首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A bio-anatomical quality assurance (QA) method employing tumor control probability (TCP) and normal tissue complication probability (NTCP) is described that can integrate radiobiological effects into intensity-modulated radiation therapy (IMRT). We evaluated the variations in the radiobiological effects caused by random errors (r-errors) and systematic errors (s-errors) by evaluating TCP and NTCP in two groups: patients with an intact prostate (Gintact) and those who have undergone prostatectomy (Gtectomy). The r-errors were generated using an isocenter shift of ±1 mm to simulate a misaligned patient set-up. The s-errors were generated using individual leaves that were displaced inwardly and outwardly by 1 mm on multileaf collimator field files. Subvolume-based TCP and NTCP were visualized on computed tomography (CT) images to determine the radiobiological effects on the principal structures. The bio-anatomical QA using the TCP and NTCP maps differentiated the critical radiobiological effects on specific volumes, particularly at the anterior rectal walls and planning target volumes. The s-errors showed a TCP variation of –40–25% in Gtectomy and –30–10% in Gintact, while the r-errors were less than 1.5% in both groups. The r-errors for the rectum and bladder showed higher NTCP variations at ±20% and ±10%, respectively, and the s-errors were greater than ±65% for both. This bio-anatomical method, as a patient-specific IMRT QA, can provide distinct indications of clinically significant radiobiological effects beyond the minimization of probable physical dose errors in phantoms.  相似文献   

2.
The influence of deviations in dwell times and source positions for 192Ir HDR-RALS was investigated. The potential dose errors for various kinds of brachytherapy procedures were evaluated. The deviations of dwell time ΔT of a 192Ir HDR source for the various dwell times were measured with a well-type ionization chamber. The deviations of source position ΔP were measured with two methods. One is to measure actual source position using a check ruler device. The other is to analyze peak distances from radiographic film irradiated with 20 mm gap between the dwell positions. The composite dose errors were calculated using Gaussian distribution with ΔT and ΔP as 1σ of the measurements. Dose errors depend on dwell time and distance from the point of interest to the dwell position. To evaluate the dose error in clinical practice, dwell times and point of interest distances were obtained from actual treatment plans involving cylinder, tandem-ovoid, tandem-ovoid with interstitial needles, multiple interstitial needles, and surface-mold applicators. The ΔT and ΔP were 32 ms (maximum for various dwell times) and 0.12 mm (ruler), 0.11 mm (radiographic film). The multiple interstitial needles represent the highest dose error of 2%, while the others represent less than approximately 1%. Potential dose error due to dwell time and source position deviation can depend on kinds of brachytherapy techniques. In all cases, the multiple interstitial needles is most susceptible.  相似文献   

3.
For deep learning networks used to segment organs at risk (OARs) in head and neck (H&N) cancers, the class-imbalance problem between small volume OARs and whole computed tomography (CT) images results in delineation with serious false-positives on irrelevant slices and unnecessary time-consuming calculations. To alleviate this problem, a slice classification model-facilitated 3D encoder–decoder network was developed and validated. In the developed two-step segmentation model, a slice classification model was firstly utilized to classify CT slices into six categories in the craniocaudal direction. Then the target categories for different OARs were pushed to the different 3D encoder–decoder segmentation networks, respectively. All the patients were divided into training (n = 120), validation (n = 30) and testing (n = 20) datasets. The average accuracy of the slice classification model was 95.99%. The Dice similarity coefficient and 95% Hausdorff distance, respectively, for each OAR were as follows: right eye (0.88 ± 0.03 and 1.57 ± 0.92 mm), left eye (0.89 ± 0.03 and 1.35 ± 0.43 mm), right optic nerve (0.72 ± 0.09 and 1.79 ± 1.01 mm), left optic nerve (0.73 ± 0.09 and 1.60 ± 0.71 mm), brainstem (0.87 ± 0.04 and 2.28 ± 0.99 mm), right temporal lobe (0.81 ± 0.12 and 3.28 ± 2.27 mm), left temporal lobe (0.82 ± 0.09 and 3.73 ± 2.08 mm), right temporomandibular joint (0.70 ± 0.13 and 1.79 ± 0.79 mm), left temporomandibular joint (0.70 ± 0.16 and 1.98 ± 1.48 mm), mandible (0.89 ± 0.02 and 1.66 ± 0.51 mm), right parotid (0.77 ± 0.07 and 7.30 ± 4.19 mm) and left parotid (0.71 ± 0.12 and 8.41 ± 4.84 mm). The total segmentation time was 40.13 s. The 3D encoder–decoder network facilitated by the slice classification model demonstrated superior performance in accuracy and efficiency in segmenting OARs in H&N CT images. This may significantly reduce the workload for radiation oncologists.  相似文献   

