首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In multi-joint reaching movements, the motor system may choose any one of an infinite set of possible joint rotations to move the hand between given start and target positions. In order to find out whether reaching movements are represented in Cartesian hand coordinates or in joint coordinates, it is necessary to measure whether hand paths or joint paths have lower variability. We have measured hand paths and rotations of shoulder, elbow and wrist joints simultaneously in five subjects reaching in four orientations in the horizontal plane. As in earlier studies, we found a preference for nearly straight hand paths, despite different patterns of joint rotation for different orientations of movement. However, movements in three of four orientations showed a single principal joint, which rotated essentially without reversals. This may reflect optimisation in the motor system, preferring the simplest pattern of joint control for a desired hand path. We used generalised Procrustes analysis to quantify the variability in shape of repeated paths in hand space and joint space. Results showed that hand paths were less variable than the joint angles used to realise them, due to the kinematic redundancy of the limb, suggesting that hand paths, rather than joint angles, are directly represented by the motor system. Nevertheless, movements with straighter hand paths, on average, and those requiring coordinated activity at both shoulder and elbow joints also showed more variability in the shape of the hand path. Other orientations such as movement across the body use primarily a single joint and are less variable at the cost of a slightly curved path. These results suggest that coordinating multiple joints to produce a straight hand path has a definite computational cost. The motor system may perform a trade-off between the benefits of planning reaching movements as straight hand paths and the computational simplicity of executing them using patterns of joint rotation which simplify multi-joint coordination.  相似文献   

2.
The present study identifies the mechanics of planar reaching movements performed by monkeys (Macaca mulatta) wearing a robotic exoskeleton. This device maintained the limb in the horizontal plane such that hand motion was generated only by flexor and extensor motions at the shoulder and elbow. The study describes the kinematic and kinetic features of the shoulder, elbow, and hand during reaching movements from a central target to peripheral targets located on the circumference of a circle: the center-out task. While subjects made reaching movements with relatively straight smooth hand paths and little variation in peak hand velocity, there were large variations in joint motion, torque, and power for movements in different spatial directions. Unlike single-joint movements, joint kinematics and kinetics were not tightly coupled for these multijoint movements. For most movements, power generation was predominantly generated at only one of the two joints. The present analysis illustrates the complexities inherent in multijoint movements and forms the basis for understanding strategies used by the motor system to control reaching movements and for interpreting the response of neurons in different brain regions during this task.  相似文献   

3.
 Significant debate exists regarding the neural strategies underlying the positioning and orienting of the hand during voluntary reaching movements of the human upper extremity. Some authors have suggested that positioning and orienting are controlled independently, while others have argued that a strong interdependence exists. In an effort to address this uncertainty, our study employed computer simulations to examine the impact of physiological limitations of joint rotation on the proposed independence of hand position and orientation. Specifically, we analyzed the effects of geometric constraints on final arm postures using a 7 degree-of-freedom model of the human arm. For 20 different hand configurations within the attainable workspace, we computed sets of achievable joint angles by applying inverse kinematics. From each set, we then calculated the locus of possible elbow positions for the particular final hand posture. When the joints were allowed 360° of rotation, the loci formed complete circles; however, when joint ranges were limited to physiological values, the extent of the loci decreased to an average arc angle of 54.6° (±27.9°). Imposition of joint limits also led to practically linear relationships between joint angles within a solution set. These theoretical results suggest a requirement for coordinated interaction between control of the joints associated with hand position and those involved with hand orientation in order to ensure attainable joint trajectories. Furthermore, it is conceivable that some of the correlations observed between joint angles in the course of natural reaching movements result from geometric constraints. Received: 7 December 1998 / Accepted: 14 January 1999  相似文献   

