首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1 The angiogenic activity of four vasoactive peptides with a range of vasodilator and vasoconstrictor properties, i.e. vasoactive intestinal peptide (VIP), endothelin-1, endothelin-3 and angiotensin II, were investigated in a rat sponge model. Neovascularization was assessed by the 133Xe clearance technique and confirmed by histological studies. 2 Daily doses of the vasodilator peptide, VIP (1000 pmol), caused intense neovascularization, but a lower dose (10 pmol) produced no apparent effect. However, the lower dose of VIP, when given with a subthreshold dose of interleukin-1 alpha (0.3 pmol), produced an angiogenic response similar to that seen with the higher dose of VIP. The neovascular response induced by co-administration of VIP and interleukin-1 alpha was inhibited by simultaneous administration of 100 pmol VIP (10-28), a specific VIP receptor antagonist. 3 In contrast, daily doses of 10, 100 or 1000 pmol endothelin-3 (a mixed vasoconstrictor and vasodilator with more marked vasodilator activity) or of 100 or 1000 pmol endothelin-1 (also with mixed activity but with much more pronounced vasoconstrictor response) produced no apparent effect on sponge-induced angiogenesis. 4 The vasoconstrictor peptide, angiotensin II, in daily doses of 1000 pmol, caused an intense neovascularization like VIP but lower doses of angiotensin II (10 or 100 pmol) produced no apparent effect. The lowest dose of angiotensin II (10 pmol) when administered with the subthreshold dose of interleukin-1 alpha (0.3 pmol) had no effect on the basal neovascular response in the sponges. The angiotensin II-induced neovascular response was inhibited by co-administration of 100 nmol of the specific AT1 receptor antagonist, losartan, but not by the AT2 receptor antagonist, PD 123319. 5 These data show that VIP and angiotensin II possess angiogenic activity. However, endothelin-1 and endothelin-3 had no activity at the doses used. Thus the angiogenic response is not related to local vasoconstriction or vasodilatation in the sponges. The blockade of VIP- and angiotensin II-induced angiogenesis at the receptor level suggests that receptor modulation could provide a strategy for the management of angiogenic diseases.  相似文献   

2.
1. Daily administration of 1 nmol substance P or 3 pmol recombinant human interleukin-1 alpha (IL-1 alpha) caused intense neovascularization in a rat sponge model of angiogenesis. Lower doses of substance P (10 pmol) or IL-1 alpha (0.3 pmol) were ineffective when given alone. When combined at these low doses, substances P and IL-1 alpha interacted to produce an enhanced neovascular response. 2. By use of selective tachykinin NK1, NK2 and NK3 receptor agonists, ([Sar9,Met(O2)11]substance P, [beta-Ala8]neurokinin A(4-10), Succ-[Asp6,MePhe8]substance P(6-11) (senktide), respectively), it was established that the activation of NK1 receptors is most likely to mediate the angiogenic response to substance P in this model. 3. The angiogenic activity of substance P and IL-1 alpha (10 pmol and 0.3 pmol day-1, respectively) was abolished by co-administration of (i) the selective peptide NK1 receptor antagonist, L-668,169 (1 nmol day-1), (ii) the selective non-peptide NK1 receptor antagonists, RP 67580 and (+/-)-CP-96,345 (both at 1 nmol day-1) or (iii) the IL-1 receptor antagonist, IL-1ra, (50 micrograms day-1). In contrast, the selective NK2 receptor antagonist, L-659,874 (1 nmol day-1) was ineffective. 4. The angiogenic action of substance P and IL-1 alpha was resistant to modification by mepyramine (1 nmol day-1) and/or cimetidine (10 nmol day-1), indomethacin (7 nmol day-1) or the platelet-activating factor (PAF) antagonist, WEB-2086 (22 nmol day-1), indicating that histamine, prostaglandins and PAF are not likely to be involved in this neovascular response.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