4.
We have developed a computerized method for estimating patient setup errors in portal images based on localized pelvic templates for prostate cancer radiotherapy. The patient setup errors were estimated based on a template-matching technique that compared the portal image and a localized pelvic template image with a clinical target volume produced from a digitally reconstructed radiography (DRR) image of each patient. We evaluated the proposed method by calculating the residual error between the patient setup error obtained by the proposed method and the gold standard setup error determined by consensus between two radiation oncologists. Eleven training cases with prostate cancer were used for development of the proposed method, and then we applied the method to 10 test cases as a validation test. As a result, the residual errors in the anterior–posterior, superior–inferior and left–right directions were smaller than 2 mm for the validation test. The mean residual error was 2.65 ± 1.21 mm in the Euclidean distance for training cases, and 3.10 ± 1.49 mm for the validation test. There was no statistically significant difference in the residual error between the test for training cases and the validation test (P = 0.438). The proposed method appears to be robust for detecting patient setup error in the treatment of prostate cancer radiotherapy.  相似文献   

5.
This article analyzes the accuracy of needle track and dose of a 3-dimensional printing template (3DPT) in the treatment of thoracic tumor with radioactive I-125 seed implantation (RISI). A total of 28 patients were included. The technical process included: (i) preoperative CT positioning, (ii) preoperative planning design, (iii) 3DPT design and printing, (iv) 3DPT alignment, (v) puncture and seed implantation. The errors of needle position and dosimetric parameters were analyzed. A total of 318 needles were used. The mean errors in needle depth, needle insertion point, needle tip and needle angle were 0.52 ± 0.48 cm, 3.4 ± 1.7 mm, 4.4 ± 2.9 mm and 2.8 ± 1.7°, respectively. The differences between actual needle insertion angle and needle depth and those designed in the preoperative were statistically significant (p < 0.05). The mean values of all the errors of the chest wall cases were smaller than those of the lungs, and the differences were statistically significant (p < 0.05). There was no significant difference between the D90 calculated in the postoperative plan and those designed in the preoperative and intraoperative plans (p > 0.05). Some dosimetric parameters of preoperative plans such as V100, V200, CI and HI were not consistent with that of preoperative plans, and the difference was statistically significant (p < 0.05). However, there were no statistical difference in the dosimetric parameters between the postoperative plans and intraoperative plans (p > 0.05). We conclude that for thoracic tumors, even under the guidance of 3DPT, there will be errors. The plan should be optimized in real time during the operation.  相似文献   

6.
Treatment time with the CyberKnife frameless radiosurgery system is prolonged due to the motion of the robotic arm. We have developed a novel scanning irradiation method to reduce treatment time. We generated treatment plans mimicking eight-field intensity-modulated radiotherapy (IMRT) plans generated for the Novalis radiosurgery system. 2D dose planes were generated with multiple static beam spots collimated by a fixed circular cone. The weights of the uniformly distributed beam spots in each dose plane were optimized using the attraction–repulsion model. The beam spots were converted to the scanning speed to generate the raster scanning plan. To shorten treatment time, we also developed a hybrid scanning method which combines static beams with larger cone sizes and the raster scanning method. Differences between the Novalis and the scanning plan’s dose planes were evaluated with the criterion of a 5% dose difference. The mean passing rates of three cases were > 85% for cone sizes ≤ 12.5 mm. Although the total monitor units (MU) increased for smaller cone sizes in an inverse-square manner, the hybrid scanning method greatly reduced the total MU, while maintaining dose distributions comparable to those with the Novalis plan. The estimated treatment time of the hybrid scanning with a 12.5 mm cone size was on average 22% shorter than that of the sequential plans. This technique will be useful in allowing the CyberKnife with conventional circular cones to achieve excellent dose distribution with a shortened treatment time.  相似文献   