4.
Although important differences exist between learning a new motor skill and adapting a well-learned skill to new environmental constraints, studies of force field adaptation have been used frequently in recent years to identify processes underlying learning. Most of these studies have been of reaching tasks that were each hand position was specified by a unique combination of joint angles. At the same time, evidence has been provided from a variety of tasks that the central nervous system takes advantage of the redundancy available to it when planning and executing functional movements. The current study attempted to determine whether a change in the use of joint motion redundancy is associated with the adaptation process. Both experimental and control subjects performed 160 trials of reaching in each of four adaptation phases, while holding the handle of a robot manipulandum. During the first and last adaptation phases, the robot motors were turned off. During phases 2 and 3 the motors produced a velocity-dependent force field to which experimental subjects had to adapt to regain relatively straight line hand movements during reaching to a target, while the motors remained off for the control group. The uncontrolled manifold (UCM) method was used to partition the variance of planar clavicle–scapular, shoulder, elbow and wrist joint movements into two orthogonal components, one (V UCM) that reflected combinations of joint angles that were equivalent with respect to achieving the average hand path and another (V ORT) that took the hand away from its average path. There was no change in either variance component for the control group performing 640 non-perturbed reaches across four ‘pseudo-adaptation’ phases. The experimental group showed adaptation to reaching in the force field that was accompanied initially by an increase in both components of variance, followed by a smaller decrease of V UCM than V ORT during 320 practice reaches in the force field. After initial re-adaptation to reaching to the null field, V UCM was higher in experimental than in control subjects after performing a comparable number of reaches. V UCM was also larger in the experimental group after re-adaptation when compared to the 160 null field reaching trials performed prior to initial force field introduction. The results suggest that the central nervous system makes use of kinematic redundancy, or flexibility of motor patterns, to adapt reaching performance to unusual force fields, a fact that has implications for the hypothesis that motor adaptation requires learning of formal models of limb and environmental dynamics.  相似文献   

5.
 This study examines whether the kinematics of pointing movements are altered by the sensory systems used to select spatial targets and to guide movement. Hand and joint paths of visually guided reaching movements of human subjects were compared with two non-visual conditions where only proprioception was available: (1) movements of the same subjects with blindfolds, and (2) movements by congenitally blind subjects. While hand-path curvatures were overall quite small, sighted subjects wearing a blindfold showed a statistical increase in hand-path curvature compared with their visually guided movements. Blindfolded subjects also showed greater hand-path curvature than blind subjects. These increases in hand-path curvature for blindfolded subjects did not always lead to a decrease in joint-path curvature. While there were differences between blind subjects and sighted subjects using vision for some movement directions, there was no systematic difference between these two groups. The magnitude of joint-path curvature showed much greater variation than hand-path curvature across the movement directions. We found variation in joint-path curvature to be correlated to two factors, one spatial and one geometrical. For all subject groups, joint-path curvature tended to be smaller for sagittal-plane movements than for transverse or diagonal movements. As well, we found that the magnitude of joint-path curvature was also related to the relative motion at each joint. Joint-path curvature tended to increase when movements predominantly involved changes in shoulder angle and was minimal when movements predominantly involved elbow motion. The consistently small curvatures of hand trajectory across blind and sighted subjects emphasize the powerful tendency of the motor system to generate goal-directed reaching movements with relatively straight hand trajectories, even when deprived of visual feedback from very early in life. Received: 16 July 1997 / Accepted: 20 May 1998  相似文献   

6.
We recorded reaching movements from nine infants longitudinally from the onset of reaching (5th postnatal month) up to the age of 3 years. Here we analyze hand and proximal joint trajectories and examine the emerging temporal coordination between arm segments. The present investigation seeks (a) to determine when infants acquire consistent, adult-like patterns of multijoint coordination within that 3-year period, and (b) to relate their hand trajectory formation to underlying patterns of proximal joint motion (shoulder, elbow). Our results show: First, most kinematic parameters do not assume adult-like levels before the age of 2 years. At this time, 75% of the trials reveal a single peaked velocity profile of the hand. Between the 2nd and 3rd year of life, “improvements” of hand- or joint-related movement units are only marginal. Second, infant motor systems strive to obtain velocity patterns with as few force reversals as possible (uni- or bimodal) at all three limb segments. Third, the formation of a consistent interjoint synergy between shoulder and elbow motion is not achieved within the 1st year of life. Stable patterns of temporal coordination across arm segments begin to emerge at 12–15 months of age and continue to develop up to the 3rd year. In summary, the development toward adult forms of multijoint coordination in goal-directed reaching requires more time than previously assumed. Although infants reliably grasp for objects within their workspace 3–4 months after the onset of reaching, stereotypic kinematic motor patterns are not expressed before the 2nd year of life. Received: 10 April 1996 / Accepted: 28 May 1997  相似文献   

