首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
We have quantified the effects of the N-methyl-d-aspartate (NMDA) receptor antagonist (R)-[(S)-1-(4-bromo-phenyl)-ethylamino]-(2,3-dioxo-1,2,3,4-tetrahydroquinoxalin-5-yl)-methyl]-phosphonic acid (NVP-AAM077) at rat recombinant N-methyl-D-aspartate receptor (NR)1/NR2A and NR1/NR2B NMDA receptors expressed in Xenopus laevis oocytes. We observed no difference in the steady-state levels of inhibition produced by NVP-AAM077 when it was either preapplied or coapplied with glutamate. The IC50 values for NVP-AAM077 acting at NR1/NR2A NMDA receptors were, as expected, dependent on the glutamate concentration used to evoke responses, being 31 +/- 2 nM (with glutamate at its EC50 concentration) and 214 +/- 10 nM (at 10 times the EC50 concentration). Schild analysis confirmed that the antagonism produced by NVP-AAM077 at NR1/NR2A NMDA receptors was competitive and gave an estimate of its equilibrium constant (K(B)) of 15 +/- 2 nM. Furthermore, Schild analysis of an NMDA receptor carrying a threonine-to-alanine point mutation in the NR2A ligand binding site indicated that NVP-AAM077 still acted in a competitive manner but with its K(B) increased by around 15-fold. At NR1/NR2B NMDA receptors, NVP-AAM077 displayed reduced potency. An IC50 value of 215 +/- 13 nM was obtained in the presence of the EC50 concentration of glutamate (1.5 microM), whereas a value of 2.2 +/- 0.14 microM was obtained with higher (15 microM) glutamate concentrations. Schild analysis gave a K(B) for NVP-AAM077 at NR2B-containing receptors of 78 +/- 3 nM. Finally, using a kinetic scheme to model "synaptic-like" activation of NMDA receptors, we show that the difference in the equilibrium constants for NVP-AAM077 is not sufficient to discriminate between NR2A-containing or NR2B-containing NMDA receptors.  相似文献   

2.
Development of N-methyl-D-aspartate (NMDA) antagonists for a variety of disorders has been hindered by their production of phencyclidine (PCP)-like psychological effects and abuse potential. There is, however, evidence to suggest that this problem might be mitigated by targeting NMDA receptors subtypes, in particular, those containing the NR2B subunit. To further test this hypothesis, the NR2B selective antagonist CP-101 606 (traxoprodil) was evaluated in two animal models: drug discrimination, a model of the subjective effects of drugs in humans, and self-administration, which evaluates the reinforcing properties of the drug. In the first study, CP-101 606(3-300 microg/kg/infusion) was tested for intravenous self-administration in rhesus monkeys experienced in PCP (5.6 microg/kg/infusion, intravenously) self-administration. In the second study, CP-101 606 was tested for production of PCP-like discriminative stimulus effects in rats (3-56 mg/kg, intraperitoneally) and rhesus monkeys (0.3-5.6 mg/kg intravenously). Evidence was obtained for reinforcing effects of at least one dose of CP-101 606 in all four monkeys. In rats, CP-101 606 produced more than 80% mean PCP-lever selection (2.0 mg/kg, intraperitoneally) but, unlike PCP itself, the dose producing the highest level of substitution was accompanied by more than 50% suppression of response rates. In monkeys, CP-101 606 produced more than 90% PCP-lever selection (0.1 mg/kg intramuscularly) in three of four animals at doses that did not significantly decrease rates of responding. The data show that CP-101 606 has some PCP-like discriminative stimulus effects in rats and monkeys and functions as a positive reinforcer in monkeys. These results suggest that inhibition of NR2B subunit containing NMDA receptors plays a role in the production of the subjective effects and abuse potential associated with many subtype-nonselective NMDA receptor antagonists such as PCP.  相似文献   