7.
The immobilization of patients with a bite block (BB) carries the risk of interpersonal infection, particularly in the context of pandemics such as COVID-19. Here, we compared the intra-fractional patient setup error (intra-SE) with and without a BB during fractionated intracranial stereotactic irradiation (STI). Fifteen patients with brain metastases were immobilized using a BB without a medical mask, while 15 patients were immobilized without using a BB and with a medical mask. The intra-SEs in six directions (anterior–posterior (AP), superior–inferior (SI), left–right (LR), pitch, roll, and yaw) were calculated by using cone-beam computed tomography images acquired before and after the treatments. We analyzed a total of 53 and 67 treatment sessions for the with- and without-BB groups, respectively. A comparable absolute mean translational and rotational intra-SE was observed (P > 0.05) in the AP (0.19 vs 0.23 mm with- and without-BB, respectively), SI (0.30 vs 0.29 mm), LR (0.20 vs 0.29 mm), pitch (0.18 vs 0.27°), roll (0.23 vs 0.23°) and yaw (0.27 vs 22°) directions. The resultant planning target volume (PTV) margin to compensate for intra-SE was <1 mm. No statistically significant correlation was observed between the intra-SE and treatment times. A PTV margin of <1 mm was achieved even when patients were immobilized without a BB during STI dose delivery.  相似文献   

8.
The dosimetric effect of set-up error in boron neutron capture therapy (BNCT) for head and neck cancer remains unclear. In this study, we analyzed the tendency of dose error by treatment location when simulating the set-up error of patients. We also determined the tolerance level of the set-up error in BNCT for head and neck cancer. As a method, the distal direction was shifted with an interval of 2.5 mm, from 0.0 mm to +20.0 mm and compared with the dose at the reference position. Similarly, the horizontal direction and vertical direction were shifted, with an interval of 5.0 mm, from −20.0 mm to +20.0 mm. In addition, cases with 3.0 mm and 5.0 mm simultaneous shifts in all directions were analyzed as the worst-case scenario. The dose metrics of the minimum dose of the tumor and the maximum dose of the mucosa were evaluated. From unidirectional set-up error analysis, in most cases, the set-up errors with dose errors within ±5% were Δdistal < +2.5 mm, Δhorizontal < ±5.0 mm and Δvertical < ±5.0 mm. In the simulation of 3.0 mm shifts in all directions, the errors in the minimum tumor dose and maximum mucosal dose were −3.6% ±1.4% (range, −5.4% to −0.6%) and 2% ±1.4% (range, 0.4% to 4.5%), respectively. From these results, if the set-up error was within ±3.0 mm in each direction, the dose errors of the tumor and mucosa could be suppressed within approximately ±5%, which is suggested as a tolerance level.  相似文献   

9.
Since there are no corresponding specification limits for some new daily quality assurance (QA) items in the TG-142, it is a compromise that the specification limits used in the monthly or annual QA procedures are used for the daily QA procedure in work. But there is no basis for whether this is feasible. The purpose of this article is to analyze QA results using SPC to determine the tolerance limits at our institution, and to present the usefulness of the analysis method using SPC. The data of three groups daily QA processes performed with Daily QA3 in three years were analyzed using statistical process control (SPC). For calculating capability indices (Cp, Cpk, Cpm and Cpmk) of processes, the appropriate number of calculation points was analyzed firstly. Then, in calculating the capability indices for output, limits ±3% of the daily QA in the TG-142 were used as the specification limit, while for flatness and symmetry, an annual QA limits of ±1% was used. For putting forward measures to solve the problem, customized tolerance and action limits were established for each process. And the process control charts calculated using data measured by the five therapists and a medical physicist were compared. At least six to eight weeks of control daily check data points (i.e. 30–40 points) should be used for calculating the individuals and moving range (I-MR) control chart to ensure the stability of control lines. Process capability indices of output were all ≥1, some were up to 3–4. While for symmetry, some processes failed to meet the requirements that capability indices were < 1. For different processes of the same daily QA items, the calculated customized limits were quite different. The range of upper control line (UCL) and lower control line (LCL) was smaller for output and the CL was closer to the target value of 0 for flatness and symmetry in the I-MR control chart calculated using data measured by one staff. For different quality control processes without management by the SPC method at our institution, calculated tolerance and action limits of the same measurement item were quite different. And in most measurement items, the specification limits used in the monthly or annual QA procedures in the TG-142 are not suitable to the daily QA procedure. So the analysis method using SPC is useful and necessary.  相似文献   

