首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the performance of blood and chocolate agar as alternatives to Middlebrook 7H11 agar for testing the susceptibility of Mycobacterium tuberculosis to first-and second-line drugs by the Etest method. A total of 39 strains of M. tuberculosis including 22 multidrug-resistant M. tuberculosis strains and 17 susceptible strains were tested. In conclusion, our results showed that chocolate agar gave insufficient growth, needing up to 21 days of incubation, while results on blood agar were comparable to those on Middlebrook 7H11 agar and can be further explored as an alternative for Etest-based susceptibility testing of M. tuberculosis.  相似文献   

2.
A 33-kDa protein (TB33) was isolated from a delipidated cell sonicate (CS) of Mycobacterium tuberculosis H37Rv (grown in Middlebrook 7H9 broth supplemented with glucose) using immobilized metal affinity chromatography (IMAC) on a nickel-nitrilotriacetic acid (Ni-NTA) column. TB33 could not be isolated from the culture filtrate (CF) of M. tuberculosis H37Rv using Ni-NTA. TB33 was recognized by monoclonal antibodies (mAb) known to react with proteins of M. tuberculosis with a molecular mass of 33/34 kDa; namely, mAb F126-5, F67-1 and F126-2. The N-terminal amino acid sequence of TB33 was found to be Xaa-Xaa-Thr-Pro-Ala-Asp-Val-Ser/Cys-Asn-Val-Ala-Ile and thus, shows identity with the N-terminal of antigen 84 of M. tuberculosis except for two mismatches. Antibodies to TB33 could be raised in mice by administering four injections of TB33 (40 μg total protein). Sera from tuberculosis patients reacted with TB33, while those from normal healthy individuals did not. Received: 17 April 1996  相似文献   

3.
Purpose: To compare the rapid colorimetric nitrate reductase based antibiotic susceptibility (CONRAS) test performed on Mycobacterium tuberculosis isolates with the conventional method i.e., the proportion method. Methods: One hundred clinical isolates of M. tuberculosis were tested for susceptibility to isoniazid (INH) and rifampicin (RIF) by the conventional proportion method and CONRAS in Middlebrook 7H9 liquid medium enriched with growth supplements (MB7H9S). Results: The performance of the CONRAS test was evaluated using proportion method as the gold standard. The sensitivity (ability to detect true drug resistance) and specificity (ability to detect true drug susceptibility) of the CONRAS test to INH was 93.75 and 98.52% and for RIF it was 96.10 and 100% respectively. The mean time for reporting was 6.3 days and the test showed excellent reproducibility. The kappa (κ) value for INH was 0.92 and for RIF was 0.99, indicating excellent agreement between the two methods. Conclusions: CONRAS test is a rapid and reliable method of drug susceptibility for M. tuberculosis.  相似文献   

4.
Liquid culture of Mycobacterium avium subsp. paratuberculosis from clinical samples, such as feces, is the most sensitive antemortem test for the diagnosis of Johne''s disease in ruminants. In Australia, New Zealand, the United States, and some other countries, the Bactec 460 system with modified Bactec 12B medium (Becton, Dickinson) has been the most commonly used liquid culture system, but it was discontinued in 2012. In this study, a new liquid culture medium, M7H9C, was developed. It consists of a Middlebrook 7H9 medium base with added Casitone, albumin, dextrose, catalase, egg yolk, mycobactin J, and a cocktail of antibiotics. We found that polyoxyethylene stearate (POES) was not essential for the cultivation of M. avium subsp. paratuberculosis in either the Bactec 12B or the M7H9C medium. The limit of detection determined using pure cultures of the C and S strains of M. avium subsp. paratuberculosis was 7 bacilli per 50 μl inoculum in the two media. The new medium was validated using 784 fecal and tissue samples from sheep and cattle, >25% of which contained viable M. avium subsp. paratuberculosis. Discrepant results for the clinical samples between the two media were mostly associated with samples that contained <10 viable bacilli per gram, but these results were relatively uncommon, and the performances of the two media were not significantly different. M7H9C medium was less than half the cost of the Bactec 12B medium and did not require regular examination during incubation, but a confirmatory IS900 PCR test had to be performed on every culture after the predetermined incubation period.  相似文献   