1. Substance P (SP) and capsaicin induced a mechanical hyperalgesia when injected into rat knee joints. 2. The NK1 receptor antagonists CP 99994 (10-100 nmol) and RP 67580 (0.1-1 nmol) blocked the development of, and also reversed, SP-induced hyperalgesia. Capsaicin (10 nmol)-induced hyperalgesia was blocked by capsazepine (0.5-5 nmol). 3. Capsaicin-induced hyperalgesia was prevented and reversed by the NK1 receptor antagonists CP 99994 (100 nmol) and RP 67580 (1 nmol). 4. The bradykinin B2 receptor antagonist icatibant (5 pmol) blocked the development of both SP and capsaicin-induced hyperalgesia. Icatibant (100 pmol kg-1, i.v.) also reversed an established SP and capsaicin-induced hyperalgesia. 5. Both low dose SP (1 nmol) and capsaicin (1 nmol)-induced hyperalgesia were potentiated by the kininase II inhibitor captopril (100 micrograms). 6. The B1 receptor antagonists desArg9Leu8-bradykinin (BK) (0.5-5 nmol) and desArg10[Hoe 140] (5-50 pmol) only blocked the development of SP-induced hyperalgesia for 30 min after administration. desArg9Leu8-BK (10 nmol kg-1 i.v.) did not reverse an established SP-induced hyperalgesia. 7. Capsaicin-induced hyperalgesia was blocked by desArg9Leu8-BK (0.5 nmol) and this antagonist also reversed an established capsaicin-induced hyperalgesia. 8. Interleukin-1 receptor antagonist (IL-1ra 0.1 microgram) reduced the development of SP-induced hyperalgesia up to 4 h after administration, but did not reverse an established hyperalgesia. IL-1ra (0.1 microgram) also blocked the development of and reversed an established capsaicin-induced hyperalgesia. 9. Indomethacin pretreatment (1 mg kg-1, s.c.) did not reduce the development of either SP- or capsaicin-induced hyperalgesia but following indomethacin-pretreatment desArg9Leu8-BK (10 nmol kg-1, i.v.) failed to reverse a capsaicin-induced hyperalgesia. 10. In conclusion, both SP and capsaicin can induce behavioural hyperalgesia when injected into the knee joint of rats. In addition, blockade of NK1, bradykinin B1, B2 and IL-1 beta receptors can substantially modulate this hyperalgesia.  相似文献   

4.
1. Vasodepressor responses to intravenous (i.v.) injection of bradykinin (BK) and des-Arg9-BK, a selective B1 kinin receptor agonist, were characterized following i.v. pretreatment with selective B1 ([Leu8]-des-Arg9-BK) and B2 (Hoe 140) kinin receptor antagonists in anaesthetized dogs. 2. Des-Arg9-BK (0.05-3.3 nmol kg-1) produced dose-dependent decreases in mean arterial blood pressure with a ED50 0.4 nmol kg-1. The vasodepressor effects evoked by des-Arg9-BK (0.6 nmol kg-1) and BK (0.2 nmol kg-1) were greater after i.v. and i.a. injections, respectively. 3. The vasodepressor response to BK (0.6 nmol kg-1) but not to des-Arg9-BK (0.6 nmol kg-1) was significantly (P < 0.001) blocked by pretreatment with the B2 receptor antagonist, Hoe 140. 4. The vasodepressor response to des-Arg9-BK (0.6 nmol kg-1) but not to BK (0.6 nmol kg-1) was significantly (P < 0.001) reduced by pretreatment with the selective B1 receptor antagonist, [Leu8]-des-Arg9-BK. Although both B1 and B2 receptor antagonists caused a transient fall in blood pressure, their inhibitory action was unlikely to be related to a desensitization mechanism. 5. Inhibition of prostaglandin synthesis with indomethacin prevented the vasodepressor response induced by arachidonic acid (1 mg kg-1, i.v.) but not that to BK or des-Arg9-BK (0.6 nmol kg-1). 6. These results suggest, firstly, that the vasodepressor responses to i.v. BK and des-Arg9-BK are mediated by the activation of B2 and B1 receptors, respectively; secondly, that prostaglandins are not involved in the vasodepressor responses to kinins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
1. The role of bradykinin B1 and B2 receptors in bradykinin- and des-Arg9-bradykinin-induced plasma extravasation in normal and inflamed rat knee joints was investigated by use of an antigen-induced model of chronic arthritis. A modification of an Evans blue extraction technique allowed the unstimulated (basal) plasma extravasation to be assessed in this model. The contributions of bradykinin B1 and B2 receptors towards basal synovial plasma extravasation were determined. 2. In normal knees, intra-articular injection of bradykinin (BK) induced plasma extravasation in a potent, dose-dependent manner with a threshold of 0.01 nmol and an ED50 of 0.1 nmol. In day 5 arthritic knees, basal plasma extravasation was substantially enhanced. Lower doses of BK had no demonstrable effect and increases above basal extravasation were first observed at 0.1 nmol. Thereafter the dose-response mirrored the response in normal knees and the maximal response was unaltered. 3. The B1 agonist, des-Arg9-BK, induced slight but significant plasma extravasation in normal knees but was less potent than bradykinin. This response was inhibited by the B1 receptor antagonist, des-Arg9, [Leu8]-BK. Lower doses of des-Arg9-BK bradykinin did not significantly increase basal extravasation in day 5 arthritic knees but, in contrast to BK, the maximal response was significantly enhanced. 4. The B2 antagonist, Hoe 140, inhibited BK-induced plasma extravasation in normal joints over a dose-range of 0.1-1.0 nmol but was relatively inactive in day 5 inflamed knees.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