10.
This study used cine-magnetic resonance imaging (cine-MRI) to evaluate the safety and efficacy of a novel airbag system combined with a shell-type body fixation system in reducing respiratory motion in normal volunteers. The airbag system consists of a six-sided polygon inflatable airbag, a same shape plate, a stiff air supply tube, an air-supply pump and a digital pressure load cell monitor. Piezoelectric sensors were installed in the plate to detect compression pressure load changes; pressure load data were transferred to the digital pressure load cell monitor through Bluetooth. Five volunteers underwent cine-MRI with and without airbag compression to detect differences in the respiratory motion of the organs. The volunteers’ physiologic signs were stable during the experiment. The maximum inspiration pressure load was 4.48 ± 0.86 kgf (range, 4.00–6.00 kgf), while the minimum expiration pressure load was 3.69 ± 0.95 kgf (range, 2.8–5.3 kgf). Under airbag compression, the right diaphragm movement was reduced from 19.50 ± 6.43 mm to 9.60 ± 3.61 mm (P < 0.05) in the coronal plane and 23.12 ± 6.30 mm to 11.00 ± 3.69 mm (P < 0.05) in the sagittal plane. The left diaphragm, pancreas and liver in the coronal plane and the right kidney and liver in the sagittal plane also showed significant movement reduction. This novel airbag abdominal compression system was found to be safe during the experiment and successful in the reduction of internal organ respiratory motion and promises to be a convenient and efficient tool for clinical radiotherapy.  相似文献   

11.
Breastmilk is the optimal food for infants. Feeding pattern is closely related to physical development and health during infancy. Understanding the associations between feeding patterns and health status can inform related policy interventions and advocacy in China. This study aimed to investigate the relationship between infant feeding patterns and health status in China infants. The China National Nutrition and Health Surveillance 2013 was a national-representative cross-sectional study performed particularly for children aged 0–5 years. A total of 3974 infants aged under 1 year were included in the analysis, of whom 1082 (27.2%) made up the formula feeding group, and 2892 (72.8%) made up the breastfeeding group. The associations between feeding patterns and physical development and health were investigated using propensity score matching and multivariable logistic regression models. Among breastfeeding and formula feeding infants aged 9–11 months old, weight-for-age z score was 1.1 ± 1.1 and 0.9 ± 1.3, respectively, and weight-for-length z score was 1.0 ± 1.3 and 0.7 ± 1.4, respectively. Hemoglobin in 0–2, 3–5, 6–8, and 9–11 months old breastfeeding infants was 121.4 ± 15.2 g/L, 117.1 ± 13.0 g/L, 113. 9 ± 11.9 g/L, and 114.4 ± 14.0 g/L, while in 0–2, 3–5, 6–8, and 9–11 months formula feeding infants was 116.3 ± 14.8 g/L, 120.4 ± 11.3 g/L, 119.8 ± 11.2 g/L, and 120.0 ± 11.5 g/L, respectively. Breastfeeding was associated with lower risk of respiratory disease (OR: 0.79; 95% CI: 0.64, 0.99) and diarrhea (OR: 0.75; 95% CI: 0.57, 0.98). Breastfeeding could slightly improve infant physical development, and had a protective effect on the diarrheal and respiratory diseases. Infants aged 3–11 months who were breastfeeding showed lower hemoglobin than that of formula-fed infants and thus should increase intake of iron rich complementary foods.  相似文献   