7.
Previous studies addressing the problem of the control of multiple degrees of freedom have examined the influence of trunk movement on pointing movements within the arm's reach. Such movements may be controlled by two functionally independent units of coordination (synergies): one involving only arm joints and producing the hand trajectory to the target (the transport synergy), and the other coordinating trunk and arm movements leaving the hand trajectory unchanged (the compensatory synergy). The question of whether or not this functional subdivision depends on visual feedback was addressed in the present study. We also tested whether or not the motor effects of different synergies are summated as independent components, a control strategy called "superposition." Finally, we investigated whether or not the relationship between different degrees of freedom within each synergy could be considered linear resulting in proportional changes in different joint angles. Seated subjects produced fast, uncorrected arm movements to an ipsi- or a contralateral target in the direction of +/-45 degrees to the sagittal midline of the trunk. Targets could be reached using the arm alone (control trials) or by combining the arm motion with a forward or backward trunk motion produced by hip flexion or extension (test trials), with and without visual feedback. The shape of the hand trajectory, its direction and tangential velocity, movement precision, joint angles and the sequence of the trunk and hand recruitment and de-recruitment were measured. In both visual conditions, the direction of the hand trajectory observed in control trials was generally preserved in test trials. In terms of sequencing, even in the absence of vision, the trunk movement was initiated before the onset of and outlasted the hand shift, indicating that the potential influence of the trunk on the hand movement was compensated by rotations in the elbow and shoulder joint. The analysis of other variables also implied that the effects of trunk recruitment on the hand trajectory were minor compared to those which could be observed if these effects were not compensated by appropriate changes in the arm joint angles. It was concluded that an arm-trunk compensatory synergy is present in pointing movements regardless of visual feedback. Principal component analysis showed that the relationship between elbow, shoulder and hip joint angles in individual arm and combined arm-trunk movements cannot be considered linear, implying that this relationship is adjusted according to the changing arm geometry. The changes in each arm joint angle (elbow, shoulder) elicited by a forward trunk bending in one block of trials were compared with those elicited by a backward bending in another block, whereas the hand moved to the same target in both blocks. These changes were opposite but of similar magnitude. As a result, for each moment of movement, the mean joint angle obtained by averaging across two directions of trunk motion was practically identical to that in control trials in which the trunk was motionless. It is concluded that the transport and arm-trunk compensatory synergies are combined as independent units, according to the principle of superposition. This principle may simplify the control of the coordination of a redundant number of degrees of freedom.  相似文献   

8.
It is unclear to what extent control strategies of 2D reaching movements of the upper limbs also apply to movements with the full seven degrees of freedom (DoFs) including rotation of the forearm. An increase in DoFs may result in increased movement complexity and instability. This study investigates the trajectories of unconstrained reaching movements and their stability against perturbations of the upper arm. Reaching movements were measured using an ultrasound marker system, and the method of inverse dynamics was applied to compute the time courses of joint torques. In full DoF reaching movements, the velocity of some joint angles showed multiple peaks, while the bell-shaped profile of the tangential hand velocity was preserved. This result supports previous evidence that tangential hand velocity is an essential part of the movement plan. Further, torque responses elicited by external perturbation started shortly after perturbation, almost simultaneously with the perturbation-induced displacement of the arm, and were mainly observed in the same joint angles as the perturbation torques, with similar shapes but opposite signs. These results indicate that these torque responses were compensatory and contributed to system stabilization.  相似文献   

