory Standards Institute (CLSI) and European Committee on Antimicrobial Susceptibility Testing (EUCAST) broth microdilution (BMD) methods. Also, the relative activities of isavuconazole, itraconazole, fluconazole, posaconazole, voriconazole, and the three echinocandins were assessed against a recent (2011) global collection of 1,358 isolates of Candida spp., 101 of Aspergillus spp., 54 of non-Candida yeasts, and 21 of non-Aspergillus molds using CLSI BMD methods. The overall essential agreement (EA) (±2 log2 dilutions) between the CLSI and EUCAST methods was 99.1% (EA at ±1 log2 dilution, 90.1% [range, 80.0 to 100.0%]). The activities of isavuconazole against the larger collection of Candida spp. and Aspergillus spp. were comparable to those of posaconazole and voriconazole; the MIC90 values for isavuconazole, posaconazole, and voriconazole against Candida spp. were 0.5, 1, and 0.25 μg/ml and against Aspergillus spp. were 2, 1, and 1 μg/ml, respectively. Isavuconazole showed good activities against Cryptococcus neoformans (MIC90, 0.12 μg/ml) and other non-Candida yeasts (MIC90, 1 μg/ml) but was less potent against non-Aspergillus molds (MIC90, >8 μg/ml). Isavuconazole MIC values for three mucormycete isolates were 4, 1, and 2 μg/ml, whereas all three were inhibited by 1 μg/ml posaconazole. Isavuconazole demonstrates broad-spectrum activity against this global collection of opportunistic fungi, and the CLSI and EUCAST methods can be used to test this agent against Candida, with highly comparable results.  相似文献   

9.
We evaluated the ability of four commercial MIC testing systems (MicroScan, Vitek 2, Phoenix, and Etest) to detect vancomycin MIC values of ≤1 to ≥2 in 200 methicillin-resistant Staphylococcus aureus (MRSA) strains compared to the Clinical and Laboratory Standards Institute broth microdilution (BMD) reference methods. Compared to the BMD method, absolute agreement (0 ± dilution) was highest for the Phoenix system (66.2%) and the MicroScan turbidity method (61.8%), followed by the Vitek 2 system (54.3%). The Etest produced MIC values 1 to 2 dilutions higher than those produced by the BMD method (36.7% agreement). Of interest, the MicroScan system (prompt method) was more likely to overcall an MIC value of 1 mg/liter (74.1%), whereas the Phoenix (76%) and Vitek 2 (20%) systems had a tendency to undercall an MIC of 2 mg/liter. The ability to correctly identify vancomycin MIC values of 1 and 2 has clinical implications and requires further evaluation.  相似文献   

10.
Due to the increase in multidrug-resistant Enterobacteriaceae, the interest in older antimicrobial agents, like fosfomycin, has increased. In this study, we used agar dilution for testing susceptibilities to fosfomycin in a collection of 107 carbapenem-nonsusceptible Enterobacteriaceae isolates, of which 80 produced various types of carbapenemases, including KPC, VIM, NDM, and OXA-48. Overall, 78% of the strains had fosfomycin MICs of ≤32 mg/liter and were thus considered to be susceptible according to the current EUCAST breakpoint. The MIC50 and MIC90 were 8 mg/liter and 512 mg/liter, respectively. Escherichia coli strains had significantly lower fosfomycin MICs than the Klebsiella pneumoniae and Enterobacter cloacae strains. Furthermore, comparisons of the susceptibility testing methods, like Etest and disk diffusion, were performed against agar dilution as the reference method. Essential agreement between Etest and agar dilution was 78.9%, and categorical agreement between the two methods was 92.5%, with 20% very major errors and 2.6% major errors. Disk diffusion was studied with 50-μg and 200-μg fosfomycin disks, but no inhibition zone breakpoint that reduced very major and major errors to an acceptable level was found. Etest and disk diffusion showed poor agreement with fosfomycin agar dilution.  相似文献   