12.
The purpose of the present field study was to explore diving patterns and heart rate of elderly Korean women divers (haenyeo) while breath-hold diving in cold seawater. We hypothesized that the decreasing rate in heart rate of elderly haenyeos during breath-hold diving was greater and total diving time was shorter than those of young haenyeos from previous studies. Nine haenyeos participated in a field study [68 ± 10 yr in age, ranged from 56 to 83 yr] at a seawater temperature of 10 to 13 °C. Average total diving time including surface swimming time between dives was 253 ± 73 min (155–341 min). Total frequency of dives was 97 ± 28 times and they dived 23 ± 8 times per hour. All haenyeos showed diving bradycardia with a decreased rate of 20 ± 8% at the bottom time (101 ± 20 bpm) when compared to surface swimming time (125 ± 16 bpm) in the sea. Older haenyeos among the nine elderly haenyeos had shorter diving time, less diving frequencies, and lower heart rate at work (p<0.05). These reductions imply that haenyeos voluntarily adjust their workload along with advancing age and diminished cardiovascular functions.  相似文献   

13.
To overcome cranio-caudal needle displacement in pelvic high-dose-rate interstitial brachytherapy (HDRIB), we have been utilizing a fullystretched elastic tape to thrust the template into the perineum. The purpose of the current study was to evaluate dosimetric changes during the treatment period using this thrusting method, and to explore reproducible planning methods based on the results of the dosimetric changes. Twenty-nine patients with gynecologic malignancies were treated with HDRIB at the Cancer Institute Hospital. Pre-treatment and post-treatment computed tomography (CT) scans were acquired and a virtual plan for post-treatment CT was produced by applying the dwell positions/times of the original plan. For the post-treatment plan, D90 for the clinical target volume (CTV) and D2cc for the rectum and bladder were assessed and compared with that for the original plan. Cranio-caudal needle displacement relative to CTV during treatment period was only 0.7 ± 1.9 mm. The mean D90 values for the CTV in the pre- and post-treatment plans were stable (6.8 Gy vs. 6.8 Gy) and the post-treatment/pre-treatment D90 ratio was 1.00 ± 0.08. The post-/pre-treatment D2cc ratio was 1.14 ± 0.22 and the mean D2cc for the rectum increased for the post-treatment plan (5.4 Gy vs. 6.1 Gy), especially when parametrial infiltration was present. The mean D2cc for the bladder was stable (6.3 Gy vs. 6.6 Gy) and the ratio was 1.06 ± 0.20. Our thrusting method achieved a stable D90 for the CTV, in contrast to previous prostate HDRIB reports displaying reductions of 35–40% for D90 during the treatment period.  相似文献   

14.
We aimed to predict the minimum distance between a tumor and the gastrointestinal (GI) tract that can satisfy the dose constraint by creating simulation plans with carbon-ion (C-ion) radiotherapy (RT) and photon RT for each case assuming insertion of virtual spacers of various thicknesses. We enrolled 55 patients with a pelvic tumor adjacent to the GI tract. Virtual spacers were defined as the overlap volume between the GI tract and the volume expanded 7–17 mm from the gross tumor volume (GTV). Simulation plans (70 Gy in 35 fractions for at least 95% of the planning target volume [PTV]) were created with the lowest possible dose to the GI tract under conditions that meet the dose constraints of the PTV. We defined the minimum thickness of virtual spacers meeting D2 cc of the GI tract <50 Gy as ‘MTS’. Multiple regression was used with explanatory variables to develop a model to predict MTS. We discovered that MTSs were at most 9 mm and 13 mm for C-ion RT and photon RT plans, respectively. The volume of overlap between the GI tract and a virtual spacer of 14 mm in thickness (OV14)-PTV was found to be the most important explanatory variable in the MTS prediction equation for both C-ion and photon RT plans. Multiple R2 values for the regression model were 0.571 and 0.347 for C-ion RT and photon RT plans, respectively. In conclusion, regression equations were developed to predict MTS in C-ion RT and photon RT.  相似文献   