1. The effects of intrathecal (i.t.) pretreatment with selective B1 or B2 kinin receptor antagonists were studied on the cardiovascular response to i.t. injection of bradykinin (BK) in conscious freely moving rats. 2. BK (81 pmol) produced an increase in mean arterial pressure (MAP: 9-13 mmHg) and decrease in heart rate (HR: 20-30 beats min-1) that reached a maximum 2 min after injection. 3. The BK-induced cardiovascular responses were dose-dependently and reversibly reduced by four antagonists with the following rank order of potency: Tyr, D-Arg[Hyp3,D-Phe7,Leu8]-BK = D-Arg[Tyr3,D-Phe7,Leu8]-BK = D- Arg[Hyp3,D-Phe7,Leu8]-BK > D-Arg[Hyp3,Thi5,D-Tic7,Oic8]-BK (Hoe 140). These compounds failed to alter the cardiovascular response to i.t. injection of 8.1 nmol of substance P. 4. Other compounds acting on the B2 receptor, namely D-Arg[Hyp3,Gly6,Leu8]-BK, D-Arg[Hyp3,D-Phe7]-BK, D-Arg[Hyp2,Thi5,8,D-Phe7]-BK and D-Arg[Hyp3,Gly6,D-Phe7,Leu8]-BK or on the B1 receptor, [Leu8]-desArg9-BK, did not influence the cardiovascular responses to BK at doses devoid of intrinsic activity on MAP and HR. 5. None of the kinin receptor antagonists caused motor impairment, respiratory arrest or persisting cardiovascular changes. 6. These results confirm that the cardiovascular effects induced by i.t. BK are mediated by the activation of a B2 receptor in the rat spinal cord. However, the rank order of potency of antagonists does not conform to the classical B2 functional site characterized in peripheral tissues.  相似文献   

7.
1 This study examines the involvement of kinins in neutrophil migration into rat subcutaneous air pouches triggered by lipopolysaccharide (LPS), as well as the putative roles played by kinin B(1) and B(2) receptors, tumour necrosis factor alpha (TNF-alpha), interleukin-1 beta (IL-1beta) and selectins in this response. 2 LPS (5 ng to 10 micro g cavity(-1)) injected into the 6-day-old pouch induced a dose- and time-dependent neutrophil migration which peaked between 4 and 6 h, and was maximal following the dose of 100 ng cavity(-1) (saline: 0.46+/-0.1; LPS: 43+/-3.70 x 10(6) cells cavity(-1) at 6 h). 3 Bradykinin (BK) (600 nmol) injected into the pouch of saline-treated rats induced only modest neutrophil migration (0.73+/-0.16 x 10(6) cells cavity(-1)). A more robust response to BK (3.2+/-0.25 x 10(6) cells cavity(-1)) was seen in animals pretreated with captopril, but this was still smaller than the responses to IL-1beta or TNF-alpha (15 pmol: 23+/-2.2 x 10(6) and 75 pmol: 29.5+/-2 x 10(6) cells cavity(-1), respectively). Nevertheless, the B(1) agonist des-Arg(9)-BK (600 nmol) failed to induce neutrophil migration. 4 HOE-140 (1 and 2 mg kg(-1)), a B(2) receptor antagonist, reduced LPS-induced neutrophil migration. HOE-140 also reduced the neutrophil migration induced by BK, but had no effect on the migration promoted by IL-1beta or TNF-alpha. des-Arg(9)-[Leu(8)]-BK, B(1) receptor antagonist was ineffective in changing neutrophil migration caused by any of these stimuli. 5 Neutrophil migration induced by LPS or BK was reduced by interleukin-1 receptor antagonist (IL-1ra) (1 mg kg(-1)), sheep anti-rat TNF serum (anti-TNF serum) (0.3 ml cavity(-1)), and the nonspecific selectin inhibitor fucoidin (10 mg kg(-1)). 6 TNF-alpha levels in the pouch fluid were increased by LPS or BK injection, peaking at 0.5-1 h and gradually declining thereafter up to 6 h. IL-1beta levels increased steadily throughout the 6 h period. HOE-140 markedly inhibited the rise in IL-1beta and TNF-alpha levels in pouch fluid triggered by both stimuli. 7 These results indicate that BK participates importantly in selectin-dependent neutrophil migration into the air pouch triggered by LPS in the rat, by stimulating B(2) receptors coupled to synthesis/release of TNF-alpha and IL-1beta.  相似文献   

8.