5.
The reliability of the BDProbeTec MTB Test (Becton Dickinson, Sparks, Md.) for direct detection of Mycobacterium tuberculosis in respiratory specimens was evaluated by comparing results to those of conventional mycobacterial culture, with the BACTEC TB 460 and Middlebrook 7H11 biplates. Patients known to have tuberculosis were excluded from analysis. Of 523 specimens from 277 patients, 53 grew a mycobacterium: 24 specimens of M. tuberculosis and 29 specimens of nontuberculous mycobacteria. After initial testing, 42 specimens were positive by the BDProbeTec, for overall sensitivity, specificity, and positive and negative predictive values of 95.8, 96.2, 54.8, and 99.8%, respectively. After resolution of discrepancies, 28 specimens were positive by the BDProbeTec, for overall sensitivity, specificity, and positive and negative predictive values of 100, 99.2, 85.7, and 100%, respectively. These same values were 100, 80.8, 93.4, and 100%, respectively, for smear-positive samples and 100, 99.4, 75.0, and 100%, respectively, for smear-negative specimens.  相似文献   

6.
The rate of recovery and time to the detection of mycobacteria in clinical specimens were measured in traditional egg-based media cultures and on Middlebrook 7H11 agar plate cultures using microcolony detection. In the 5438 specimens processed, a total of 293 (5.4 %) clinically relevant mycobacterial isolates were detected (Mycobacterium tuberculosis, n=231;Mycobacterium avium complex, n=60;Mycobacterium kansasii, n=2). Of these, 227 (77 %) and 237 (81 %) isolates were detected on Lowenstein-Jensen medium and Coletsos medium, respectively, and 265 (90 %) isolates were detected on Middlebrook 7H11 plates examined microscopically. The detection time was shorter with the microcolony detection method. While the Lowenstein-Jensen and Coletsos media required an average of 23 and 25 days, respectively, for first detection of mycobacteria, microcolony detection on Middlebrook 7H11 required an average of only 12 days. For acid-fast, stain-positive specimens that were culture positive forMycobacterium tuberculosis, the average interval to positivity was nine days for the microcolony method compared with 20 and 21 days for the Lowenstein-Jensen and Coletsos media, respectively. Microscopic detection on Middlebrook 7H11 agar plates is a rapid, accurate and inexpensive method of detectingMycobacterium tuberculosis and other clinically important mycobacteria.  相似文献   

7.
Purpose: Ethambutol (EMB) is an important first line drug, however little information on its molecular mechanism of resistance and pathogenicity of resistant isolates is available. Present work was designed to study virulence of the EMB resistant M. tuberculosis strains and the host responses in-vivo on infection of EMB resistant M. tuberculosis using Balb/c mouse model of infection. Methods: Three groups of Balb/c mice (female, age 4-6 wk; 21 mice in each group) were infected intravenously with 106 CFU of M. tuberculosis H37Rv and two EMB resistant clinical isolates. Age and sex matched control animals were mock inoculated with Middlebrook 7H9 broth alone. At 10, 20, 30, 40, 50, 60, and 70 days post-infection three animals from each group were sacrificed by cervical dislocation and lung tissue was collected for further analysis. Results: Infection with EMB resistant M. tuberculosis led to progressive and chronic disease with significantly high bacillary load (p=0.02). Massive infiltration and exacerbated lung pathology with increased expression of IFN-γand TNF-αwas observed in lungs of mice infected with EMB resistant strains. The present study suggests that infection with EMB resistant M. tuberculosis leads to chronic infection with subsequent loss of lung function, bacterial persistence with elevated expression of TNF-αresulting in increased lung pathology. Conclusion: These findings highlight that EMB resistant M. tuberculosis regulates host immune response differentially and its pathogenicity is different from drug sensitive strains of M. tuberculosis.  相似文献   

