首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We have previously used a subtractive immunization (SI) approach to generate monoclonal antibodies (mAbs) against proteins preferentially expressed by the highly metastatic human epidermoid carcinoma cell line, M(+)HEp3. Here we report the immunopurification, identification and characterization of SIMA135/CDCP1 (subtractive immunization M(+)HEp3 associated 135 kDa protein/CUB domain containing protein 1) using one of these mAbs designated 41-2. Protein expression levels of SIMA135/CDCP1 correlated with the metastatic ability of variant HEp3 cell lines. Protein sequence analysis predicted a cell surface location and type I orientation of SIMA135/CDCP1, which was confirmed directly by immunocytochemistry. Analysis of deglycosylated cell lysates indicated that up to 40 kDa of the apparent molecular weight of SIMA135/CDCP1 is because of N-glycosylation. Western blot analysis using a antiphosphotyrosine antibody demonstrated that SIMA135/CDCP1 from HEp3 cells is tyrosine phosphorylated. Selective inhibitor studies indicated that an Src kinase family member is involved in the tyrosine phosphorylation of the protein. In addition to high expression in M(+)HEp3 cells, the SIMA135/CDCP1 protein is expressed to varying levels in 13 other human tumor cell lines, manifesting only a weak correlation with the reported metastatic ability of these tumor cell lines. The protein is not detected in normal human fibroblasts and endothelial cells. Northern blot analysis indicated that SIMA135/CDCP1 mRNA has a restricted expression pattern in normal human tissues with highest levels of expression in skeletal muscle and colon. Immunohistochemical analysis indicated apical and basal plasma membrane expression of SIMA135/CDCP1 in epithelial cells in normal colon. In colon tumor, SIMA135/CDCP1 expression appeared dysregulated showing extensive cell surface as well as cytoplasmic expression. Consistent with in vitro shedding experiments on HEp3 cells, SIMA135/CDCP1 was also detected within the lumen of normal and cancerous colon crypts, suggesting that protein shedding may occur in vivo. Thus, specific immunodetection followed by proteomic analysis allows for the identification and partial characterization of a heretofore uncharacterized human cell surface antigen.  相似文献   

2.
Casar B  He Y  Iconomou M  Hooper JD  Quigley JP  Deryugina EI 《Oncogene》2012,31(35):3924-3938
The CUB domain-containing protein-1 (CDCP1) is a transmembrane molecule that has recently been implicated in cancer progression. In this study we have established a novel mechanism for initiation of CDCP1-mediated signaling in vivo and demonstrated that specific 135→70-kDa processing of cell-surface CDCP1 by extracellular serine proteases is a prerequisite for CDCP1-dependent survival of cancer cells during metastasis. The in vivo cleavage of CDCP1 triggers a survival program involving recruitment of Src and PKCδ, Src-mediated phosphorylation of cell-surface-retained 70-kDa CDCP1, activation of Akt and suppression of PARP1-induced apoptosis. We demonstrate in vivo that phosphorylated Src, PKCδ and Akt all constitute activated elements of a CDCP1-signaling axis during tissue colonization of tumor cells. Preventing in vivo cleavage of CDCP1 with unique anti-CDCP1 antibodies, serine protease inhibitors or genetic modulation of the cleavage site in the CDCP1 molecule completely abrogated survival signaling associated with the 70-kDa CDCP1, and induced PARP1 cleavage and PARP1-mediated apoptosis, ultimately resulting in substantial inhibition of tissue colonization by tumor cells. The lack of CDCP1 cleavage in the lung tissue of plasminogen-knockout mice along with a coordinated reduction in tumor cell survival in a lung retention model, and importantly rescue of both by in vivo supplied plasmin, indicated that plasmin is the crucial serine protease executing in vivo cleavage of cell-surface CDCP1 during early stages of lung colonization. Together, our findings indicate that in vivo blocking of CDCP1 cleavage upstream from CDCP1-induced pro-survival signaling provides a potential mechanism for therapeutic intervention into metastatic disease.  相似文献   