1. Vascular endothelial growth factor (VEGF) is a heparin-binding angiogenic factor which specifically acts on endothelial cells via distinct membrane-spanning tyrosine kinase receptors. Here we used the rat sponge implant model to test the hypothesis that the angiogenic activity of VEGF can be suppressed by protein tyrosine kinase (PTK) inhibitors. 2. Neovascular responses in subcutaneous sponge implants were determined by measurements of relative sponge blood flow by use of a 133Xe clearance technique, and confirmed by histological studies and morphometric analysis. 3. Daily local administration of 250 ng VEGF165 accelerated the rate of 133Xe clearance from the sponges and induced an intense neovascularisation. This VEGF165-induced angiogenesis was inhibited by daily co-administration of the selective PTK inhibitor, lavendustin A (10 micrograms), but not its negative control, lavendustin B (10 micrograms). Blood flow measurements and morphometric analysis of 8-day-old sponges showed that lavendustin A reduced the 133Xe clearance of VEGF165-treated sponges from 32.9 +/- 1.5% to 20.9 +/- 1.6% and the total fibrovascular growth area from 62.4 +/- 6.1% to 21.6 +/- 6.8% (n = 12, P < 0.05). 4. Co-injection of suramin (3 mg), an inhibitor of heparin-binding growth factors, also suppressed the VEGF165-elicited neovascular response. In contrast, neither lavendustin A nor suramin produced any effect on the basal sponge-induced angiogenesis. 5. When given alone, low doses of VEGF165 (25 ng) or basic fibroblast growth factor (bFGF; 10 ng) did not modify the basal sponge-induced neovascularisation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
1. This study was designed to investigate the role of bradykinin (BK), as well as the subtype of BK receptors involved, in formalin-induced hindpaw pain in the mouse by use of selective B1 and B2 receptor antagonists. In addition, we have analysed whether or not BK may be involved in formalin-induced hindpaw oedema in the mouse. 2. The pretreatment of animals with captopril (2 and 5 mg kg-1, s.c.) significantly increase the first and the second phases of formalin-induced pain. 3. Co-injection of the selective B1 receptor antagonist des-Arg9[Leu8]-BK (0.2-0.4 nmol/paw), together with formalin, caused graded and similar inhibitions of both phases of formalin-induced pain. Similar results were obtained with the B2 antagonists NPC 349 (D-Arg[Hyp3,Thi5,8-D-Phe7]-BK) and NPC 567 (D-Arg[Hyp3, D-Phe7]-BK) (0.2 and 0.6 nmol/paw). Higher concentrations of these antagonists (1 nmol/paw) failed to antagonize formalin-induced pain. 4. The new potent and selective B2 receptor antagonists, Hoe 140 (D-Arg[Hyp3,Thi5,D-Tic7,Oic8]-BK), NPC 17731 (D-Arg[Hyp3, trans-4-propoxy-D-proline (transpropyl)7, Oic8]-BK), and NPC 17761 (D-Arg[Hyp3, trans-4-propoxy-D-proline (trans thiophenyl)7, Oic8]-BK) (0.02 to 1.0 nmol/paw), also caused significant inhibitions of both phases of formalin-induced pain. When Hoe 140 was injected subcutaneously 30 min before formalin injection (9.9 and 99 nmol kg-1), it significantly attenuated both phases of formalin-induced pain.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
1. We have investigated the mechanism of bradykinin (BK)-induced plasma extravasation into the knee joint of the anaesthetized rat. Accumulation of [125I]-human serum albumin within the synovial cavity was used as a marker of increased vascular permeability. 2. Perfusion with BK (1 microM) produced significant plasma extravasation into the knee which was inhibited by co-perfusion of the selective bradykinin B2 receptor antagonist D-Arg-[Hyp3,Thi5,D-Tic7,Oic8]-bradykinin (Hoe 140, 200 nM). 3. The bradykinin B1 receptor agonist, [des-Arg9]-BK (up to 100 mM), did not induce plasma extravasation into the knee joint, over this time period. 