11.
We describe the levels of agreement between broth microdilution, Etest, Vitek 2, Sensititre, and MicroScan methods to accurately define the meropenem MIC and categorical interpretation of susceptibility against carbapenemase-producing Klebsiella pneumoniae (KPC). A total of 46 clinical K. pneumoniae isolates with KPC genotypes, all modified Hodge test and blaKPC positive, collected from two hospitals in NY were included. Results obtained by each method were compared with those from broth microdilution (the reference method), and agreement was assessed based on MICs and Clinical Laboratory Standards Institute (CLSI) interpretative criteria using 2010 susceptibility breakpoints. Based on broth microdilution, 0%, 2.2%, and 97.8% of the KPC isolates were classified as susceptible, intermediate, and resistant to meropenem, respectively. Results from MicroScan demonstrated the most agreement with those from broth microdilution, with 95.6% agreement based on the MIC and 2.2% classified as minor errors, and no major or very major errors. Etest demonstrated 82.6% agreement with broth microdilution MICs, a very major error rate of 2.2%, and a minor error rate of 2.2%. Vitek 2 MIC agreement was 30.4%, with a 23.9% very major error rate and a 39.1% minor error rate. Sensititre demonstrated MIC agreement for 26.1% of isolates, with a 3% very major error rate and a 26.1% minor error rate. Application of FDA breakpoints had little effect on minor error rates but increased very major error rates to 58.7% for Vitek 2 and Sensititre. Meropenem MIC results and categorical interpretations for carbapenemase-producing K. pneumoniae differ by methodology. Confirmation of testing results is encouraged when an accurate MIC is required for antibiotic dosing optimization.Carbapenems are considered first-line therapy for infection with multidrug-resistant Enterobacteriaceae (14). However, the increasing emergence of serine-based carbapenemase-producing Klebsiella pneumoniae (KPC) worldwide is of growing concern. This problem is particularly worrisome due to the fact that this K. pneumoniae is one of the leading causes of hospital-acquired infections in severely ill patients, and few antibiotics retain microbiological activity against isolates that produce blaKPC (15). Additionally, studies have demonstrated increased mortality rates in patients infected with carbapenem-resistant Enterobacteriaceae compared with those infected with susceptible strains (1, 12, 13).Detection of KPC based strictly on susceptibility testing is challenging due mostly to the heterogeneous expression of β-lactam resistance (15). Many automated systems report KPC as susceptible to meropenem, and while some isolates truly are, the MICs for most KPC are above the Food and Drug Administration (FDA) susceptibility breakpoint (4 μg/ml) (11). To address testing and reporting issues, the Clinical Laboratory Standards Institute (CLSI) Subcommittee on Antimicrobial Susceptibility Testing changed the susceptibility breakpoint for meropenem, imipenem, and doripenem to ≤1 μg/ml against Enterobacteriaceae in January 2010 (8). At the time of writing, the FDA breakpoint remained at ≤4 μg/ml for meropenem.Given the lack of options for antibiotics that retain susceptibility against pathogens that produce KPC, selection of a dosing regimen that could potentially treat infections caused by these organisms depends on the ability to accurately determine the antibiotic MIC. With respect to KPC, the accurate determination of the meropenem MIC may permit the application of pharmacodynamic principles to dosing regimen optimization by administering higher doses and using prolonged or continuous infusions, as has been accomplished against other resilient bacteria (3, 10, 14).Herein, we describe the levels of agreement between commonly used testing methods (broth microdilution [BMD], Etest, Vitek 2, Sensititre, and MicroScan) in their abilities to accurately determine the meropenem MIC and further classify categorical susceptibilities of carbapenemase-producing K. pneumoniae isolates based on the 2010 CLSI breakpoints compared with FDA breakpoints.  相似文献   