9.
Kinematic abnormalities of fast multijoint movements in cerebellar ataxia include abnormally increased curvature of hand trajectories and an increased hand path and are thought to originate from an impairment in generating appropriate levels of muscle torques to support normal coordination between shoulder and elbow joints. Such a mechanism predicts that kinematic abnormalities are pronounced when fast movements are performed and large muscular torques are required. Experimental evidence that systematically explores the effects of increasing movement velocities on movement kinematics in cerebellar multijoint movements is limited and to some extent contradictory. We, therefore, investigated angular and hand kinematics of natural multijoint pointing movements in patients with cerebellar degenerative disorders and healthy controls. Subjects performed self-paced vertical pointing movements with their right arms at three different target velocities. Limb movements were recorded in three-dimensional space using a two-camera infrared tracking system. Differences between patients and healthy subjects were most prominent when the subjects performed fast movements. Peak hand acceleration and deceleration were similar to normals during slow and moderate velocity movements but were smaller for fast movements. While altering movement velocities had little or no effect on the length of the hand path and angular motion of elbow and shoulder joints in normal subjects, the patients exhibited overshooting motions (hypermetria) of the hand and at both joints as movement velocity increased. Hypermetria at one joint always accompanied hypermetria at the neighboring joint. Peak elbow angular deceleration was markedly delayed in patients compared with normals. Other temporal movement variables such as the relative timing of shoulder and elbow joint motion onsets were normal in patients. Kinematic abnormalities of multijoint arm movements in cerebellar ataxia include hypermetria at both the elbow and the shoulder joint and, as a consequence, irregular and enlarged paths of the hand, and they are marked with fast but not with slow movements. Our findings suggest that kinematic movement abnormalities that characterize cerebellar limb ataxia are related to an impairment in scaling movement variables such as joint acceleration and deceleration normally with movement speed. Most likely, increased hand paths and decomposition of movement during slow movements, as described earlier, result from compensatory mechanisms the patients may employ if maximum movement accuracy is required.  相似文献   

10.
The purpose was to investigate if shoulder muscle strength in post-rehabilitated persons with spinal cord injury (SCI) was affected by kayak ergometer training and to compare shoulder strength in persons with SCI and able-bodied persons. Ten persons with SCI (7 males and 3 females, injury levels T3–T12) performed 60 min kayak ergometer training three times a week for 10 weeks with progressively increased intensity. Maximal voluntary concentric contractions were performed during six shoulder movements: flexion and extension (range of motion 65°), abduction and adduction (65°), and external and internal rotation (60°), with an angular velocity of 30° s−1. Position specific strength was assessed at three shoulder angles (at the beginning, middle and end of the range of motion) in the respective movements. Test–retests were performed for all measurements before the training and the mean intraclass correlation coefficient was 0.941 (95% CI 0.928–0.954). There was a main effect of kayak ergometer training with increased shoulder muscle strength after training in persons with SCI. The improvements were independent of shoulder movement, and occurred in the beginning and middle positions. A tendency towards lower shoulder muscle strength was observed in the SCI group compared to a matched reference group of able-bodied persons. Thus, it appears that post-rehabilitated persons with SCI have not managed to fully regain/maintain their shoulder muscle strength on a similar level as that of able-bodied persons, and are able to improve their shoulder muscle strength after a period of kayak ergometer training.  相似文献   

11.
 This research examined the electromyographic (EMG) activity of shoulder and elbow muscles during reaching movements of the upper limb. Subjects performed goal-directed arm movements in the horizontal plane. Movements which varied in amplitude, speed, and direction were performed in different sections of the workspace. EMG activity was recorded from the pectoralis major, posterior deltoid, biceps brachii short head, brachioradialis, triceps brachii long head, and triceps brachii lateral head; motion recordings were obtained with an optoelectric system. The analysis focused on the magnitude and timing of opposing muscle groups at the shoulder and elbow joints. For hand movements within any given direction of the workspace direction, kinematic manipulations changed agonist and antagonist EMG magnitude and intermuscle timing in a manner consistent with previous single-joint findings. To produce reaching movements in different directions and areas of the workspace, shoulder and elbow agonist EMG magnitude increased for those hand motions which required higher angular velocities, while the timing between opposing muscle groups at each joint was invariant. Received: 11 January 1996 / Accepted: 24 February 1997  相似文献   