8.
The aim of this study was to evaluate the sensitivity of as well as the time to detection of mycobacteria by three procedures: solid media with traditional reading, microscopy on solid media, and liquid culture using the automated nonradiometric Bactec MGIT 960 system. A total of 2832 respiratory specimens were tested, 315 of which were positive for mycobacteria. The most frequently isolated species was Mycobacterium tuberculosis (201 isolates). One hundred twenty mycobacteria other than tuberculosis were isolated, 72 of which were Mycobacterium xenopi strains. Sensitivity of each of the different media compared to all media combined for growth of Mycobacterium tuberculosis was 93%, 76.1%, 79.6%, and 75.1% for Bactec MGIT 960, Middlebrook 7H11 plates, Löwenstein-Jensen, and Coletsos, respectively. Sensitivity of the Bactec MGIT 960 for detection of all mycobacterial isolates was 75.1%. When this automated system was supplemented with visual inspection, the sensitivity increased to 89.4%. The sensitivity of Middlebrook 7H11 plates, Löwenstein-Jensen, and Coletsos was 50.8%, 60.7%, and 52.3%, respectively. Time to detection of Mycobacterium tuberculosis using the Bactec MGIT 960 system and Middlebrook 7H11 plates with microscopic reading was 12.7 and 13 days, respectively; using the traditional Löwenstein-Jensen and Coletsos media, time to detection was 22.8 and 22.7 days, respectively.  相似文献   

9.
A newly developed biphasic culture system (MB-Check) for recovery of mycobacteria was evaluated. The biphasic system consists of a bottle containing selective modified Middlebrook 7H9 broth and a mounted dip slide with chocolate agar and modified Middlebrook 7H11 agar with and without NAP. The system was compared with culture on two egg-based media, Lowenstein medium and a selective Gottsacker medium, using 995 routine specimens and 90 artificially seeded sputa.Mycobacterium tuberculosis was detected in 17 of the 995 routine specimens by the biphasic system and in 14 specimens by the egg-based media together. In the artificially seeded sputa the biphasic system showed higher sensitivity in detection of both tuberculosis complex and non-tuberculous mycobacteria than the egg-based media. The recovery times of the new system were comparable to those of the two conventional culture methods.  相似文献   

10.
The rapid identification of antimicrobial resistance is essential for effective treatment of highly resistant Mycobacterium tuberculosis. Whole-genome sequencing provides comprehensive data on resistance mutations and strain typing for monitoring transmission, but unlike for conventional molecular tests, this has previously been achievable only from cultures of M. tuberculosis. Here we describe a method utilizing biotinylated RNA baits designed specifically for M. tuberculosis DNA to capture full M. tuberculosis genomes directly from infected sputum samples, allowing whole-genome sequencing without the requirement of culture. This was carried out on 24 smear-positive sputum samples, collected from the United Kingdom and Lithuania where a matched culture sample was available, and 2 samples that had failed to grow in culture. M. tuberculosis sequencing data were obtained directly from all 24 smear-positive culture-positive sputa, of which 20 were of high quality (>20× depth and >90% of the genome covered). Results were compared with those of conventional molecular and culture-based methods, and high levels of concordance between phenotypical resistance and predicted resistance based on genotype were observed. High-quality sequence data were obtained from one smear-positive culture-negative case. This study demonstrated for the first time the successful and accurate sequencing of M. tuberculosis genomes directly from uncultured sputa. Identification of known resistance mutations within a week of sample receipt offers the prospect for personalized rather than empirical treatment of drug-resistant tuberculosis, including the use of antimicrobial-sparing regimens, leading to improved outcomes.  相似文献   

11.
We evaluated the BACTEC MGIT 960 system, which is a fully automated, noninvasive system for the growth and detection of mycobacteria with a capacity to incubate and continuously monitor 960 7-ml culture tubes. We studied 3,330 specimens, 2,210 respiratory and 1,120 nonrespiratory specimens, collected from 2,346 patients treated at six sites. Processed specimens were inoculated into the BACTEC MGIT 960 and BACTEC 460 TB systems, as well as onto Lowenstein-Jensen slants and Middlebrook 7H11/7H11 selective plates. From all culture systems, a total of 362 isolates of mycobacteria were recovered; these were recovered from 353 specimens collected from 247 patients. The greatest number of isolates of mycobacteria (289, or 80% of the 362 isolates) was recovered with the BACTEC MGIT 960, followed by the BACTEC 460 TB (271, or 75%) and solid media (250, or 69%). From all culture systems a total of 132 isolates of Mycobacterium tuberculosis complex were recovered. The greatest number of isolates of M. tuberculosis complex was recovered when liquid medium was combined with conventional solid media; the number recovered with BACTEC 460 TB plus solid media was 128 (97%), that recovered with BACTEC MGIT 960 plus solid media was 121 (92%), that recovered with BACTEC 460 TB was 119 (90%) and that recovered with all solid media combined was 105 (79%). The recovery with BACTEC MGIT 960 alone was 102 (77%). The mean times to detection (TTD) for M. tuberculosis complex were 14.4 days for BACTEC MGIT, 15.2 days for BACTEC 460 TB, and 24.1 days for solid media. The numbers of isolates of Mycobacterium avium complex (MAC) recovered were 172 (100%) for all systems, 147 (85%) for BACTEC MGIT 960, 123 (72%) for BACTEC 460 TB, and 106 (62%) for all solid media combined. The TTD for MAC in each system were 10.0 days for BACTEC MGIT 960, 10.4 days for BACTEC 460 TB, and 25.9 days for solid media. Breakthrough contamination rates (percentages of isolates) for each of the systems were 8.1% for BACTEC MGIT 960, 4.9% for BACTEC 460 TB, and 21.1% for all solid media combined.  相似文献   