3.
Gavestinel [GV150526A; ( E)-3[(phenylcarbamoil)ethenyl]-4,6-dichloroindole-2-carboxylic acid sodium salt] is a selective antagonist at the strychnine-insensitive glycine site of the -methyl-D-aspartate (NMDA) receptor. It was tested for its ability to substitute for phencyclidine (PCP) in rats and rhesus monkeys trained to discriminate PCP from saline, under a two-lever fixed-ratio (FR) food reinforcement schedule, and for its ability to maintain responding in rhesus monkeys trained to self-administer PCP under a FR reinforcement schedule. No PCP-lever responding was observed after gavestinel (1-56 mg/kg i.p.) administration to rats discriminating PCP (2.0 mg/kg i.p.) from saline. The highest dose of gavestinel (100 mg/kg i.p.) tested eliminated responding. Likewise, no PCP-lever responding was observed after gavestinel (1-30 mg/kg s.c.) administration to rhesus monkeys discriminating PCP (0.08 or 0.1 mg/kg i.m.) from saline; the highest dose of gavestinel (30 mg/kg s.c.) tested reduced response rates to approximately 50% of those observed after its vehicle ( -cyclodextrin in 0.9% saline). Gavestinel (0.1-1 mg/kg per i.v. infusion) was not self-administered by rhesus monkeys that reliably self-administered PCP (0.0056 or 0.01 mg/kg per i.v. infusion). Infusion rates at the highest dose were typically lower than those for vehicle or saline, suggesting behavioral activity. Together, these results suggest that at behaviorally active doses gavestinel is not PCP-like and is likely to have low abuse liability.  相似文献   

4.
Rationale  Little attention has been paid to the relative equivalence of behavioural effects of NMDA receptor antagonists in rodents, with different compounds often used interchangeably to “model” aspects of schizophrenia in preclinical studies. Objectives  To further resolve such conjecture, the present study systematically compared eight different NMDA receptor antagonists: MK-801, PCP, ketamine, memantine, SDZ 220,581, Ro 25-6981, CP 101-606 and NVP-AAM077, in a series of variable interval (VI) schedules of reinforcement. Aspects of motivation as indexed in these tasks may well be impaired in schizophrenia and undoubtedly impact on the capacity to perform more complex, explicit tasks of cognition. Methods and results  An initial locomotor activity assessment demonstrated that all antagonists tested, except the NR2A-subunit preferring antagonist NVP-AAM077, induced hyperactivity, albeit of greatly differing magnitudes, qualities and temporal profiles. Three distinct patterns of antagonist effect were evident from the VI assays used: a uniform decrease in responding produced by (S)-(+)-ketamine, memantine and NVP-AAM077, a uniform increase in responding caused by the NR2B-subunit preferring antagonists Ro 25-6981 and CP 101-606, and variable bidirectional effects of PCP, SDZ 220,581 and MK-801. Conclusion  Despite nominally common mechanisms of action and often presumed biological equivalence, the NMDA antagonists tested produced very diverse effects on the expression of instrumental action. Other aspects of responding were left intact, including switching and matching behaviours, and the ability to respond to conditional stimuli. The implications of such findings with regard to animal modelling of schizophrenic psychotic symptoms are manifold. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
Rationale Glutamate signalling through the N-methyl-d-aspartate (NMDA) receptor is of critical importance for normal central nervous system (CNS) function, as indicated by the marked behavioural disturbances produced by non-subtype selective NMDA antagonists such as dizocilpine (MK-801).Objective The present studies were designed to investigate the involvement of the two major NMDA receptor subunits in the central nervous system, i.e. NR2A and NR2B, on sensorimotor gating in mice.Methods These experiments utilised the non-subtype-selective NMDA antagonist dizocilpine, a line of NR2A-KO mice and the selective NR2B antagonist Ro 63–1908, in the study of pre-pulse inhibition of the startle response (PPI).Results The non-selective NMDA receptor antagonist dizocilpine (0.1–1 mg/kg, IP) robustly disrupted PPI in wild-type mice. Conversely, selective genetic or pharmacological inhibition of either the NMDA NR2A or NR2B receptor subunit containing receptors, respectively, had no effect on PPI. Thus, NR2A KO mice showed normal PPI compared with wild-type littermate controls, and administration of Ro 63-1908 (1–10 mg/kg IP) to wild-type mice did not affect PPI. However, selective inhibition of NR2A and NR2B by administration of Ro 63–1908 to NR2A KO mice significantly disrupted PPI.Conclusions These data imply that concomitant inhibition of both NR2A and NR2B subunit-containing NMDA receptors is necessary to disrupt PPI, suggesting that inhibition of NR2A and NR2B-containing NMDA receptors is required to elicit behaviours suggestive of psychomimetic effects in man.  相似文献   