15.
We aimed to analyse late toxicity associated with external beam radiation therapy (EBRT) for prostate cancer using uniform dose-fractionation and beam arrangement, with the focus on the effect of 3D (CT) simulation and portal field size. We collected data concerning patients with localized prostate adenocarcinoma who had been treated with EBRT at five institutions in Osaka, Japan, between 1998 and 2006. All had been treated with 70 Gy in 35 fractions, using the classical 4-field technique with gantry angles of 0°, 90°, 180° and 270°. Late toxicity was evaluated strictly in terms of the Common Terminology Criteria for Adverse Events Version 4.0. In total, 362 patients were analysed, with a median follow-up of 4.5 years (range 1.0–11.6). The 5-year overall and cause-specific survival rates were 93% and 96%, respectively. The mean ± SD portal field size in the right–left, superior–inferior, and anterior–posterior directions was, respectively, 10.8 ± 1.1, 10.2 ± 1.0 and 8.8 ± 0.9 cm for 2D simulation, and 8.4 ± 1.2, 8.2 ± 1.0 and 7.7 ± 1.0 cm for 3D simulation (P < 0.001). No Grade 4 or 5 late toxicity was observed. The actuarial 5-year Grade 2–3 genitourinary and gastrointestinal (GI) late toxicity rates were 6% and 14%, respectively, while the corresponding late rectal bleeding rate was 23% for 2D simulation and 7% for 3D simulation (P < 0.001). With a uniform setting of classical 4-field 70 Gy/35 fractions, the use of CT simulation and the resultant reduction in portal field size were significantly associated with reduced late GI toxicity, especially with less rectal bleeding.  相似文献   

16.

Objective

To explore the relationship between weather phenomena and pollution levels and daily hospital admissions (as an approximation to morbidity patterns) in Hong Kong Special Administrative Region (SAR), China, in 1998–2009.

Methods

Generalized additive models and lag models were constructed with data from official sources on hospital admissions and on mean daily temperature, mean daily wind speed, mean relative humidity, daily total global solar radiation, total daily rainfall and daily pollution levels.

Findings

During the hot season, admissions increased by 4.5% for every increase of 1 °C above 29 °C; during the cold season, admissions increased by 1.4% for every decrease of 1 °C within the 8.2–26.9 °C range. In subgroup analyses, admissions for respiratory and infectious diseases increased during extreme heat and cold, but cardiovascular disease admissions increased only during cold temperatures. For every increase of 1 °C above 29 °C, admissions for unintentional injuries increased by 1.9%. During the cold season, for every decrease of 1 °C within the 8.2–26.9 °C range, admissions for cardiovascular diseases and intentional injuries rose by 2.1% and 2.4%, respectively. Admission patterns were not sensitive to sex. Admissions for respiratory diseases rose during hot and cold temperatures among children but only during cold temperatures among the elderly. In people aged 75 years or older, admissions for infectious diseases rose during both temperature extremes.

Conclusion

In Hong Kong SAR, hospitalizations rise during extreme temperatures. Public health interventions should be developed to protect children, the elderly and other vulnerable groups from excessive heat and cold.  相似文献   

17.
ObjectiveElevated arm work is prevalent in many jobs. Feasible device-based methods are available to measure elevated arm work. However, we lack knowledge on the association between device-measured elevated arm work and prospective risk of long-term sickness absence (LTSA). We aimed to investigate this association.MethodsAt baseline, 937 workers wore accelerometers on the right arm and thigh over 1–5 workdays to measure work time spent with elevated arms in an upright position. Between baseline and 4-year prospective follow-up in the national registers, we obtained information on the individuals’ first event of LTSA (≥6 consecutive weeks). We performed compositional Cox proportional hazard analyses to model the association between work time with arm elevation >30°, >60°, or >90° and the probability of LTSA.ResultsWorkers spent 21% of their work time with >30° arm elevation, 4% with >60° arm elevation, and 1% with >90° arm elevation; in the upright body position. We found a positive dose–response association between work time spent with elevated arm work and the risk of LTSA. Specifically, we found that increasing two minutes of work time spent with arm elevation at (i) >90° increased the risk of LTSA by 14% [hazard ratio (HR) 1.14, 95% confidence intervals (95% CI 1.04–1.25)] (ii) >60° increased the LTSA risk by 3% (HR 1.03, 95% CI 1.03–1.06), and (iii) >30° increased the LTSA risk by 1% (HR 1.01, 95% CI 1.00–1.02).ConclusionDevice-measured elevated arm work is associated with increased prospective LTSA. This information ought to be brought into preventive workplace practice by accessible and feasible device-based methods of elevated arm work.  相似文献   