12.
ObjectivesThe first objective of the European Committee on Antimicrobial Susceptibility Testing (EUCAST) subcommittee for antimycobacterial susceptibility testing (AMST), launched in 2016, was to set a reference method for determining the MICs of antituberculous agents, since many protocols are used worldwide and a consensus one is needed for the determination of microbiological breakpoints.MethodsDuring 2017 and 2018, MIC determination protocols were evaluated prospectively in a multicentre study within the four AMST laboratories. MIC results were obtained for isoniazid, levofloxacin and amikacin on the reference strain Mycobacterium tuberculosis H37Rv ATCC 27294. Broth microdilution (BMD) in Middlebrook 7H9 and solid medium dilution (SMD) in Middlebrook 7H10 were performed using two inoculum concentrations. MICs were interpreted with regard to visual and 99% inhibition after 7, 14 or 21 days of incubation for BMD and 21 days for SMD.ResultsFollowing the EUCAST reference protocol, intra- and inter-assay agreements were within ±1 MIC dilution for >95% of the observations for the three drugs in both methods. MIC values, presented as MIC mode (range) for BMD and SMD respectively, were: 0.03 (0.015–0.06) mg/L and 0.12 (0.06–0.25) mg/L for isoniazid, 0.25 mg/L (0.25–0.5) and 0.5 mg/L (0.12–0.5) for levofloxacin, and 0.5 mg/L (0.5–1.0) and 0.5 mg/L (0.5–1.0) for amikacin.ConclusionsBoth SMD and BMD were reproducible and eligible as a reference method for MIC determination of the Mycobacterium tuberculosis complex (MTBC). BMD was finally selected as the EUCAST reference method. From now on it will be used to set epidemiological cut-off values and clinical breakpoints of new and old antituberculous agents.  相似文献   

13.
Both CD4+ and CD8+ T cells are important in protection against Mycobacterium tuberculosis infection. To evaluate the effect of vaccination with Mycobacterium bovis bacille Calmette–Guérin (BCG) on the CD8+ T-cell response to pulmonary M. tuberculosis infection, we analyzed the kinetics of CD8+ T cells specific to the mycobacterial Mtb32a309–318 epitope, which is shared by M. tuberculosis and M. bovis BCG, in the lung of mice infected with M. tuberculosis. The CD8+ T cells were detected by staining lymphocytes with pentameric major histocompatibility complex (MHC) class I H-2Db–Mtb32a209–318 peptide complex and were analysed by flow cytometry. Mtb32a-specific CD8+ T cells became detectable on day 14, and reached a plateau on day 21, in the lung of M. tuberculosis-infected unvaccinated mice. Subcutaneous vaccination with M. bovis BCG in the footpads induced Mtb32a-specific CD8+ T cells in the draining lymph nodes (LNs) on day 7 and their numbers further increased on day 14. When M. bovis BCG-vaccinated mice were exposed to pulmonaryinfection with M. tuberculosis 4 weeks after vaccination, the Mtb32a-specific CD8+ T cells in the infected lung became detectable on day 7 and reached a plateau on day 14, which was 1 week earlier than in the unvaccinated mice. The pulmonary CD8+ T cells from the BCG-vaccinated M. tuberculosis-infected mice produced interferon-γ in response to Mtb32a209–318 peptide on day 7 of the infection, whereas those of unvaccinated mice did not. The results demonstrate that induction of mycobacterial antigen-specific protective CD8+ T cells in the M. tuberculosis-infected lung is accelerated by subcutaneous vaccination with M. bovis BCG.  相似文献   