6.
Phencyclidine-like discriminative stimulus properties of MK-801 in rats   总被引:5,自引:0,他引:5  
The discriminative stimulus properties of the N-methyl-D-aspartate (NMDA) antagonist MK-801 ((+)-5-methyl-10,11-dihydro-5H-dibenzo(a,d)cyclohepten-5,10-imine) were investigated in rats trained to discriminate phencyclidine (PCP; 1.25 mg/kg i.p.) from saline on a standard two-lever fixed ratio 32 schedule of food reinforcement. MK-801 was generalized from PCP in a dose-dependent manner, with an ED50 of 0.10 mg/kg i.p. The ED50 for PCP was 0.7 mg/kg io.p. MK-801 is, therefore, a very potent PCP-like drug which may share cellular mechanisms and other effects with PCP, including the antagonism of NMDA.  相似文献   

7.
The present study investigated the regional distribution of the N-methyl-D-aspartate (NMDA) receptor containing the NR2B subunit protein in rat lumbar spinal cord and examined whether selective NR2B antagonists would exhibit antinociception with reduced side-effect liability than subtype non-selective NMDA antagonists and anticonvulsants. Immunocytochemical studies showed the NR2B subunit had a restricted distribution, with moderate labelling of fibres in laminas I and II of the dorsal horn suggesting a presynaptic location on primary afferent fibers and possible involvement in pain transmission. In the in vivo studies, the NMDA/glycine antagonists (MK-801, 0.02-1 mg/kg i.p., L-687,414 10-300 mg/kg i.p., and L-701,324 1-10 mg/kg i.p.) and the anticonvulsant, gabapentin (10-500 mg/kg p.o.), induced rotarod deficits at antinociceptive doses. In contrast, the selective NR2B antagonists, (+/-)-CP-101,606 (1-100 mg/kg p.o.) and (+/-)-Ro 25-6981 (3-100 mg/kg i.p.) showed a significant dose window. (+/-)-CP-101,606 caused no motor impairment or stimulation in rats at doses up to 100 mg/kg p.o., which is far in excess of those inhibiting allodynia in neuropathic rats (ID50 4.1 mg/kg, p.o.). (+/-)-Ro 25-6981 also showed a significant separation (ID50 allodynia 3.8 mg/kg, i.p.), however, some disruption of rotarod performance was observed at 100 mg/kg. The anticonvulsant lamotrigine (3-500 mg/kg p.o.) also showed a good dose window. These findings demonstrate that NR2B antagonists may have clinical utility for the treatment of neuropathic and other pain conditions in man with a reduced side-effect profile than existing NMDA antagonists.  相似文献   

8.
Tran DH  Gong R  Tang SJ 《Neuropharmacology》2007,53(2):252-256
Protein synthesis in dendrites is critical for long-term synaptic plasticity. Previous studies have identified an essential role of NMDA receptors in control of activity-dependent dendritic protein synthesis, but the contribution of NR2A- and NR2B-containing NMDA receptors, the two predominant subtypes of NMDA receptors in the forebrain, has not been determined. Using a pharmacological approach, we investigated the role of NR2A and NR2B subtypes in the regulation of NMDA-induced dendritic translation of a GFP reporter mRNA controlled by CaMKII untranslated regions (UTRs). We found that ifenprodil and Ro25-6981, two specific inhibitors of NR2B-containing NMDA receptors, did not affect dendritic GFP synthesis induced by NMDA. In contrast, NVP-AAM077, an antagonist that preferentially blocks the NR2A subtype, completely abolished NMDA-induced GFP synthesis in dendrites. Our results together suggest that NR2A but not NR2B subtypes are indispensable for NMDA receptor-dependent dendritic protein synthesis.  相似文献   