4. Chemical sympathectomy by chronically administered 6-hydroxydopamine (6-OHDA) did not inhibit bradykinin-induced plasma extravasation. Acute intra-articular perfusion with 6-OHDA (to stimulate transmitter release from sympathetic nerve terminals) at concentrations up to 50 mM did not induce significant plasma extravasation. Intra-articular perfusion of 100 mM 6-OHDA induced significant plasma extravasation but produced severe systemic toxicity. 5. The selective neurokinin1 (NK1) receptor antagonist, RP67580 (230 nmol kg-1), or receptor antagonists for the mast cell products histamine and 5-hydroxytryptamine did not significantly inhibit BK-induced plasma extravasation. 6. Co-perfusion of the NO synthase inhibitor, NG-nitro-L-arginine methyl ester (L-NAME) (1 mM) did not significantly inhibit the response to BK. 133Xe clearance from L-NAME (1 mM)-injected joints was significantly (P < 0.05) reduced compared to D-NAME injected joints, suggesting a reduction in blood flow as a result of decreased basal NO production.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
1. Binding of the specific bradykinin B1 receptor agonist, [3H]-des-Arg10-kallidin (-KD) was investigated in smooth muscle cells (SMC) isolated from rabbit mesenteric arteries (RMA). 2. [3H]-des-Arg10-KD specifically bound to interleukin-1 (IL-1)-treated RMA-SMC in a saturable fashion with an equilibrium dissociation constant (KD) of 0.3-0.5 nM. The number of binding sites per cell was 20,000-35,000. Kinins inhibited [3H]-des-Arg10-KD binding to RMA-SMC with an order of potency very similar to that observed in typical B1 specific bioassays: des-Arg9-bradykinin (BK) approximately KD >> BK. Furthermore, the B1 receptor antagonist [Leu8]des-Arg9-BK inhibited [3H]-des-Arg10-KD binding with an IC50 of 43 nM as expected for its effect at B1 receptors. The B2 receptor antagonists, NPC 567 and Hoe 140 only affected [3H]-des-Arg10-KD binding at very high concentrations (IC50 = 0.8 microM and IC50 > 10 microM, respectively). 3. Des-Arg9-BK (B1 agonist) and [Hyp3]Tyr(Me)8-BK (B2 agonist) did not induce prostacyclin (PGI2) production by RMA-SMC. Lipopolysaccharide (LPS) treatment of the cells did not affect the B1 agonist response whereas IL-1 beta treatment produced a 7 fold increase in des-Arg9-BK-stimulated PGI2 production. IL-1 beta also stimulated the response to B2 agonists. 4. Des-Arg9-BK-induced PGI2 secretion in IL-1-primed RMA-SMC was mediated by B1 receptors since it was inhibited by [Leu8]des-Arg9-BK (IC50 = 56-73 nM) but not by Hoe 140.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Kinin receptor agonists and antagonists at the B(1) and B(2) receptors were injected intrathecally (i.t., at T-9 spinal cord level) to conscious unrestrained rats and their effects on mean arterial pressure (MAP) and heart rate (HR) were compared in streptozotocin (STZ)-diabetic rats (65 mg kg(-1) STZ, i.p. 3 weeks earlier) and aged-matched control rats. The B(1) receptor agonist, des-Arg(9)-Bradykinin (BK) (3.2 - 32.5 nmol), evoked dose-dependent increases in MAP and tachycardia during the first 10 min post-injection in STZ-diabetic rats only. The cardiovascular response to 6.5 nmol des-Arg(9)-BK was reversibly blocked by the prior i.t. injection of antagonists for the B(1) receptor ([des-Arg(10)]-Hoe 140, 650 pmol or [Leu(8)]-des-Arg(9)-BK, 65 nmol) and B(2) receptor (Hoe 140, 81 pmol or FR173657, 81 pmol) or by indomethacin (5 mg kg(-1), i.a.). The i.t. injection of BK (8.1 - 810 pmol) induced dose-dependent increases in MAP which were accompanied either by tachycardiac (STZ-diabetic rats) or bradycardiac (control rats) responses. The pressor response to BK was significantly greater in STZ-diabetic rats. The cardiovascular response to 81 pmol BK was reversibly blocked by 81 pmol Hoe 140 or 81 pmol FR173657 but not by B(1) receptor antagonists nor by indomethacin in STZ-diabetic rats. The data suggest that the activation of kinin B(1) receptor in the spinal cord of STZ-diabetic rats leads to cardiovascular changes through a prostaglandin mediated mechanism. Thus, this study affords an accessible model for studying the expression, the pharmacology and physiopathology of the B(1) receptor in the central nervous system.  相似文献   

13.