14.
Seven hundred thirty-seven clinical samples from 460 patients were processed for direct detection of Mycobacterium tuberculosis complex by a semiautomated ligase chain reaction commercial assay, the LCx Mycobacterium tuberculosis Assay (LCx assay) from Abbott Laboratories. Results were compared to those of direct microscopy and standard microbiological culture. Of 26 patients (5.7%) with a culture positive for M. tuberculosis, 22 (84.6%) were found positive by the LCx assay. The sensitivity of the LCx assay was 98% for smear-positive samples and 27% for smear-negative samples. With an overall culture positivity rate for M. tuberculosis of 8.3% (61 of 737 samples) and after resolution of discrepant results according to clinical data, the sensitivity, specificity, and positive and negative predictive values of the LCx assay were 78, 100, 95, and 98%, respectively, compared to 85, 100, 100, and 98%, respectively, for culture and 67, 99, 87, and 97%, respectively, for acid-fast staining. In conclusion, the LCx assay proved satisfactory and appears to be an easy-to-use 1-day test which must be used with standard culture methods but can considerably reduce diagnosis time versus culture. However, its clinical interest appears to be limited in our population with low mycobacterial prevalence because of its cost considering the small gain in sensitivity versus direct microscopy.  相似文献   

15.
To investigate the role of chemokines during the initial local response to Mycobacterium tuberculosis in the human lung, we studied chemokine production by the human alveolar epithelial cell line A549 after infection with M. tuberculosis. M. tuberculosis-infected A549 cells produced mRNAs and protein for monocyte chemotactic protein-1 (MCP-1) and interleukin-8 (IL-8) but not mRNAs for macrophage inflammatory protein 1α (MIP-1α), MIP-1β, and RANTES. Chemokine production in response to M. tuberculosis was not dependent on production of tumor necrosis factor alpha, IL-1β, or IL-6. Two virulent clinical M. tuberculosis isolates, the virulent laboratory strain H37Rv, and the avirulent strain H37Ra elicited production of comparable concentrations of MCP-1 and IL-8, whereas killed M. tuberculosis and three Mycobacterium avium strains did not. The three virulent M. tuberculosis strains grew more rapidly than the avirulent M. tuberculosis strain in the alveolar epithelial cell line, and the three M. avium strains did not grow intracellularly. These findings suggest that intracellular growth is necessary for mycobacteria to elicit production of MCP-1 and IL-8 by alveolar epithelial cells but that virulence and the rate of intracellular growth do not correlate with chemokine production. Alveolar epithelial cells may contribute to the local inflammatory response in human tuberculosis by producing chemokines which attract monocytes, lymphocytes, and polymorphonuclear cells.  相似文献   