9.
目的探讨N-甲基-D-天冬氨酸受体(NMDA)亚基NR2A和NR2B特异性拮抗剂对脑缺血/再灌注后海马CA1区神经元损伤的不同影响及其可能机制。方法制作三动脉阻断(3-VO)小鼠全脑缺血模型,小鼠随机分为假手术组、脑缺血/再灌注(I/R)对照组、NVP-AAM077(NVP)干预组和Ro25-6981(Ro)干预组;应用Fluoro-JadeB(F-JB)和Nissl染色检测海马神经元变性死亡和存活情况,Western blot对脑源性神经生长因子(BDNF)蛋白表达水平进行定量分析。结果①小鼠全脑缺血12min/再灌注3d后,海马CA1区出现选择性迟发性神经元死亡,NVP干预组增加了缺血所致的海马神经元死亡(P<0.05),而Ro干预组CA1区神经元存活数量明显多于缺血/再灌注组(P<0.01);②NVP干预能明显下调缺血/再灌注所致的海马组织BDNF蛋白表达升高(P<0.01),而Ro干预能明显上调BDNF蛋白的表达(P<0.05)。结论 NMDA受体亚基NR2A和NR2B在小鼠脑缺血/再灌注损伤中具有不同的作用,其机制可能与调节BDNF表达改变有关。  相似文献   

10.
Ketamine, which is a non-competitive NMDA receptor antagonist, has been used as a dissociative anesthetic agent. However, chronic use of ketamine produces psychotomimetic effects, such as nightmares, hallucination and delusion. Therefore, the present study was designed to ascertain the role of the NMDA receptor and sigma receptor in the discriminative stimulus effect induced by ketamine. Fischer 344 rats were trained to discriminate between ketamine (5 mg/kg, i.p.) and saline under a fixed-ratio 10 food-reinforced procedure. Non-competitive antagonists for both NR2A- and NR2B-containing NMDA receptors, such as phencyclidine (0.1--1 mg/kg, i.p.) and dizocilpine (3--30 microg/kg, i.p.), and the NR2A-containing NMDA receptor-preferred antagonist dextromethorphan (3--56 mg/kg, i.p.) fully substituted for the ketamine cue in a dose-dependent manner. By contrast, the NR2B-containing NMDA receptor antagonist ifenprodil (5--20 mg/kg, i.p.) exhibited no generalization. Additionally, the competitive NMDA antagonist 3-[(+/-)-2-carboxypiperazine-4-yl] propyl-1-phosphonic acid ((+/-)-CPP; 0.3--5.6 mg/kg, i.p.) and a sigma receptor ligand DTG (0.3--3 mg/kg, s.c.) displayed no generalization to the ketamine cue. These results suggest that NR1/NR2A subunit containing NMDA antagonism may be critical for the production of the ketamine cue.  相似文献   

11.
Ethanol has been shown to antagonize N-methyl-D-aspartate (NMDA) receptor-mediated neurotransmission in a number of in vitro systems. Drug discrimination procedures in rats were used to evaluate ethanol as an antagonist of NMDA discrimination and for its ability to produce discriminative stimulus effects similar to those of competitive and noncompetitive NMDA antagonists. Ethanol (300-1500 mg/kg i.p.) failed to antagonize the stimulus effects of 30 mg/kg NMDA, nor did it substitute fully for either the competitive antagonist NPC 12626 nor the noncompetitive antagonist phencyclidine (PCP). A maximum average of 55.4% PCP-lever responding provided evidence for partial substitution in this model. The effects of ethanol on NMDA discrimination are distinct from those previously reported for competitive NMDA antagonists but similar to those of noncompetitive antagonists. On the other hand, ethanol can be distinguished from both competitive and PCP-like noncompetitive NMDA antagonists using drug discrimination procedures.  相似文献   