3.
4.
Primary breast carcinoma are frequently infiltrated by dendritic cells (DC). The mechanisms involved in the localization and status of activation of DC within primary breast carcinoma were investigated. CCL20/MIP3alpha, a chemokine involved in immature DC and their precursors attraction, was detected by immunohistochemistry on cryopreserved tissue sections of primary breast tumors and by ELISA and biological assay in metastatic effusion fluids from breast cancer patients but not from other tumors. In vitro, irradiated breast carcinoma cell lines (BCC) as well as their conditioned media promoted CD34+ cell differentiation into CD1a+ Langerhans cells (LC) precursors as early as day 6, while at day 12, 2 different CCR6+ subpopulations of DC with a Langerhans cell (CD1a(+)Langerin(+)CD86+) and an immature DC (CD1a(high)Langerin-CD86(-)HLA-DR(low)CD40(low)) phenotype were observed. This phenomenon was partly driven by a TGFbeta-dependent mechanism since a pan TGFbeta polyclonal antibody completely blocks BCC-induced LC differentiation and partly reduces immature DC development. These DC failed to maturate in response to sCD40L or LPS stimuli and CD1a(high)Langerin(-)CD86- cells have a reduced T-cell stimulatory capacity in MLR experiments. The absolute number of T cells was reduced by 50% in both the CD4+ or CD8+ compartments, these T cells expressing lower levels of the CD25 Ag and producing less IFNgamma. These results show that breast carcinoma cells produce soluble factors, which may attract DC and their precursors in vivo, and promote the differentiation of the latter into LC and immature DC with altered functional capacities. The infiltration of BCC by these altered DC may contribute to the impaired immune response against the tumor.  相似文献   

5.
CUB-domain-containing protein 1 (CDCP1) is a trans-membrane protein regulator of cell adhesion with a potent pro-migratory function in tumors. Given that proteolytic cleavage of the ectodomain correlates with outside-in oncogenic signaling, we characterized glycosylation in the context of cellular processing and expression of CDCP1 in prostate cancer. We detected 135 kDa full-length and proteolytic processed 70 kDa species in a panel of PCa cell models. The relative expression of full-length CDCP1 correlated with the metastatic potential of syngeneic cell models and an increase in surface membrane expression of CDCP1 was observed in tumor compared to adjacent normal prostate tissues. We demonstrated that glycosylation of CDCP1 is a prerequisite for protein stability and plasma membrane localization, and that the expression level and extent of N-glycosylation of CDCP1 correlated with metastatic status. Interestingly, complex N-linked glycans with sialic acid chains were restricted to the N-terminal half of the ectodomain and absent in the truncated species. Characterization of the extracellular expression of CDCP1 identified novel circulating forms and revealed that extracellular vesicles provide additional processing pathways. Employing immunoaffinity mass spectrometry, we detected elevated levels of circulating CDCP1 in patient urine with high-risk disease. Our results establish that differential glycosylation, cell surface presentation and extracellular expression of CDCP1 are hallmarks of PCa progression.  相似文献   

6.
Gu Z  Yamashiro J  Kono E  Reiter RE 《Cancer research》2005,65(20):9495-9500
Prostate stem cell antigen (PSCA), a 123-amino acid cell surface glycoprotein, is highly expressed in both local and metastatic prostate cancers as well as in a large proportion of bladder and pancreatic cancers. PSCA overexpression correlates with a high risk of recurrence after primary therapy for prostate cancer. We have reported previously that anti-PSCA monoclonal antibody (mAb) 1G8 inhibits tumor growth, prevents metastasis, and prolongs the survival of mice inoculated with human prostate cancer cell lines and xenografts. The current study was undertaken to elucidate the mechanism of action of anti-PSCA antibody therapy. In particular, we asked whether antitumor activity resulted from recruitment of an immune response or a direct effect on the tumor cell itself. In vitro assays show that both intact 1G8 and F(ab')2 fragments of 1G8 induce prostate cancer cell death. The anti-PSCA antibody-induced cell death is caspase independent and requires antigen cross-linking. These results were confirmed in in vivo models in which both 1G8 and F(ab')2 fragments were able to inhibit prostate tumor formation and growth equally. These results suggest that the anti-PSCA mAb 1G8 acts by a direct, Fc-independent mechanism to inhibit prostate tumor growth both in vitro and in vivo.  相似文献   