18.
In December 2019, 27 cases of pneumonia were reported in Wuhan. In 2020, the causative agent was identified as a virus called SARS-CoV-2. The disease was called “coronavirus disease 2019” (COVID-19) and was determined as a Public Health Emergency. The main measures taken to cope with this included a state of lockdown. The aim of this study was to assess how the unhealthy lifestyles that ensued influenced different parameters. A prospective study was carried out on 6236 workers in a Spanish population between March 2019 and March 2021. Anthropometric, clinical, and analytical measurements were performed, revealing differences in the mean values of anthropometric and clinical parameters before and after lockdown due to the pandemic, namely increased body weight (41.1 ± 9.9–43.1 ± 9.9), BMI (25.1 ± 4.7–25.9 ± 4.7), and percentage of body fat (24.5 ± 9.1–26.9 ± 8.8); higher total cholesterol levels, with a statistically significant increase in LDL levels and a reduction in HDL; and worse glucose levels (90.5 ± 16.4–95.4 ± 15.8). Lockdown can be concluded to have had a negative effect on health parameters in both sexes in all age ranges, causing a worsening of cardiovascular risk factors.  相似文献   

19.

Background:

Exposure to polycyclic aromatic hydrocarbons (PAHs) has been linked to bladder cancer.

Objective:

To evaluate the role of PAHs in bladder cancer, PAHs serum levels were measured in patients and controls from a case-control study.

Methods:

A total of 140 bladder cancer patients and 206 healthy controls were included in the study. Sixteen PAHs were analyzed from the serum of subjects by gas chromatography–mass spectrometry.

Results:

Serum PAHs did not appear to be related to bladder cancer risk, although the profile of contamination by PAHs was different between patients and controls: pyrene (Pyr) was solely detected in controls and chrysene (Chry) was exclusively detected in the cases. Phenanthrene (Phe) serum levels were inversely associated with bladder cancer (OR = 0·79, 95%CI = 0·64–0·99, P = 0·030), although this effect disappeared when the allelic distribution of glutathione-S-transferase polymorphisms of the population was introduced into the model (multinomial logistic regression test, P = 0·933). Smoking (OR = 3·62, 95%CI = 1·93–6·79, P<0·0001) and coffee consumption (OR = 1·73, 95%CI = 1·04–2·86, P = 0·033) were relevant risk factors for bladder cancer.

Conclusions:

Specific PAH mixtures may play a relevant role in bladder cancer, although such effect seems to be highly modulated by polymorphisms in genes encoding xenobiotic-metabolizing enzymes.  相似文献   

20.
Haemorrhagic fever with renal syndrome (HFRS) is transmitted to humans mainly by rodents and this transmission could be easily influenced by meteorological factors. Given the long-term changes in climate associated with global climate change, it is important to better identify the effects of meteorological factors of HFRS in epidemic areas. Shandong province is one of the most seriously suffered provinces of HFRS in China. Daily HFRS data and meteorological data from 2007 to 2012 in Shandong province were applied. Quasi-Poisson regression with the distributed lag non-linear model was used to estimate the influences of mean temperature and Diurnal temperature range (DTR) on HFRS by sex, adjusting for the effects of relative humidity, precipitation, day-of-the-week, long-term trends and seasonality. A total of 6707 HFRS cases were reported in our study. The two peaks of HFRS were from March to June and from October to December, particularly, the latter peak in 2012. The estimated effects of mean temperature and DTR on HFRS were non-linear. The immediate and strong effect of low temperature and high DTR on HFRS was found. The lowest temperature −8.86°C at lag 0 days indicated the largest related relative risk (RRs) with the reference (14.85 °C), respectively, 1.46 (95% CI 1.11–1.90) for total cases, 1.33 (95% CI 1.00–1.78) for the males and 1.76 (95% CI 1.12–2.79) for the females. Highest DTR was associated with a higher risk on HFRS, the largest RRs (95% CI) were obtained when DTR = 15.97 °C with a reference at 8.62 °C, with 1.26 (0.96–1.64) for total cases and 1.52 (0.97–2.38) for the female at lag 0 days, 1.22 (1.05–1.41) for the male at lag 5 days. Non-linear lag effects of mean temperature and DTR on HFRS were identified and there were slight differences for different sexes.Key words: Daily mean temperature, distributed lag non-linear model, diurnal temperature range, haemorrhagic fever with renal syndrome  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号