12.
Using a two-lever operant drug discrimination paradigm, rats have been trained to discriminate between the administration of saline and R-(+)-HA-966 (R-(+)-3-amino-1-hydroxypyrrolid-2-one, 30 mg/kg i.p.) an antagonist at the glycine modulatory site on the N-methyl-D-aspartate (NMDA) receptor/ion channel complex. Drug-appropriate responding was not induced in stimulus generalisation experiments when the non-competitive NMDA receptor antagonist, phencyclidine (PCP, 1-8 mg/kg i.p.) was substituted for (+)-HA-966. Similarly, (+)-HA-966 (6-50 mg/kg i.p.) did not induce drug-appropriate responding in animals trained to discriminate PCP (3 mg/kg i.p.) from saline. The results suggest that the behavioural profile of compounds attenuating the actions of NMDA via blockade of the glycine modulatory site may be substantially different from those acting at the ion channel of the NMDA receptor complex.  相似文献   

13.
Administration of the non-competitive NMDA receptor antagonists phencyclidine (PCP) (0.6-5 mg/kg s.c.) and MK-801 (0.1-0.8 mg/kg s.c. ) dose-dependently increased locomotor activity in the rat. Pre-treatment of rats with SB 221284 (0.1-1 mg/kg, i.p.) a 5-HT(2C/2B) receptor antagonist or SB 242084 (1 mg/kg, i.p.) a selective 5-HT(2C) receptor antagonist, doses shown to block mCPP induced hypolocomotion, significantly enhanced the hyperactivity induced by PCP or MK-801. Neither compound altered locomotor activity when administered alone. Furthermore, systemic administration of PCP (5 mg/kg s.c.) increased nucleus accumbens dopamine efflux in the rat to a maximum of approximately 220% of basal, 40-60 min after administration. Pre-treatment with the 5-HT(2C/2B) receptor antagonist SB 221284 (1 mg/kg, i.p.) and the 5-HT(2C) receptor antagonist SB 242084 (1 mg/kg i.p.) failed to affect nucleus accumbens dopamine efflux per se but significantly enhanced the magnitude and duration of the increase induced by PCP. However, the time course of the neurochemical and behavioural effects were qualitatively and quantitatively different, suggesting the potential involvement of other neurotransmitter pathways. Nevertheless, the present results provide behavioural and neurochemical evidence which demonstrate that, in the absence of effects per se, blockade of 5-HT(2C) receptors enhanced the activation of mesolimbic dopamine neuronal function by the non-competitive NMDA receptor antagonists PCP and MK-801.  相似文献   

14.
NR2B containing NMDA receptor dependent windup of single spinal neurons   总被引:9,自引:0,他引:9  
Windup, the frequency dependent build-up of spinal neuronal responses, is implicated in the development of central sensitization of nociceptive pathways. N-methyl-D-aspartate (NMDA) receptors have been shown to be involved in these processes but the role of various receptor subtypes at the spinal level is not fully understood. In our experiments, we compared the inhibitory effect of MK-801 (a nonselective NMDA receptor antagonist, 0.01-3 mg/kg i.v.) and CI-1041 (an NR2B subunit specific NMDA receptor antagonist, 0.3-10 mg/kg i.v.) on the formation of dorsal horn neuronal windup in spinalized rats, in vivo. Both types of antagonist blocked windup considerably at doses not affecting the normal synaptic transmission. These results are in agreement with the well-documented effectivity of NR2B subtype selective NMDA receptor antagonists in chronic pain models and give the first direct evidence that spinal mechanisms are involved in this effect.  相似文献   