12.
Glycopeptide-intermediate Staphylococcus aureus (GISA) and, in particular, heterogeneous GISA (hGISA) are difficult to detect by standard MIC methods, and thus, an accurate detection method for clinical practice and surveillances is needed. Two prototype Etest strips designed for hGISA/GISA resistance detection (GRD) were evaluated using a worldwide collection of hGISA/GISA strains covering the five major clonal lineages. A total of 150 strains comprising 15 GISA and 60 hGISA strains (defined by population analysis profiles-area under the curve [PAP-AUC]), 70 glycopeptide-susceptible S. aureus (GSSA) strains, and 5 S. aureus ATCC reference strains were tested. For standardized Etest vancomycin (VA) MIC testing, the modified Etest macromethod with VA and teicoplanin (TP) strips tested with a heavier inoculum using brain heart infusion agar (BHI) and two glycopeptide screening agar plates (6 μg/ml VA/BHI and 5 μg/ml Mueller-Hinton agar [MHA]) were tested in parallel with the two new Etest GRD strips: a VA 32 (0.5-μg/ml)-TP 32 (0.5-μg/ml) double-sided gradient (E-VA/TP) with one prototype overlaid with a nutrient (E-VA/TP+S) to enhance the growth of hGISA. The Etest GRD strips were tested with a standard 0.5-McFarland standard inoculum using MHA and MHA plus 5% blood (MHB) and were read at 18 to 24 and 48 h. The interpretive MIC cutoffs used for the new Etest GRD strips at 24 and 48 h were as follows: for GISA, TP or VA, ≥8, and a standard VA MIC of ≥6; for hGISA, TP or VA, ≥8, and a standard VA MIC of ≤4. The results on MHB at 48 h showed that E-VA/TP+S had high specificity (94%) and sensitivity (95%) in comparison to PAP-AUC and was able to detect all GISA (n = 15) and 98% of hGISA (n = 60) strains. In contrast, the glycopeptide screening plates performed poorly for hGISA. The new Etest GRD strip (E-VA/TP+S), utilizing standard media and inocula, is a simple and acceptable tool for detection of hGISA/GISA for clinical and epidemiologic purposes.  相似文献   

13.
We evaluated the evolution of vancomycin MICs for Staphylococcus aureus and their relationship with vancomycin use among hospitalized children. S. aureus isolates recovered from sterile sites were prospectively tested for vancomycin susceptibility using the Etest between 1 April 2000 and 31 March 2008. Vancomycin MICs were grouped into three categories: ≤1, 1.5, and 2 μg/ml. The association between vancomycin MICs and aggregate vancomycin use and individual patient vancomycin exposure 6 months prior to the documented infection was assessed. The geometric mean values for vancomycin MICs for S. aureus fluctuated over time without a significant trend (P = 0.146). Of the 436 patients included in the study, 363 (83%) had methicillin-susceptible S. aureus (MSSA) and 73 (17%) had methicillin-resistant S. aureus (MRSA) infections. The rate of isolates with a vancomycin MIC of 2 μg/ml increased from 4% (2 of 46) in 2000 to 2001 to 24% (11 of 46) in 2007 to 2008, despite a decrease in vancomycin use (r = −0.11; P = 0.825). The percentage of isolates with a vancomycin MIC of 2 μg/ml was higher for MRSA (15%; 11 of 73) than for MSSA strains (5.2%; 19 of 363) (χ2 = 9.2; P = 0.01). Individual patient vancomycin exposure was not associated with a higher vancomycin MIC. In the unadjusted model, in which we compared patients with S. aureus infections with MICs of ≤1 μg/ml, the odds ratios of exposure rates for patients with isolates with MICs of 1.5 μg/ml and 2 μg/ml were 1.02 (P = 0.929) and 1.13 (P = 0.767), respectively. In our experience, the geometric means of vancomycin MICs from S. aureus isolates recovered from hospitalized children oscillated over time and were not associated with previous individual patient vancomycin exposure or aggregate vancomycin use.  相似文献   

14.
Modified disk diffusion (MDD) and checkerboard tests were employed to assess the synergy of combinations of vancomycin and β-lactam antibiotics for 59 clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA) and Mu50 (ATCC 700699). Bacterial inocula equivalent to 0.5 and 2.0 McFarland standard were inoculated on agar plates containing 0, 0.5, 1, and 2 μg/ml of vancomycin. Oxacillin-, cefazolin-, and cefoxitin-impregnated disks were applied to the surface, and the zones of inhibition were measured at 24 h. The CLSI-recommended checkerboard method was used as a reference to detect synergy. The MICs for vancomycin were determined using the Etest method, broth microdilution, and the Vitek 2 automated system. Synergy was observed with the checkerboard method in 51% to 60% of the isolates when vancomycin was combined with any β-lactam. The fractional inhibitory concentration indices were significantly lower in MRSA isolates with higher vancomycin MIC combinations (P < 0.05). The overall agreement between the MDD and checkerboard methods to detect synergy in MRSA isolates with bacterial inocula equivalent to McFarland standard 0.5 were 33.0% and 62.5% for oxacillin, 45.1% and 52.4% for cefazolin, and 43.1% and 52.4% for cefoxitin when combined with 0.5 and 2 μg/ml of vancomycin, respectively. Based on our study, the simple MDD method is not recommended as a replacement for the checkerboard method to detect synergy. However, it may serve as an initial screening method for the detection of potential synergy when it is not feasible to perform other labor-intensive synergy tests.  相似文献   