1. Mongrel dogs were chronically instrumented with an intra-aortic catheter, a Königsberg intraventricular pressure transducer and a Döppler flow probe around the left coronary artery. After ganglionic blockade with hexamethonium, the cardiovascular effects of bradykinin B1 and B2 receptor agonists, des-Arg9-bradykinin and bradykinin (BK), were investigated in the presence and absence of specific antagonists. The contribution of nitric oxide (NO) and prostanoids to the cardiovascular effects of kinins was also examined. 2. BK (1 microgram kg-1 min-1) and des-Arg9-BK (1 microgram kg-1 min-1) both given as a 2 min i.v. infusion, produced a significant decrease in mean arterial pressure (MAP, -34 +/- 4% for BK and -45 +/- 2% for des-Arg9-BK) and coronary vascular resistance (CVR, -37 +/- 5% for BK and -50 +/- 2% for des-Arg9-BK), without affecting cardiac contractility, left ventricular end diastolic pressure, and coronary velocity. BK caused a significantly greater decrease in MAP and CVR than des-Arg9-BK (P < 0.05). 3. Pretreatment with the B1 receptor antagonist, des-Arg9-[Leu8]-BK (25 micrograms kg-1) significantly inhibited the decrease in MAP and CVR produced by des-Arg9-BK but not by BK. Infusion of des-Arg9-[Leu8]-BK alone also induced a significant decrease in MAP and CVR (P < 0.05). In the presence of the B2 receptor antagonist, Hoe 140 (25 micrograms kg-1), only the decreases in MAP and CVR caused by BK were significantly reduced (P < 0.05). 4. Inhibition of NO synthase with N omega-nitro-L-arginine (L-NOARG, 45 mg kg-1) significantly (P < 0.05) prevented the decrease in CVR but not MAP induced by des-Arg9-BK, whilst responses to BK were not affected by L-NOARG pretreatment. Inhibition of prostanoid synthesis with indomethacin (25 mg kg-1) did not affect the reductions in MAP and CVR induced by des-Arg9-BK or BK. 5. In conclusion, i.v. des-Arg9-BK and BK administration induced reductions in MAP and CVR suggesting that in conscious instrumented dogs both B1 and B2 receptors are present and can affect systemic blood pressure and coronary resistance regulation. Our results also suggest that prostanoids are not involved in the vascular response to kinins and that coronary vascular B1 receptors are at least in part coupled to the release of NO.  相似文献   

14.
The effect of the selective kinin B1 receptor agonist des-Arg9-BK was studied on blood pressure and on the in vitro aorta of rabbits pretreated 18 h earlier with lipopolysaccharide from E. coli, an infusion of bradykinin or with one of three angiotensin converting enzyme inhibitors captopril, enalapril or teprotide. The hypotensive response in vivo and contractile response seen on the in vitro aorta was selectively increased to des-Arg9-BK in all pretreated groups compared to controls, effects which were blocked by the selective competitive kinin B1 receptor antagonist des-Arg9-[Leu8]BK. Dexamethasone given to lipopolysaccharide pretreated rabbits had no effect on the increased hypotensive response seen with des-Arg9-BK. The skin vascular permeability response to des-Arg9-BK, bradykinin and histamine remained unchanged in the groups pretreated with lipopolysaccharide or captopril compared to controls. The possible mechanism(s) whereby angiotensin converting enzyme inhibitors produce this effect and the possible relevance to the inflammatory side-effects seen with this group of drugs is discussed.  相似文献   

15.