15.
Employing a Fixed-Ratio 10, food-reinforced protocol, rats were trained to recognize the discriminative stimulus (DS) properties of the novel, potent, 5-HT2C agonist, Ro 60-0175 (2.5 mg/kg, i.p.). This schedule generated appropriate drug versus vehicle responding after 50 + 5 training sessions and Ro 60-0175 elicited full (100%) drug selection with an effective dose50 (ED50) of 0.6 mg/kg, i.p.. The 5-HT2C receptor agonists, mCPP and MK 212, fully generalized to Ro 60-0175 with ED50s of 0.8 and 0.4 mg/kg, s.c., respectively, whereas the preferential 5-HT2B agonist, BW 723C86 ( > 10.0 mg/kg, s.c.) and the 5-HT2A agonist, DOI ( > 2.5 mg/kg, s.c.), were ineffective. The 5-HT2A/2B/2C receptor antagonist, mianserin, dose-dependently blocked the DS properties of Ro 60-0175 with an ED50 of 0.7 mg/kg, s.c. This action was mimicked by the novel, 5-HT2B/2C antagonist, SB 206,553 (ED50 = 0.3 mg/kg, s.c.), whereas the selective 5-HT2A antagonist, MDL 100,907 ( > 0.63 mg/kg, s.c.), was ineffective. Further, the selective 5-HT2C antagonist, SB 242,084, dose-dependently and fully blocked drug selection (ED50 = 0.2 mg/kg, i.p.), whereas the selective 5-HT2B antagonist, SB 204,741, was not active ( > 0.63 mg/kg, i.p.). In conclusion, these data demonstrate that Ro 60-0175 generates a robust DS and suggest that activation of 5-HT2C receptors is the principal mechanism underlying its DS properties.  相似文献   

16.
NR2A-containing N-methyl-d-aspartate (NMDA) receptors have important roles in influencing the long-term potentiation and spatial memory. Here using Morris water maze, we found that inhibition of NR2A-containing NMDA receptors by [(R)-[(S)-1-(4-bromophenyl)-ethylamino]-(2, 3-dioxo-1,2,3,4-tetrahydroquinoxalin-5-yl)-methyl]-phosphonic acid (NVP-AAM077) hindered the formation of spatial memory. An increasing number of reports suggest that adult hippocampal neurogenesis is involved in hippocampal-mediated learning. To explore the possible mechanisms understanding the reduced spatial memory by NVP-AAM077, we investigated the effects of NVP-AAM077 on neurogenesis. We found that NVP-AAM077 inhibited progenitor cells proliferation in the subventricular zone and dentate gyrus and reduced the survival of newborn cells in the dentate gyrus in the adult mice. In null mutant mice lacking neuronal nitric oxide synthase (nNOS) gene (nNOS−/−), the effects of NVP-AAM077 on neurogenesis disappeared. In addition, NVP-AAM077 increased nNOS enzymatic activity. Our findings suggest that NVP-AAM077 reduced spatial learning through down-regulating neurogenesis in the adult hippocampus.  相似文献   

17.
Non-competitive antagonists of the N-methyl-D-aspartate (NMDA) receptor have been evaluated as anticonvulsants against sound-induced seizures in DBA/2 mice. The ED50 values for protection against sound-induced clonic seizures 15 min following the intracerebroventricular (i.c.v.) and intraperitoneal (i.p.) administration are: MK-801, ED50 = 0.5 nmol (i.c.v.); 0.14 mumol/kg (i.p.); phencyclidine, ED50 = 14 nmol (i.c.v.); 1.9 mumol/kg (i.p.); dextrorphan, ED50 = 35 nmol (i.c.v.); 18.5 mumol/kg (i.p.); tiletamine, ED50 = 40 nmol (i.c.v.); 5.6 mumol/kg (i.p.); SKF-10047, ED50 = 50 nmol (i.c.v.); 23.5 mumol/kg (i.p.); dextromethorphan, ED50 = 70 nmol (i.c.v.); 28.0 mumol/kg (i.p.); ketamine, ED50 = 110 nmol (i.c.v.); 15.5 mumol/kg (i.p.). The anticonvulsant effects of ketamine and tiletamine are of short duration (10-30 min), whereas the anticonvulsant effects of MK-801 and dextromethorphan last for 45 min or longer. The effects of phencyclidine, SKF-10047 and dextrorphan are of intermediate duration. Mild to moderate behavioural excitation is associated with the anticonvulsant activity of all the non-competitive NMDA antagonists. For MK-801, phencyclidine, dextrorphan, SKF-10047 and ketamine there is a close correlation between their relative anticonvulsant potencies and their potencies for displacing [3H]MK-801. The anticonvulsant effect is likely to be primarily mediated via NMDA antagonism at the PCP/MK-801 site.  相似文献   