7.
Gene therapy for prostate cancer may be realized through transduction of whole genes, such as PSA or PSMA, into immunotherapeutic dendritic cells (DCs). An oncoretroviral vector encoding human PSMA and a bicistronic oncoretroviral vector encoding human PSA and cell surface CD25 cDNAs were constructed. Remarkably, transfer of PSA/CD25 or PSMA cDNA during murine hematopoietic cell differentiation into DCs occurred with approximately 80% efficiency. In vitro, transduced DCs retained allostimulatory function and primed syngeneic T cells for tumor antigen-specific IFN-gamma secretion. In test experiments designed to elucidate mechanisms in vivo, syngeneic recipients of transduced DCs had increased anti-human PSA antibody titers and tumor-specific CD8(+) T cell IFN-gamma secretion with no detectable immune response to CD25. Gene-modified DC recipients had increased protection from specific tumor challenge for at least 18 weeks post-vaccination. DC vaccination also protected both male and female recipients. Gene-modified DC vaccination mediated regression of established, specific gene-expressing, TRAMP-C1 prostate cancer cell tumors. These findings indicate that antibody and cellular responses generated through PSA and PSMA gene transfer into DC yielded protective immunity, thereby providing further preclinical support for the implementation of immuno-gene therapy approaches for prostate cancer.  相似文献   

8.
Tien AH  Xu L  Helgason CD 《Cancer research》2005,65(7):2947-2955
Increasing evidence suggests that altered immune function accompanies, and indeed may facilitate, cancer progression. In this study, we sought to determine the nature of, and cellular mechanisms underlying, changes in immune status during disease progression in a transgenic mouse model of prostate dysplasia. Immune cells in the tumor microenvironment, as well as in the secondary lymphoid tissues, displayed altered phenotypes. Although evidence of antitumor immunity was detected, there was a paradoxical decrease in the ability of T cells to proliferate in vitro at later stages of disease progression. Detailed analysis of the draining lumbar lymph nodes revealed an increased frequency and number of CD4(+)CD25(+) T cells and an enhanced production of inhibitory cytokines, which correlated with impaired T-cell function. Functional studies confirmed a role for CD4(+)CD25(+) regulatory T cells in suppressing T-cell proliferation as well as regulating the growth of transplanted prostate tumor cells. In addition, our studies show for the first time that anti-CD25 antibody treatment reduces, but does not prevent, tumor growth in a transgenic mouse model of prostate dysplasia. Taken together, this work provides compelling evidence that prostate tumor progression is accompanied by altered immune function and, moreover, that regulatory T cells play an important role in this process. These studies thus provide the impetus for development of specific and effective strategies to deplete regulatory T cells, or suppress their function, as an alternative or adjunct strategy for reducing tumor growth.  相似文献   

9.
PURPOSE: Although elevated proportions of CD4(+)CD25(+) regulatory T (Treg) cells have been shown in several types of cancers, very little is known about the existence and function of CD8(+) Treg cells in prostate cancer. In this study, we investigated prostate tumor-derived CD8(+) Treg cells and their function. EXPERIMENTAL DESIGN: Tumor-infiltrating lymphocytes (TIL) from fresh tumor specimens of patients with prostate cancer were generated and subjected to phenotypic and suppressive function analyses. In particular, we investigated the role and function CD8(+) Treg cells in prostate cancer. RESULTS: We show that high percentages of CD4(+)CD25(+) T cells are probably present in the majority (70%) of prostate TILs. Remarkably, both CD4(+) and CD8(+) T-cell subpopulations possessed potent suppressive activity. T-cell cloning and fluorescence-activated cell sorting analyses showed the presence of CD8(+)CD25(+) Treg cell clones that expressed FoxP3 and suppressed na?ve T-cell proliferation, in addition to the previously known CD4(+)CD25(+) Treg cells. These CD8(+) Treg cells suppressed na?ve T-cell proliferation mainly through a cell contact-dependent mechanism. Importantly, the suppressive function of CD8(+) Treg cells could be reversed by human Toll-like receptor 8 (TLR8) signaling. CONCLUSION: Our study shows that like CD4(+)CD25(+) Treg cells, CD8(+) Foxp3(+) Treg cells present in prostate tumor-derived TILs suppress immune responses and that their suppressive function can be regulated by TLR8 ligands, raising the possibility that the manipulation of Treg cell function by TLR8 ligands could improve the efficacy of immunotherapy for prostate cancer patients.  相似文献   