15.
Vancomycin MICs for Staphylococcus aureus isolates in a pediatric hospital with a high rate of staphylococcal infections were examined for any increase over a 7-year period. A broth microdilution scheme allowed direct comparison of the MICs generated by this method to MICs generated by Etest. MICs generated by both methods were determined with the same inoculum suspension. One hundred sixty-five S. aureus isolates were selected on the basis of the patients having been bacteremic or having received vancomycin as the definitive therapy for their infections. Of the 165 isolates, 117 were methicillin-resistant S. aureus and 48 were methicillin-susceptible S. aureus. Forty-seven were acquired in the hospital (nosocomial), 56 were community acquired, and 62 were community onset-health care associated. All but one isolate tested by broth microdilution had MICs of <1.0 μg/ml, while 96% of these same isolates tested by Etest had MICs of ≥1 μg/ml. A significant increase in MICs that occurred after study year 4 (2004 to 2005) was demonstrated by the Etest (P < 0.00007) but not by broth microdilution. MICs were not different for isolates of community or health care origin, regardless of methodology. The proportion of isolates with Etest MICs of <1 and ≥1 μg/ml between children with bacteremia for ≤5 days and >5 days (P = 0.3) was not different. We conclude that MICs for pediatric isolates have increased slightly since 2005 and therapeutic decisions based on vancomycin MICs need to be made by considering the methodology used.Recent studies have reported a steady increase in vancomycin MICs for Staphylococcus aureus that may be, in part, due to the increase in the use of vancomycin in response to community-acquired (CA) methicillin-resistant S. aureus (MRSA) (18). Also, some studies report that vancomycin MICs between 1.5 and 2.0 μg/ml are predictors of a poor therapeutic response in adults (15). The decrease in vancomycin susceptibility is difficult to assess by percentage reporting because the MIC increases are subtle, would all be classified as susceptible by using 2009 Clinical and Laboratory Standards Institute (CLSI) interpretive breakpoints, and are only detected by using a more closely spaced (arithmetic) dilution scheme versus the standard geometric dilution scheme (16). We report the first study of vancomycin MIC trends for S. aureus isolates from children comparing Etest and modified broth microdilution (BMD) schemes.  相似文献   

16.
Acinetobacter baumannii is a major nosocomial pathogen causing infections in critically ill patients. This organism has acquired the propensity to rapidly develop resistance to most antibiotics. At several hospitals within Cape Town, South Africa, tobramycin and colistin are frequently the only therapeutic options. Vitek2 automated susceptibility testing (AST) is used in the clinical laboratory to determine selected susceptibility profiles. The suspicion of a possible AST-related technical error when testing for susceptibility to tobramycin in A. baumannii precipitated this study. Thirty-nine A. baumannii strains isolated from clinical specimens (June to December 2006) were included in this prospective study. Tobramycin susceptibility testing results obtained by AST, disc diffusion, the epsilometer test (Etest), and agar dilution were compared to those for broth microdilution (BMD), the reference method. The tobramycin susceptibility results revealed errors in 25/39 (64%) isolates (10 very major and 15 minor errors) when AST was compared to BMD, 12/39 (31%) (2 very major and 10 minor errors) when Etest was compared to BMD, 16/39 (41%) (3 very major and 13 minor errors) when disc diffusion was compared to BMD, and 21/39 (54%) (10 very major and 11 minor errors) when agar dilution was compared to BMD. Using PCR, we detected aac(3)-IIa, which is associated with tobramycin resistance, in 21/25 of the discrepant isolates. Molecular typing (using pulsed-field gel electrophoresis and repetitive sequence-based PCR [rep-PCR]) showed that these isolates were genetically related. Clinical laboratories that routinely use the Vitek2 system should consider an alternative testing method for determining susceptibility to tobramycin.  相似文献   