18.
The present study was undertaken to further clarify the role of tyrosine phosphorylation of NR2B subunit-containing N-methyl-D-aspartate (NMDA) receptor in the development of the morphine-induced rewarding effect in mice. The morphine (5 mg/kg, sc)-induced rewarding effect was completely inhibited by pretreatment with a selective NR2B subunit-containing NMDA receptor antagonist ifenprodil (20 mg/kg, i.p.). The protein level of phospho-Tyr-1472, but not phospho-Ser-1303, NR2B subunit was significantly increased in the mouse limbic forebrain containing the nucleus accumbens (N.Acc.) of mice that had shown the morphine-induced rewarding effect. In addition, the level of phospho-Tyr-416 Src family kinase was also increased in the limbic forebrain of mice that had shown the morphine-induced rewarding effect. These findings suggest that Tyr-1472 phosphorylation of NR2B subunit-containing NMDA receptor associated with activation of Src family kinase in the limbic forebrain may be involved in the morphine-induced rewarding effect.  相似文献   

19.
We have characterised the effects of the recently described NMDA NR2B subtype selective antagonist, Ro 63-1908, on spontaneous behaviour and in tasks sensitive to non-selective NMDA antagonists. In both rats and wild type mice, Ro 63-1908 (1-30mg/kg sc) produced a mild increase in motor activity of lesser magnitude than that elicited by dizocilpine. No signs of overt PCP-like stereotypy were seen in either species at equivalent doses. PPI was also unaffected. However, in mice lacking the NR2A subunit, Ro 63-1908 (3-30mg/kg) produced a profound hyperactivity of similar magnitude to dizocilpine but few other 'PCP-like' behaviours. In rats, Ro 63-1908 (1-10mg/kg) did not affect Morris water maze or delayed matching performance. In a 5-choice serial reaction time task, requiring rats to respond to a visual stimulus presented after a fixed time interval, Ro 63-1908 (0.3-3mg/kg) produced a dramatic increase in premature responses - accuracy was relatively unaffected. Finally in a DRL24 task, Ro 63-1908 (0.3-3mg/kg) reduced inter-response time, increased response rate, and consequently reduced efficiency. We conclude that the improved profile of Ro 63-1908 compared to NMDA channel blockers is due to both its selectivity for the NR2B vs. NR2A subunit containing receptors and its activity-dependent mechanism of action. However, in the 5-CSRT and DRL24 tasks, Ro 63-1908 produced behaviours suggestive of impaired response inhibition, implicating a critical role of NMDA NR2B transmission in this process.  相似文献   

20.
Rationale  Many N-methyl-d-aspartate (NMDA) antagonists produce phencyclidine (PCP)-like side effects that limit their clinical utility. NMDA glycine-site antagonists may be less likely to produce these effects than other site-selective NMDA antagonists. Objectives  The objective of the study is to compare the discriminative stimulus effects of novel NMDA glycine-site drugs to those of channel blocking and competitive NMDA antagonists. Materials and methods  Drug discrimination studies were performed in separate groups of rats trained with saline vs. PCP (2 mg/kg i.p.) or the competitive antagonist NPC 17742 (4 mg/kg i.p.) using a standard two-lever operant conditioning procedure under an FR32. Results  Neither the partial glycine-site agonists aminocyclopropane carboxylic acid methyl ester and (+)-HA-966 nor the antagonists L701,324; MDL 100,458; MDL 100,748; MDL 103,371; MDL 104,472; MDL 105,519; MRZ 2/571; MRZ 2/576; and ACEA 0762 produced >50% PCP-lever selection, though all were tested over a sufficient dose range to produce response rate decreasing effects. All of the antagonists, except MDL 100,458 and MDL 100,748, were also tested for NPC 17742-like effects, producing somewhat more variable results than in PCP-trained rats. ACEA-0762 produced full substitution for NPC 17742, whereas MDL 105,519 produced no substitution. The remaining compounds engendered between 20% and 80% drug-lever selection. Conclusion  These results provide evidence that NMDA glycine-site partial agonists and antagonists generally do not produce discriminative stimulus effects similar to those of representative NMDA channel blockers or competitive antagonists. This suggests that these NMDA glycine-site antagonists should be less likely to produce the undesirable behavioral side effects seen in clinical trials with many other NMDA antagonists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号