10.
Bone metastases are one of the most common events in patients with prostate carcinoma. PTH-rP, a protein produced by prostate carcinoma and other epithelial cancers, is a key agent for the development of bone metastases. A PTH-rP-derived peptide, designated PTR-4 was identified, which is capable to bind HLA-A2.1 molecules and to generate PTH-rP-specific cytotoxic T cell (CTL) lines from healthy HLA-A2.1(+) individual peripheral-blood-mononuclear-cells (PBMC). In this model, we investigated the in vitro possibility of generating an efficient PTH-rP specific CTL response by cyclical stimulations with IL-2 and PTR-4 peptide-pulsed autologous dendritic cells (DC), of HLA-A2.1(+) tumour infiltrating lymphocytes (TIL) derived from a patient with metastatic prostate carcinoma. A T cell line generated in this way (called TM-PTR-4) had a CD3(+), CD5(+), CD4(-), CD8(+), CD45(Ro+), CD56(-) immunophenotype and a HLA-A2.1 restricted cytotoxic activity to PTR-4-peptide pulsed CIR-A2 (HLA-A2.1(+)) target cells, PTH-rP(+)/HLA-A2.1(+) CIR-A2 transfected with PTH-rP gene, prostate carcinoma LNCaP cells, and autologous metastatic prostate cancer cells (M-CaP). These lymphocytes were not cytotoxic to HLA-A2.1(+) targets not producing PTH-rP, such as peptide-unpulsed CIR-A2 and colon carcinoma SW-1463, cell lines. Our results provide evidence that PTR-4 peptide-pulsed autologous DC may break the tolerance of human TIL against the autologous tumour by inducing a PTH-rP-specific CTL immune reaction. In conclusion PTR-4 peptide-pulsed autologous DC may be a promising approach for vaccine-therapy and antigen-specific CTL adoptive immunotherapy of hormone-resistant prostrate cancer.  相似文献   

11.
CD44 is a multifunctional protein involved in cell adhesion and signaling. The role of CD44 in prostate cancer (PCa) development and progression is controversial with studies showing both tumor-promoting and tumor-inhibiting effects. Most of these studies have used bulk-cultured PCa cells or PCa tissues to carry out correlative or overexpression experiments. The key experiment using prospectively purified cells has not been carried out. Here we use FACS to obtain homogeneous CD44(+) and CD44(-) tumor cell populations from multiple PCa cell cultures as well as four xenograft tumors to compare their in vitro and in vivo tumor-associated properties. Our results reveal that the CD44(+) PCa cells are more proliferative, clonogenic, tumorigenic, and metastatic than the isogenic CD44(-) PCa cells. Subsequent molecular studies demonstrate that the CD44(+) PCa cells possess certain intrinsic properties of progenitor cells. First, BrdU pulse-chase experiments reveal that CD44(+) cells colocalize with a population of intermediate label-retaining cells. Second, CD44(+) PCa cells express higher mRNA levels of several 'stemness' genes including Oct-3/4, Bmi, beta-catenin, and SMO. Third, CD44(+) PCa cells can generate CD44(-) cells in vitro and in vivo. Fourth, CD44(+) PCa cells, which are AR(-), can differentiate into AR(+) tumor cells. Finally, a very small percentage of CD44(+) PCa cells appear to undergo asymmetric cell division in clonal analyses. Altogether, our results suggest that the CD44(+) PCa cell population is enriched in tumorigenic and metastatic progenitor cells.  相似文献   