16.
During tuberculosis (TB), some Mycobacterium tuberculosis bacilli persist in the presence of an active immunity and antibiotics that are used to treat the disease. Herein, by using the Cornell model of TB persistence, we further explored our recent finding that suggested that M. tuberculosis can escape therapy by residing in the bone marrow (BM) mesenchymal stem cells. We initially showed that M. tuberculosis rapidly disseminates to the mouse BM after aerosol exposure and maintained a stable burden for at least 220 days. In contrast, in the lungs, the M. tuberculosis burden peaked at 28 days and subsequently declined approximately 10-fold. More important, treatment of the mice with the antibiotics rifampicin and isoniazid, as expected, resulted in effective clearance of M. tuberculosis from the lungs and spleen. In contrast, M. tuberculosis persisted, albeit at low numbers, in the BM of antibiotic-treated mice. Moreover, most viable M. tuberculosis was recovered from the bone marrow CD271+CD45-enriched cell fraction, and only few viable bacteria could be isolated from the CD271CD45+ cell fraction. These results clearly show that BM mesenchymal stem cells provide an antibiotic-protective niche for M. tuberculosis and suggest that unraveling the mechanisms underlying this phenomenon will enhance our understanding of M. tuberculosis persistence in treated TB patients.Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), is an intracellular pathogen known to infect primarily macrophages and dendritic cells.1–3 However, the viability of M. tuberculosis in these intracellular niches is poor,4 and no evidence exists indicating that these cells can maintain live nonreplicating M. tuberculosis for long periods of time. Therefore, it is unlikely that these cell populations can harbor viable M. tuberculosis during the chronic phase of the disease, which lasts for months or years, as well as during the latent TB infection, which can last for decades.We have recently shown that M. tuberculosis can reside in bone marrow (BM) within the CD271+CD45 mesenchymal stem cells (BM-MSCs) of individuals treated for pulmonary TB and in mice experimentally infected with M. tuberculosis.5 MSCs can provide an ideal protective niche for M. tuberculosis because these cells have several properties that may promote the pathogen''s long-term persistence and survival: i) MSCs are present in TB granulomas of infected mouse and human lung tissue6; ii) stem cells possess the capacity for self-renewal7; iii) stem cells express drug efflux pumps, such as ABCG2, that could contribute to drug evasion by M. tuberculosis5; iv) stem cells have low production of reactive oxygen species,8 which may favor the viability of nonreplicating M. tuberculosis; v) although MSCs have the capacity of self-renewal, they are relatively quiescent,9 and reside in the immune-privileged niche of the BM10,11; and vi) MSCs do not normally express major histocompatibility complex (MHC) class II on their cell surface and their MHC class I molecules are not functionally active (ie, these molecules do not trigger effector functions of cytotoxic T lymphocytes).12 Therefore, it is logical that BM-MSCs constitute a host cell capable of supporting long-term persistence of viable nonreplicating M. tuberculosis. However, many fundamental questions regarding the survival of virulent M. tuberculosis in BM-MSCs remain unanswered. Herein, we confirmed in vivo in the mouse model of TB that virulent M. tuberculosis disseminates rapidly to the BM within 2 weeks after infection with aerosolized organisms and preferentially resides within BM-MSCs. In addition, and more important, we show that antibiotics appeared to efficiently clear the infectious process within the lungs and spleens but fail to do so in the BM.  相似文献   

17.
A positive gamma interferon (IFN-γ) response to Mycobacterium tuberculosis early secretory antigenic target-6 (ESAT-6)/culture filtrate protein-10 (CFP-10) has been taken to indicate latent tuberculosis (TB) infection, but it may also be due to exposure to environmental nontuberculous mycobacteria in which ESAT-6 homologues are present. We assessed the immune responses to M. tuberculosis ESAT-6 and cross-reactive responses to ESAT-6 homologues of Mycobacterium avium and Mycobacterium kansasii. Archived culture supernatant samples from children at 3 years post-BCG vaccination were tested for cytokine/chemokine responses to M. tuberculosis antigens. Furthermore, the IFN-γ responses to M. tuberculosis antigens were followed up for 40 children at 8 years post-BCG vaccination, and 15 TB patients were recruited as a control group for the M. tuberculosis ESAT-6 response in Malawi. IFN-γ enzyme-linked immunosorbent assays (ELISAs) on supernatants from diluted whole-blood assays, IFN-γ enzyme-linked immunosorbent spot (ELISpot) assays, QuantiFERON TB Gold-In Tube tests, and multiplex bead assays were performed. More than 45% of the responders to M. tuberculosis ESAT-6 showed IFN-γ responses to M. avium and M. kansasii ESAT-6. In response to M. tuberculosis ESAT-6/CFP-10, interleukin 5 (IL-5), IL-9, IL-13, and IL-17 differentiated the stronger IFN-γ responders to M. tuberculosis ESAT-6 from those who preferentially responded to M. kansasii and M. avium ESAT-6. A cytokine/chemokine signature of IL-5, IL-9, IL-13, and IL-17 was identified as a putative immunological biosignature to differentiate latent TB infection from exposure to M. avium and M. kansasii in Malawian children, indicating that this signature might be particularly informative in areas where both TB and exposure to environmental nontuberculous mycobacteria are endemic.  相似文献   