17.
Objective: This study investigated the minimum inhibitory concentration (MIC) values and in vitro activity of colistin in combination with tigecycline against carbapenem-resistant Acinetobacter baumannii strains isolated from patients with ventilator-associated pneumonia (VAP) using the E-test method.Methods: A total of 40 A. baumannii strains, identified using the Phoenix Automated Microbiology System (Becton, Dickinson and Co., Franklin Lakes, NJ, USA) by conventional methods, were included in this study. Pulsed-field gel electrophoresis was performed to examine the clonal relationships between isolates. The carbapenem resistance of the strains to colistin and tigecycline was assessed using the E-test method (Liofilchem, Roseto Degli Abruzzi, Italy). The in vitro activity of colistin in combination with tigecycline was evaluated using the fractional inhibitor concentration (FIC) index.Results: While only 1 of 40 A. baumannii strains was determined to be colistin resistant, 6 were tigecycline resistant. The MIC50, MIC90, and MIC intervals of the A. baumannii strains were 0.19, 1.5, and 0.064‒4 μg/ml for colistin and 1, 8, and 0.094‒256 μg/ml for tigecycline, respectively. No synergistic effect was observed using the FIC index; 8 strains exhibited an indifferent effect and 32 exhibited an antagonist effect. Three of the six strains that were resistant to tigecycline were indifferent; the remaining three were antagonistic. The colistin-resistant strain also exhibited an antagonist effect.Conclusion: In contrast to their synergistic effect against carbapenem-resistant A. baumannii isolates, colistin and tigecycline were highly antagonistic to carbapenem-resistant A. baumannii strains isolated from patients with VAP when the drugs were administered together. Therefore, alternative treatment options should be used during the treatment of VAP attributed to A. baumannii.  相似文献   

18.
We report MIC agreement and error rates between broth microdilution (BMD), Vitek 2, and Etest against 48 clinical KPC-producing Klebsiella pneumoniae isolates for polymyxin B, tigecycline, cefepime, and meropenem. Both commercial testing methods were useful for tigecycline testing; Etest provided a conservative estimate of polymyxin B susceptibility. We suggest that laboratories consider the supplemental use of reference BMD or Etest for cefepime and meropenem for susceptibility testing of KPC-producing K. pneumoniae, as Vitek 2 did not provide reliable results.  相似文献   

19.
The in vitro antifungal activities of SCH56592, MK-0991, and LY303366 against 83 isolates of Acremonium strictum, Aspergillus flavus, Aspergillus fumigatus, Aspergillus terreus, Bipolaris spp., Blastomyces dermatitidis, Cladophialophora bantiana, Fusarium oxysporum, Fusarium solani, Histoplasma capsulatum, Phialophora spp., Pseudallescheria boydii, Rhizopus arrhizus, Scedosporium prolificans, and Sporothrix schenckii were compared. The in vitro activities of these agents against 104 isolates of yeast pathogens of Candida spp., Cryptococcus neoformans, and Trichosporon beigelii were also compared. MICs were determined by following a procedure under evaluation by the National Committee for Clinical Laboratory Standards (NCCLS) for broth microdilution testing of the filamentous fungi (visual MICs) and the NCCLS M27-A broth microdilution method for yeasts (both visual and turbidimetric MICs). The in vitro fungicidal activity of SCH56592 was superior (minimum fungicidal concentrations [MFCs], 0.25 to 4 μg/ml for 7 of 18 species tested) to those of MK-0991 and LY303366 (MFCs, 8 to >16 μg/ml for all species tested) for the molds tested, but the echinocandins had a broader spectrum of fungicidal activity (MFCs at which 90% of strains are inhibited [MFC90s], 0.5 to 4 μg/ml for 6 of 9 species tested) than SCH56592 (MFC90s, 0.25 to 8 μg/ml for 4 of 9 species tested) against most of the yeasts tested. Neither echinocandin had in vitro activity (MICs, >16 μg/ml) against C. neoformans and T. beigelii, while the SCH56592 MICs ranged from 0.12 to 1.0 μg/ml for these two species. The MICs of the three agents for the other species ranged from <0.03 to 4 μg/ml. These results suggest that these new agents have broad-spectrum activities in vitro; their effectiveness in the treatment of human mycoses is to be determined.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号