1. The effects of bradykinin (BK) in the microcirculation of the isolated perfused heart of the rat were examined. The kinin receptors mediating the effects of BK were characterized and the role of endothelium-derived relaxation factor (EDRF) and prostacyclin investigated. 2. The dose-related vasodilator responses elicited by bolus doses of BK (0.001-10.0 nmol) were competitively blocked by the selective kinin B2 receptor antagonist [D-Arg0,Hyp3, Thi5.8,D-Phe7]-bradykinin (pA2 = 6.8). Des-Arg9-bradykinin, a selective kinin B1 receptor agonist had no vasodilator activity at doses of up to 10 nmol. 3. L-NG-nitro arginine (100 microM; L-NOArg), an inhibitor of endothelium-dependent vasodilatation, reduced the duration but not the magnitude of the BK vasodilator response. This action of L-NOArg was not reversed by L-arginine (100 microM). 4. Superoxide dismutase (10 units ml-1), haemoglobin (10 microM) and methylene blue (MB; 1 microM), all known to modify EDRF-mediated responses, failed to alter the vasodilator action of BK. 5. Gossypol (1-15 microM), a presumed inhibitor of EDRF biosynthesis, caused a marked drop in perfusion pressure followed by vasoconstriction. These changes in coronary tone were accompanied by an irreversible depression of cardiac contractility and heart rate. Over the same concentration range gossypol abolished the vasodilator action of BK (1.0 nmol), however it also blocked the endothelium-independent vasodilator response to sodium nitroprusside (30 nmol) and the vasoconstrictor effect of endothelin-1 (10 pmol) which suggests non-specific toxic actions of gossypol.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
1. We studied the role of bradykinin (BK) and its active metabolite Des-Arg9-BK on noradrenaline release in association with the incidence of ventricular arrhythmias at reperfusion of the ischaemic myocardium. 2. Experiments were performed in Langendorff perfused isolated hearts of rats subjected to 30 min no flow followed by 5 min reperfusion. The electrocardiogram was monitored continuously and noradrenaline was measured in the effluent as well as in the myocardial tissue. 3. In untreated hearts, cumulative noradrenaline overflow following global ischaemia reached 226 +/- 35 pmol g-1 of heart (n = 8, P < 0.05) during the 5 min of reperfusion along with ventricular tachycardia and/or fibrillation. A decrease in myocardial noradrenaline (-31%) was also observed. 4. Bradykinin perfused at concentrations between 0.01 and 1 microM, 10 min before flow was stopped and at reperfusion, inhibited noradrenaline overflow in a concentration-dependent manner. At a concentration of 1 microM, bradykinin completely abolished noradrenaline overflow. For the same concentration of bradykinin, myocardial noradrenaline contents were significantly higher (n = 5-8, P < 0.05). Ventricular fibrillation but not ventricular tachycardia was also prevented. 5. Des-Arg9-BK (0.1 microM) in the same experimental conditions had similar effects. While Hoe 140, a selective antagonist at B2 receptors, did not abolish the effects of bradykinin, Lys [Leu8] Des-Arg9-BK, an antagonist at B1 receptors, abolished the effects of both Des-Arg9-BK and bradykinin. 6. These results suggest that the cardioprotective action of bradykinin in the preparation may be mediated partially by an inhibitory effect on noradrenaline liberation which could be mediated by the activation of B1 receptors.  相似文献   

17.
In the awake restrained rat the intrathecal (i.th.) administration of 81 pmol to 8.1 nmol of bradykinin (BK) increased reaction time to a noxious radiant heat stimulus. The enhancement of tail-flick latency peaked at 1 min and returned to the basal level 11-16 min after BK administration. Behavioural responses were observed as early as 5 s following peptide administration and lasted for 30-45 s. When BK was given after prior i.th. administration of 6.1 nmol of [Thi5,8, D-Phe7]BK, an antagonist of BK at the B2-receptor, the increase in latency was significantly attenuated. The analogue [Leu8]BK-(1-8) (10.3 nmol), an antagonist of BK at the B1-receptor, failed to modify the BK-induced antinociception. The two analogues alone and the fragment BK-(1-8), a potent stimulant of B1-receptors for BK, failed to alter reaction time and only the B2-receptor antagonist reduced BK-induced behavioural responses. These results suggest that BK may play a role through the activation of a B2-receptor type in a spinal sensory pathway subserving pain.  相似文献   

18.