12.
Human epithelial tumor progression and metastasis involve cellular invasion, dissemination in the vasculature, and regrowth at metastatic sites. Notch signaling has been implicated in metastatic progression but its roles have yet to be fully understood. Here we report the important role of Notch signaling in maintaining cells expressing the carcinoembryonic antigen cell adhesion molecule CEACAM (CD66), a known mediator of metastasis. CD66 and Notch1 were studied in clinical specimens and explants of human cervical cancer, including specimens grown in a pathophysiologically relevant murine model. Gene expression profiling of CD66(+) cells from primary tumors showed enhanced features of Notch signaling, metastasis, and stemness. Significant differences were also seen in invasion, colony formation, and tumor forming efficiency between CD66(+) and CD66(-) cancer cells. Notably, CD66(+) cells showed a marked sensitivity to a Notch small molecule inhibitor. In support of studies in established cell lines, we documented the emergence of a tumorigenic CD66(+) cell subset within a metastatic lesion-derived cervical-cancer cell line. Similar to primary cancers, CD66 expression in the cell line was blocked by chemical and genetic inhibitors of ligand-dependent nuclear Notch signaling. Collectively, our work on the oncogenic properties of CD66(+) cells in epithelial cancers provides insights into the nature of tumor progression and offers a mechanistic rationale to inhibit the Notch signaling pathway as a generalized therapeutic strategy to treat metastatic cancers.  相似文献   

13.
Cancer vaccines are a promising approach to treating tumors or preventing tumor relapse through induction of an immune response against tumor-associated antigens (TAA). One major obstacle to successful therapy is the immunological tolerance against self-antigens which limits an effective antitumor immune response. As a transient reduction of immunological tolerance may enable more effective vaccination against self-tumor antigens, we explored this hypothesis in a CEA tolerant animal model with an adenovirus expressing CEA vaccine in conjunction with inactivation of CD4(+)CD25(+) regulatory T cells. This vaccination modality resulted in increased CEA-specific CD8(+), CD4(+) T cells and antibody response. The appearance of a CD4(+) T-cell response correlated with a stronger memory response. The combined CD25(+) inactivation and genetic vaccination resulted in significant tumor protection in a metastatic tumor model. Non-invasive tumor visualization showed that not only primary tumors were reduced, but also hepatic metastases. Our results support the viability of this cancer vaccine strategy as an adjuvant treatment to prevent tumor relapse in cancer patients.  相似文献   

14.
Prostate cancer shows a propensity to form secondary tumours within the bone marrow. Such tumours are the major cause of mortality in this disease. We have developed an in vitro system to study the binding of prostate epithelial cells to bone marrow endothelium (BME) and stroma (BMS). The metastatic prostate cancer cell line, PC3 (derived from a bone metastasis), was seeded onto confluent layers of BME and its binding characteristics compared to human umbilical vein endothelial cells (HUVEC), lung endothelium (Hs888Lu) and BMS. The PC3 cell line showed significantly increased binding to BME (P< 0.05) compared to endothelium derived from HUVEC and lung or BMS with maximal binding occurring at 1 h. Following pre-incubation with a beta1 integrin antibody PC3 binding to BME was inhibited by 64% (P< 0.001). Antibodies directed against the integrins beta4, alpha2, alpha4, alpha5 and the cellular adhesion molecules P-selectin, CD31, VCAM-1 and sialy Lewis X showed no effect on blocking PC3 binding. Primary prostatic epithelial cells from both malignant (n = 11) and non-malignant tissue (n = 11) also demonstrated equivalent levels of increased adhesion to BME and BMS compared to HUVEC, peaking at 24 h. Further studies examined the invasive ability of prostate epithelial cells in response to bone marrow endothelium using Matrigel invasion chamber assays. In contrast to the previous results, malignant cells showed an increase (1000 fold) in invasive ability, whilst non-malignant prostate epithelia did not respond. We have shown that both malignant and non-malignant prostate epithelial cells can bind at equivalent levels and preferentially to primary human bone marrow endothelium in comparison to controls. However, only malignant prostate epithelia show increased invasive ability in response to BME.  相似文献   