12.
Age-related differences in postural control in response to a relatively large deceleration resulting from postural disturbance were investigated in eight normal elderly men (age range 67–72 years) and eight young men as controls (age range 19–22 years) using a moving platform. Data were obtained for the hip, knee and ankle angles, position of the centre of foot pressure (CFP), head acceleration, and muscle activity of the leg muscles. The elderly subjects had slower and larger ankle and hip joint movements, and CFP displacement in response to the disturbance compared to the young controls. The elderly subjects also had a delayed occurrence, and greater magnitude of peak acceleration of head rotation than did the young subjects. For the elderly subjects, the CFP was closely related to angular changes in the hip joint movement, but not to those of the ankle and knee joint movements. For the young subjects, on the other hand, the CFP was significantly correlated with angular change in the ankle joint. Co-contraction of the tibialis anterior and gastrocnemius muscles was observed in the elderly subjects. The results indicated that a movement pattern for postural correction in the elderly adults was different from that of the young adults. The elderly relied more on hip movements while the young controls relied on ankle movements to control postural stability. Electronic Publication  相似文献   

13.
Reaching to grasp an object of interest requires complex sensorimotor coordination involving eye, head, hand and trunk. While numerous studies have demonstrated deficits in each of these systems individually, little is known about how children with cerebral palsy (CP) coordinate multiple motor systems for functional tasks. Here we used kinematics, remote eye tracking and a trunk support device to examine the functional coupling of the eye, head and hand and the extent to which it was constrained by trunk postural control in 10 children with CP (6–16 years). Eye movements in children with CP were similar to typically developing (TD) peers, while hand movements were significantly slower. Postural support influenced initiation of hand movements in the youngest children (TD & CP) and execution of hand movements in children with CP differentially depending on diagnosis. Across all diagnostic categories, the most robust distinction between TD children and children with CP was in their ability to isolate eye, head and hand movements. Results of this study suggest that deficits in motor coordination for accurate reaching in children with CP may reflect coupled eye, head, and hand movements. We have previously suggested that coupled activation of effectors may be the default output for the CNS during early development.  相似文献   

14.
Summary The spatial and temporal organixation of unrestricted limb movements directed to small visual targets was examined in two separate experiments. Videotape records of the subjects' performance allowed us to analyze the trajectory of the limb movement through 3-dimensional space. Horizontal eye movements during reaching were measured by infrared corneal reflection. In both experiments, the trajectories of the different reaches approximated straight line paths and the velocity profile revealed an initial rapid acceleration followed by a prolonged period of deceleration. In Experiment 1, in which the target light was presented to the right or left of a central fixation point at either 10° or 20° eccentricity, the most consistent differences were observed between reaches directed across the body axis to targets presented in the contralateral visual field and reaches directed at ipsilateral targets. Ipsilateral reaches were initiated more quickly, were completed more rapidly, and were more accurate than contralateral reaches. While these findings suggest that hemispherically organized neural systems are involved in the programming of visually guided limb movements, it was not clear whether the inefficiency of the contralateral movements was due to reaching across the body axis or reaching into the visual hemifield contralateral to the hand being used. Therefore, in Experiment 2, the position of the fixation point was varied such that the effects of visual field and body axis could be disembedded. In this experiment, the kinematics of the reaching movement were shown to be independent of the point of visual fixation and varied only as a function of the laterality of the target position relative to the body axis. This finding suggests that the kinematics of a reaching movement are determined by differences in the processing of neural systems associated with motor output, after the target has been localized in space. The effect of target laterality on response latency and accuracy, however, could not be attributed to a single frame of reference, or to a simple additive effect of both. These findings illustrate the complex integration of visual spatial information which must take place in order to reach accurately to goal objects in extrapersonal space. Comparison of ocular and manual performance revealed a close relationship between movement latency for both motor systems. Thus, rightward-going eye movements to a given target were initiated more quickly when accompanied by reaches with the right hand than when they were accompanied by reaches with the left hand. The finding that the latency of eye movements in one direction was influenced by which hand was being used to reach suggests that reaching toward a target under visual control involves a common integration of both eye and hand movements.This study was supported by grant no. MA-7269 from the Medical Research Council of Canada to M. A. Goodale  相似文献   