18.
Mycobacterium tuberculosis and M. bovis infect animals and humans. Their epidemiologies in developed and developing countries differ, owing to differences in the implementation of preventive measures (World Health Organization, 1999). Identification and differentiation of these closely related mycobacterial species would help to determine the source, reservoirs of infection, and disease burden due to diverse mycobacterial pathogens. The utility of the hupB gene (Rv2986c in M.tuberculosis, or Mb3010c in M.bovis) to differentiate M. tuberculosis and M. bovis was evaluated by a PCR-restriction fragment length polymorphism (RFLP) assay with 56 characterized bovine isolates (S. Prabhakar et al., J. Clin. Microbiol. 42:2724-2732, 2004). The degree of concordance between the PCR-RFLP assay and the microbiological characterization was 99.0% (P < 0.001). A nested PCR (N-PCR) assay was developed, replacing the PCR-RFLP assay for direct detection of M. tuberculosis and M. bovis in bovine samples. The N-PCR products of M. tuberculosis and M. bovis corresponded to 116 and 89 bp, respectively. The detection limit of mycobacterial DNA by N-PCR was 50 fg, equivalent to five tubercle bacilli. M. tuberculosis and/or M. bovis was detected in 55.5% (105/189) of the samples by N-PCR, compared to 9.4% (18/189) by culture. The sensitivities of N-PCR and culture were 97.3 and 29.7, respectively, and their specificities were 22.2 and 77.7%, respectively. The percentages of animals or samples identified as infected with M.tuberculosis or M. bovis by N-PCR and culture reflected the clinical categorizations of the cattle (P of <0.05 to <0.01). Mixed infection by N-PCR was detected in 22 animals, whereas by culture mixed infection was detected in 1 animal.  相似文献   

19.
Mycobacterial cultures are historically performed using a liquid medium and a solid agar medium with an incubation period of up to 60 days. We performed a retrospective analysis of 21,494 mycobacterial and aerobic actinomycetes cultures performed over 10 months to determine whether two medium types remain necessary and to investigate whether culture incubation length can be shortened. Specimens were cultured using Bactec MGIT liquid medium and Middlebrook 7H11/S7H11 solid medium with incubation periods of 42 and 60 days, respectively. Time-to-positivity and the identity of isolates recovered from each medium were evaluated. A total of 1,205/21,494 cultures (6%) were positive on at least one medium. Of the 1,353 isolates recovered, 1,110 (82%) were nontuberculous mycobacteria, 145 (11%) were aerobic actinomycetes, and 98 (7%) were Mycobacterium tuberculosis complex. Assessing medium types, 1,121 isolates were recovered from solid medium cultures, 922 isolates were recovered from liquid medium cultures, and 690 isolates were recovered on both media. Liquid cultures were positive an average of 10 days before solid cultures when the two medium types were positive (P < 0.0001). Isolates detected on solid medium after 6 weeks of incubation included 65 (5%) nontuberculous mycobacteria, 4 (0.3%) aerobic actinomycetes, and 2 (0.2%) isolates from the M. tuberculosis complex. Medical chart review suggested that most of these later-growing isolates were insignificant, as the diagnosis was already known, or they were considered colonizers/contaminants. This study reaffirms the need for both liquid medium and solid medium for mycobacterial and aerobic actinomycetes culture and demonstrates that solid medium incubation times may be reduced to 6 weeks without significantly impacting sensitivity.  相似文献   

20.
When infected with Mycobacterium tuberculosis, most individuals will remain clinically healthy but latently infected. Latent infection has been proposed to partially involve M. tuberculosis in a nonreplicating stage, which therefore represents an M. tuberculosis phenotype that the immune system most likely will encounter during latency. It is therefore relevant to examine how this particular nonreplicating form of M. tuberculosis interacts with the host immune system. To study this, we first induced a state of nonreplication through prolonged nutrient starvation of M. tuberculosis in vitro. This resulted in nonreplicating persistence even after prolonged culture in phosphate-buffered saline. Infection with either exponentially growing M. tuberculosis or nutrient-starved M. tuberculosis resulted in similar lung CFU levels in the first phase of the infection. However, between week 3 and 6 postinfection, there was a very pronounced increase in bacterial levels and associated lung pathology in nutrient-starved-M. tuberculosis-infected mice. This was associated with a shift from CD4 T cells that coexpressed gamma interferon (IFN-γ) and tumor necrosis factor alpha (TNF-α) or IFN-γ, TNF-α, and interleukin-2 to T cells that only expressed IFN-γ. Thus, nonreplicating M. tuberculosis induced through nutrient starvation promotes a bacterial form that is genetically identical to exponentially growing M. tuberculosis yet characterized by a differential impact on the immune system that may be involved in undermining host antimycobacterial immunity and facilitate increased pathology and transmission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号