15.
PURPOSE: Local breast cancer relapse after breast-saving surgery and radiotherapy is associated with increased risk of distant metastasis formation. The mechanisms involved remain largely elusive. We used the well-characterized 4T1 syngeneic, orthotopic breast cancer model to identify novel mechanisms of postradiation metastasis. EXPERIMENTAL DESIGN: 4T1 cells were injected in 20 Gy preirradiated mammary tissue to mimic postradiation relapses, or in nonirradiated mammary tissue, as control, of immunocompetent BALB/c mice. Molecular, biochemical, cellular, histologic analyses, adoptive cell transfer, genetic, and pharmacologic interventions were carried out. RESULTS: Tumors growing in preirradiated mammary tissue had reduced angiogenesis and were more hypoxic, invasive, and metastatic to lung and lymph nodes compared with control tumors. Increased metastasis involved the mobilization of CD11b(+)c-Kit(+)Ly6G(high)Ly6C(low)(Gr1(+)) myeloid cells through the HIF1-dependent expression of Kit ligand (KitL) by hypoxic tumor cells. KitL-mobilized myeloid cells homed to primary tumors and premetastatic lungs, to give rise to CD11b(+)c-Kit(-) cells. Pharmacologic inhibition of HIF1, silencing of KitL expression in tumor cells, and inhibition of c-Kit with an anti-c-Kit-blocking antibody or with a tyrosine kinase inhibitor prevented the mobilization of CD11b(+)c-Kit(+) cells and attenuated metastasis. C-Kit inhibition was also effective in reducing mobilization of CD11b(+)c-Kit(+) cells and inhibiting lung metastasis after irradiation of established tumors. CONCLUSIONS: Our work defines KitL/c-Kit as a previously unidentified axis critically involved in promoting metastasis of 4T1 tumors growing in preirradiated mammary tissue. Pharmacologic inhibition of this axis represents a potential therapeutic strategy to prevent metastasis in breast cancer patients with local relapses after radiotherapy. Clin Cancer Res; 18(16); 4365-74. ?2012 AACR.  相似文献   

16.
17.
Metastatic prostate cancer is a terminal disease, and the development of reliable prognostic tools and more effective therapy is critically important for improved disease survival and management. This study was aimed at identifying genes that are differentially expressed in metastatic and nonmetastatic prostate cancer cells and, as such, could be critical in the development of metastasis. Long-SAGE analysis was used to compare a transplantable human metastatic prostate cancer subline, PCa1-met, with a nonmetastatic counterpart, PCa2. Both sublines were developed from a patient's prostate cancer specimen via subrenal capsule grafting and subsequent orthotopic implantation into SCID mice. Among various differentially expressed genes identified, ASAP1, an 8q24 gene encoding an ADP-ribosylation factor GTPase-activating protein not previously associated with prostate cancer, was up-regulated in the metastatic subline as confirmed by quantitative real-time PCR. Immunohistochemistry of xenograft sections showed that cytoplasmic ASAP1 protein staining was absent or weak in benign tissue, significantly stronger in nonmetastatic PCa2 tissue, and strongest in PCa1-met tissue. In clinical specimens, ASAP1 protein staining was elevated in 80% of primary prostate cancers and substantially higher in metastatic lesions compared with benign prostate tissue. Moreover, additional ASAP1 gene copies were detected in 58% of the primary prostate cancer specimens. Small interfering RNA-induced reduction of ASAP1 protein expression markedly suppressed in vitro PC-3 cell migration (approximately 50%) and Matrigel invasion (approximately 67%). This study suggests that the ASAP1 gene plays a role in prostate cancer metastasis and may represent a therapeutic target and/or biomarker for metastatic disease.  相似文献   