15.
The control and execution of movement could potentially be altered by the presence of stroke-induced weakness if muscles are incapable of generating sufficient power. The purpose of this study was to identify compensatory strategies during a forward (sagittal) reaching task for 20 persons with chronic stroke and 10 healthy age-matched controls. We hypothesized that the paretic anterior deltoid would be maximally activated (i.e., saturated) during a reaching task and that task completion would require activation of additional muscles, resulting in compensatory movements out of the sagittal plane. For reaching movements by control subjects, joint motion remained largely in the sagittal plane and hand trajectories were smooth and direct. Movement characteristics of the nonparetic arm of stroke subjects were similar to control subjects except for small increases in the abduction angle and the percentage that anterior deltoid was activated. In contrast, reaching movements of the paretic arm of stroke subjects were characterized by increased activation of all muscles, especially the lateral deltoid, in addition to the anterior deltoid, with resulting shoulder abduction power and segmented and indirect hand motion. For the paretic arm of stroke subjects, muscle and kinetic compensations increased with impairment severity and weaker muscles were used at a higher percentage of their available muscle activity. These results suggest that the inability to generate sufficient force with the typical agonists involved during a forward reaching task may necessitate compensatory muscle recruitment strategies to complete the task.  相似文献   

16.
 It has been suggested that the movement impairments experienced by patients with neglect are not restricted to spatial disorders, but also affect higher-order kinematics (velocity and acceleration) to the extent that movements towards the neglected side are slower than movements away from it. In a recent study, we could not confirm this hypothesis, but found that patients with unilateral neglect exhibited no distinct direction-specific deficits in hand velocity when performing goal-directed reaching movements. Here we investigated whether neglect patients might reveal direction-specific deficits during exploratory hand movements. Six patients with left-sided neglect and six age-matched healthy control subjects scanned with their right hands the surface of a large table searching for a (non-existent) tactile target. Movements were performed in darkness. Time-position data of the hand were recorded with an optoelectronic camera system. Median activity of the patients’ exploratory hand movements was shifted to the right (Karnath and Perenin 1998). Hand trajectories were partitioned into sections of leftward/rightward or, along the sagittal plane, into sections of near/far movements. For each movement section average and peak velocities were computed. The patients’ hand movements were bradykinetic when compared with the control group. However, we found no evidence that average or peak velocities of leftward intervals were systematically lower than during rightward motion. Direction-specific deficits in velocity were also not observed for movements to and away from the body (sagittal plane). In conclusion, we found evidence for general bradykinesia in neglect patients but not for a direction-specific deficit in the control of hand velocity during exploratory hand movements. Received: 20 September 1998 / Accepted: 11 December 1998  相似文献   

17.
The purpose of this study was to investigate the contribution of proprioceptive and visual information about initial limb position in controlling the distance of rapid, single-joint reaching movements. Using a virtual reality environment, we systematically changed the relationship between actual and visually displayed hand position as subjects’ positioned a cursor within a start circle. No visual feedback was given during the movement. Subjects reached two visual targets (115 and 125° elbow angle) from four start locations (90, 95, 100, and 105° elbow angle) under four mismatch conditions (0, 5, 10, or 15°). A 2×4×4 ANOVA enabled us to ask whether the subjects controlled the movement distance in accord with the virtual, or the actual hand location. Our results indicate that the movement distance was mainly controlled according to the virtual start location. Whereas distance modification was most extensive for the closer target, analysis of acceleration profiles revealed that, regardless of target position, visual information about start location determined the initial peak in tangential hand acceleration. Peak acceleration scaled with peak velocity and movement distance, a phenomenon termed “pulse-height” control. In contrast, proprioceptive information about actual hand location determined the duration of acceleration, which also scaled with peak velocity and movement distance, a phenomenon termed “pulse-width” control. Because pulse-height and pulse-width mechanisms reflect movement planning and sensory-based corrective processes, respectively, our current findings indicate that vision is used primarily for planning movement distance, while proprioception is used primarily for online corrections during rapid, unseen movements toward visual targets.  相似文献   