1. Interleukin-1 beta (IL-1 beta), IL-2 and IL-8 induced a mechanical hyperalgesia following intra-articular (i.artic.) injection into rat knee joints, whereas IL-6 and tumour necrosis factor alpha (TNF-alpha) were without effect. 2. Co-administration of IL-1 receptor antagonist (0.1 micrograms) with IL-1 beta (1 mu), IL-2 (10 mu) or IL-8 (0.1 mu) prevented the subsequent development of the hyperalgesia. 3. Co-administration of desArg9Leu8BK (0.5-5 nmol) with IL-1 beta (1 mu), IL-2 (10 mu) or IL-8 (0.1 mu) reduced the level of hyperalgesia at 1, 4 and 6 h post administration, whereas Hoe 140 (5 pmol) antagonized the hyperalgesia only at the 1 h time point. 4. Intravenous administration of desArg9Leu8BK (10 nmol kg-1) or Hoe 140 (100 pmol kg-1) following IL-1 beta (1 mu), IL-2 (10 mu), or IL-8 (0.1 mu) reversed the subsequent hyperalgesia. 5. Administration of desArg9BK into joints 24 h after pre-treatment with IL-1 beta (1 mu) produced analegsia at low doses (50 pmol) and hyperalgesia at a higher dose (0.5 nmol). Both these effects were blocked by desArg9Leu8BK (0.5 nmol). 6. Administration of desArg9BK (0.5 nmol i.artic.) to animals 24 h after pre-treatment with IL-2 (1-100 mu) or IL-8 (0.1-10 mu) had no effect on the load tolerated by the treated joint. 7. Administration of indomethacin (1 mg kg-1, s.c.) prior to IL-1 beta (1 mu i.artic.) prevented the development of hyperalgesia. Administration of desArg9BK (5 pmol-0.5 nmol, i.artic.) to animals 24 h after indomethacin and IL-1 beta pretreatment had no effect on the load tolerated by the treated joint.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
1. The aim of the present study was to characterize the subtypes of bradykinin (BK) receptors that evoke the relaxation and contraction induced by BK and to identify the main contracting and relaxing factors in isolated porcine basilar artery by measuring changes in isometric tension and a thromboxane (TX) metabolite. 2. Endothelial denudation completely abolished both responses. [Thi5,8, D-Phe7]-BK (a B2-receptor antagonist) inhibited the BK-induced relaxation and contraction, whereas des-Arg9, [Leu8]-BK (a B1-receptor antagonist) had no effect. 3. L-nitro-arginine (L-NA, a nitric oxide synthase inhibitor) completely inhibited BK-induced relaxation. Indomethacin (a cyclo-oxygenase inhibitor) completely and ONO-3708 (a TXA2/prostaglandin H2 receptor antagonist) partially inhibited BK-induced contraction, whereas OKY-046 (a TXA2 synthase inhibitor) and nordihydroguaiaretic acid (a lipoxygenase inhibitor) did not. 4. In the presence of L-NA, the contractile response to BK was inhibited by indomethacin or ONO-3708 and was competitively antagonized by [Thi5,8, D-Phe7]-BK (pA2=7.50). In the presence of indomethacin, the relaxant response to BK was inhibited by L-NA and was competitively antagonized by [Thi5,8, D-Phe7]-BK (pA2=7.59). 5. TXA2 release was not induced by BK-stimulation. 6. These results suggest that the endothelium-dependent relaxation and contraction to BK in the porcine basilar artery is mediated via activation of endothelial B2-receptors. The main relaxing factor may be NO and the main contracting factor may be prostaglandin H2.  相似文献   

20.
1. The roles of the tissue kallikrein-kinin system and nitric oxide (NO) release in Phoneutria nigriventer venom-induced relaxations of rabbit corpus cavernosum (RbCC) smooth muscle have been investigated by use of a bioassay cascade. 2. Phoneutria nigriventer venom (10-30 micrograms), porcine pancreatic kallikrein (100 mu), rabbit urinary kallikrein (10 mu), bradykinin (BK, 0.3-3 nmol), acetylcholine (ACh, 0.3-30 nmol) and glyceryl trinitrate (GTN, 0.5-10 nmol) caused relaxations of the RbCC strips. Captopril (1 microM) substantially potentiated Phoneutria nigriventer venom- and BK-induced RbCC relaxations without affecting those elicited by GTN. 3. The bradykinin B2 receptor antagonist, Hoe 140 (D-Arg-[Hyp3,Thi5,D- Tic7,Oic8]-BK, 50 nM), aprotinin (10 micrograms ml-1) and the tissue kallikrein inhibitor, Pro-Phe-Aph-Ser-Val- Gln-NH2 (KIZD-06, 1.3 microM) significantly inhibited Phoneutria nigriventer venom-induced RbCC relaxations, without affecting those provoked by GTN and ACh. The B1 receptor antagonist, [Leu9]des Arg10BK (0.5 microM) and soybean trypsin inhibitor (SBTI, 10 micrograms ml-1) had no effect on Phoneutria nigriventer venom-induced RbCC relaxations. 4. The relaxations induced by Phoneutria nigriventer venom, porcine pancreas kallikrein, BK and ACh were significantly inhibited by N omega-nitro-L-arginine methyl ester (L-NAME, 10 microM) but not by D-NAME (10 microM). L-NAME did not affect GTN-induced relaxations. L-Arginine (300 microM), but not D-arginine (300 microM), significantly reversed the inhibitory effect of L-NAME. 5. Our results indicate that Phoneutria nigriventer venom activates the tissue kallikrein-kininogen-kinin system in RbCC strips leading to NO release and suggest a functional role for this system in penile erection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号