18.
Human prostate cancers characteristically express low levels of major histocompatibility complex (MHC) Class I, which makes it challenging to induce protective antitumor responses involving T cells. Here we demonstrate that a whole cell tumor vaccine can induce protective T cell immunity to a low MHC Class I-expressing mouse prostate cancer cell line, RM-1. ALVAC recombinant canarypox viruses encoding interleukin-2, interleukin-12 and tumor necrosis factor-alpha were used to create therapeutic vaccines in 2 different ways. The RM-1 cells were pre-infected in vitro with the viruses prior to injection (pre-infection vaccine) or the RM-1 cells were injected alone, followed by the viruses (separate injection vaccine). The vaccines were each tested subcutaneously or intradermally. The pre-infection vaccine resulted in 100% clearance of primary tumors, whereas intradermal delivery of the separate injection vaccine cleared 40-60% of primary tumors. Despite the highly efficient primary tumor clearance by the pre-infection vaccine, only the separate injection vaccine generated protection upon rechallenge. Tumor-free survival induced by the separate injection vaccine required natural killer (NK) cells, CD4(+), and CD8(+) T cells. None of these cells alone were sufficient to induce tumor-free survival to the primary challenge, demonstrating an important cooperativity between NK cells and T cells. Secondary clearance of tumors also required NK and CD8(+) T cells, but not CD4(+) T cells. We report for the first time the generation of T cell immunity to the RM-1 prostate cancer cell line, demonstrating that it is possible to generate protective T cell immunity to a MHC I-low expressing tumor.  相似文献   

19.
Dendritic cell (DC) defects are an important component of immunosuppression in cancer. Here, we assessed whether cancer could affect circulating DC populations and its correlation with tumor progression. The blood DC compartment was evaluated in 136 patients with breast cancer, prostate cancer, and malignant glioma. Phenotypic, quantitative, and functional analyses were performed at various stages of disease. Patients had significantly fewer circulating myeloid (CD11c+) and plasmacytoid (CD123+) DC, and a concurrent accumulation of CD11c(-)CD123(-) immature cells that expressed high levels of HLA-DR+ immature cells (DR(+)IC). Although DR(+)IC exhibited a limited expression of markers ascribed to mature hematopoietic lineages, expression of HLA-DR, CD40, and CD86 suggested a role as antigen-presenting cells. Nevertheless, DR(+)IC had reduced capacity to capture antigens and elicited poor proliferation and interferon-gamma secretion by T-lymphocytes. Importantly, increased numbers of DR(+)IC correlated with disease status. Patients with metastatic breast cancer showed a larger number of DR(+)IC in the circulation than patients with local/nodal disease. Similarly, in patients with fully resected glioma, the proportion of DR(+)IC in the blood increased when evaluation indicated tumor recurrence. Reduction of blood DC correlating with accumulation of a population of immature cells with poor immunologic function may be associated with increased immunodeficiency observed in cancer.  相似文献   

20.
CUB-domain-containing-protein-1 (CDCP1) is an integral membrane protein whose expression is up-regulated in various cancer types. Although high CDCP1 expression has been correlated with poor prognosis in lung, breast, pancreas, and renal cancer, its functional role in tumor formation or progression is incompletely understood. So far it has remained unclear, whether CDCP1 is a useful target for antibody therapy of cancer and what could be a desired mode of action for a therapeutically useful antibody. To shed light on these questions, we have investigated the cellular effects of a therapeutic antibody candidate (RG7287). In focus formation assays, prolonged RG7287 treatment prevented the loss of contact inhibition caused by co-transformation of NIH3T3 cells with CDCP1 and Src. In a xenograft study, MCF7 cells stably overexpressing CDCP1 reached the predefined tumor volume faster than the parental MCF7 cells lacking endogenous CDCP1. This tumor growth advantage was abolished by RG7287 treatment. In vitro, RG7287 induced rapid tyrosine phosphorylation of CDCP1 by Src, which was accompanied by translocation of CDCP1 to a Triton X-100 insoluble fraction of the plasma membrane. Triggering these effects required bivalency of the antibody suggesting that it involves CDCP1 dimerization or clustering. However, this initial activation of CDCP1 was only transient and prolonged RG7287 treatment induced internalization and down-regulation of CDCP1 in different cancer cell lines. Antibody stimulated CDCP1 degradation required Src activity and was proteasome dependent. Also in three different xenograft models with endogenous CDCP1 expression RG7287 treatment resulted in significant tumor growth inhibition concomitant with substantially reduced CDCP1 levels as judged by immunohistochemistry and Western blotting. Thus, despite transiently activating CDCP1 signaling, the RG7287 antibody has a therapeutically useful mode of action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号