18.
A fundamental issue in the neuromotor control of arm movements is whether the nervous system can use distinctly different muscle activity patterns to obtain similar kinematic outcomes. Although computer simulations have demonstrated several possible mechanical and torque solutions, there is little empirical evidence that the nervous system actually employs fundamentally different muscle patterns for the same movement, such as activating a muscle one time and not the next, or switching from a flexor to an extensor. Under typical conditions, subjects choose the same muscles for any given movement, which suggests that in order to see the capacity of the nervous system to make a different choice of muscles, the nervous system must be pushed beyond the normal circumstances. The purpose of this study, then, was to examine an atypical condition, reaching of cervical spinal cord injured (SCI) subjects who have a reduced repertoire of available distal arm muscles but otherwise a normal nervous system above the level of lesion. Electromyography and kinematics of the shoulder and elbow were examined in the SCI subjects performing a center-out task and then compared to neurologically normal control subjects. The findings showed that the SCI-injured subjects produced reaches with typical global kinematic features, such as straight finger paths, bell-shaped velocities, and joint excursions similar to control subjects. The SCI subjects, however, activated only the shoulder agonist muscle for all directions, unlike the control pattern that involved a reciprocal pattern at each joint (shoulder, elbow, and wrist). Nonetheless, the SCI subjects could activate their shoulder antagonist muscles, elbow flexors, and wrist extensor (extensor carpi radialis) for isometric tasks, but did not activate them during the reaching movements. These results demonstrate that for reaching movements, the SCI subjects used a strikingly different pattern of intact muscle activities than control subjects. Hence, the findings imply that the nervous system is capable of choosing either the control pattern or the SCI pattern. We would speculate that control subjects do not select the SCI pattern because the different choice of muscles results in kinematic features (reduced fingertip speed, multiple shoulder accelerations) other than the global features that are somehow less advantageous or efficient.  相似文献   

19.
The purpose of this study was to examine the accuracy of classifying the movement strategy in the functional reach test (FRT) using a markerless motion capture system (MLS) on the basis of values acquired with a marker-based motion capture system (MBS). Sixty young, injury-free individuals participated in this study. The task action involved reaching forward in the standing position. Using the Microsoft Kinect v2 as an MLS and Vicon as a MBS, the coordinates of the hip joints, knee joints and ankle joints were measured. The hip and ankle joint angles during the task were calculated from the coordinate data. These angles between MLS and MBS were compared using a paired t-test. The accuracy of movement strategy defined using MLS was examined based on the MBS. A t-test showed a significant difference in both the hip and ankle joint angles between systems (p?<?.01). However, in case of using data of left ankle joint, indices of the classification accuracy of MLS were 0.825 for sensitivity, 1.000 for specificity, infinity for positive likelihood ratio and 0.175 for negative likelihood ratio. The results for the right joint angle were similar to those of the left joint angle. Although the absolute measures in the hip and joint angles obtained using MLS differ from MBS, the MLS may be useful for accurately classifying the movement strategy adopted in the FRT.  相似文献   

20.
The leading joint hypothesis (LJH), developed for planar arm reaching, proposes that the interaction torques experienced by the proximal joint are low compared to the corresponding muscle torques. The human central nervous system could potentially ignore these interaction torques at the proximal (leading) joint with little effect on the wrist trajectory, simplifying joint-level control. This paper investigates the extension of the LJH to spatial reaching. In spatial motion, a number of terms in the governing equation (Euler’s angular momentum balance) that vanish for planar movements are non-trivial, so their contributions to the joint torque must be classified as net, interaction or muscle torque. This paper applies definitions from the literature to these torque components to establish a general classification for all terms in Euler’s equation. This classification is equally applicable to planar and spatial motion. Additionally, a rationale for excluding gravity torques from the torque analysis is provided. Subjects performed point-to-point reaching movements between targets whose locations ensured that the wrist paths lay in various portions of the arm’s spatial workspace. Movement kinematics were recorded using electromagnetic sensors located on the subject’s arm segments and thorax. The arm was modeled as a three-link kinematic chain with idealized spherical and revolute joints at the shoulder and elbow. Joint torque components were computed using inverse dynamics. Most movements were ‘shoulder-led’ in that the interaction torque impulse was significantly lower than the muscle torque impulse for the shoulder, but not the elbow. For the few elbow-led movements, the interaction impulse at the elbow was low, while that at the shoulder was high, and these typically involved large elbow and small shoulder displacements. These results support the LJH and extend it to spatial reaching motion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号