首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A new calibration algorithm (GLAaS) to derive absolute dose maps from images acquired with the Varian PV-aS500 electronic portal imager (based on amorphous silicon detectors) has been developed incorporating the dependence of detector response on primary and transmitted radiation and on field size. Detector calibration and algorithm validation were performed at different depths (10.0, 3.8, 1.5, and 0.8 cm) in solid water to investigate various application possibilities. Calibration data were obtained against ion chamber measurements. Validation experiments were performed on intensity-modulated fields and comparison was carried out against calculated dose maps as well as against film measurements. Split fields were acquired independently and PV-aS500 images were summed offline with the new algorithm allowing complex fields to be verified in conditions most closely resembling clinical conditions. Excellent results were obtained for the 3.8, 1.5, and 0.8 depths on a set of 34 modulated fields including both split and nonsplit fields. Applying the gamma index analysis (with distance to agreement and dose thresholds set to 3 mm and 4%, respectively), only 2.3% of the field area showed gamma > 1 at 1.5 cm depth (8.1%, 3.1%, 2.7% at 10.0, 3.8, and 0.8 and 2.5% with films at 10 cm depth). Tests were also performed to verify GLAaS at gantry angles different from 0 degrees. No statistical differences were obtained for the comparison between split and nonsplit fields and between different gantry angles. Highly significant statistical differences were obtained when comparing independent samples of 240 fields verified either with GLAaS or with film. Fields verified with GLAaS presented a mean area with gamma > 1 of 2.1 +/-1.3% while for film this value was 3.9 +/- 3.4% (p<0.001). Absolute dosimetry proved to be reliable with the PV-aS500 detector with the GLAaS algorithm. The minimal settings at depths of 1.5 or 3.8 cm would allow the use of the detector at any gantry angle without the need for any special fixation tool.  相似文献   

2.
Multileaf collimator (MLC) calibration and quality control is a time-consuming procedure typically involving the processing, scanning and analysis of films to measure leaf and collimator positions. Faster and more reliable calibration procedures are required for these tasks, especially with the introduction of intensity modulated radiotherapy which requires more frequent checking and finer positional leaf tolerances than previously. A routine quality control (QC) technique to measure MLC leaf bank gain and offset, as well as minor offsets (individual leaf position relative to a reference leaf), using an amorphous silicon electronic portal imaging device (EPID) has been developed. The technique also tests the calibration of the primary and back-up collimators. A detailed comparison between film and EPID measurements has been performed for six linear accelerators (linacs) equipped with MLC and amorphous silicon EPIDs. Measurements of field size from 4 to 24 cm with the EPID were systematically smaller than film measurements over all field sizes by 0.4 mm for leaves/back-up collimators and by 0.2 mm for conventional collimators. This effect is due to the gain calibration correction applied by the EPID, resulting in a 'flattening' of primary beam profiles. Linac dependent systematic differences of up to 0.5 mm in individual leaf/collimator positions were also found between EPID and film measurements due to the difference between the mechanical and radiation axes of rotation. When corrections for these systematic differences were applied, the residual random differences between EPID and film were 0.23 mm and 0.26 mm (1 standard deviation) for field size and individual leaf/back-up collimator position, respectively. Measured gains (over a distance of 220 mm) always agreed within 0.4 mm with a standard deviation of 0.17 mm. Minor offset measurements gave a mean agreement between EPID and film of 0.01+/-0.10 mm (1 standard deviation) after correction for the tilt of the EPID and small rotational misalignments between leaf banks and the back-up collimators used as a reference straight edge. Reproducibility of EPID measurements was found to be very high, with a standard deviation of <0.05 mm for field size and <0.1 mm for individual leaf/collimator positions for a 10x10 cm2 field. A standard set of QC images (three field sizes defined both by leaves only and collimators only) can be acquired in less than 20 min and analysed in 5 min.  相似文献   

3.
A two step algorithm to predict portal dose images in arbitrary detector systems has been developed recently. The current work provides a validation of this algorithm on a clinically available, amorphous silicon flat panel imager. The high-atomic number, indirect amorphous silicon detector incorporates a gadolinium oxysulfide phosphor scintillating screen to convert deposited radiation energy to optical photons which form the portal image. A water equivalent solid slab phantom and an anthropomorphic phantom were examined at beam energies of 6 and 18 MV and over a range of air gaps (approximately 20-50 cm). In the many examples presented here, portal dose images in the phosphor were predicted to within 5% in low-dose gradient regions, and to within 5 mm (isodose line shift) in high-dose gradient regions. Other basic dosimetric characteristics of the amorphous silicon detector were investigated, such as linearity with dose rate (+/- 0.5%), repeatability (+/- 2%), and response with variations in gantry rotation and source to detector distance. The latter investigation revealed a significant contribution to the image from optical photon spread in the phosphor layer of the detector. This phenomenon is generally known as "glare," and has been characterized and modeled here as a radially symmetric blurring kernel. This kernel is applied to the calculated dose images as a convolution, and is successfully demonstrated to account for the optical photon spread. This work demonstrates the flexibility and accuracy of the two step algorithm for a high-atomic number detector. The algorithm may be applied to improve performance of dosimetric treatment verification applications, such as direct image comparison, backprojected patient dose calculation, and scatter correction in megavoltage computed tomography. The algorithm allows for dosimetric applications of the new, flat panel portal imager technology in the indirect configuration, taking advantage of a greater than tenfold increase in detector sensitivity over a direct configuration.  相似文献   

4.
The GLAaS algorithm for pretreatment intensity modulation radiation therapy absolute dose verification based on the use of amorphous silicon detectors, as described in Nicolini et al. [G. Nicolini, A. Fogliata, E. Vanetti, A. Clivio, and L. Cozzi, Med. Phys. 33, 2839-2851 (2006)], was tested under a variety of experimental conditions to investigate its robustness, the possibility of using it in different clinics and its performance. GLAaS was therefore tested on a low-energy Varian Clinac (6 MV) equipped with an amorphous silicon Portal Vision PV-aS500 with electronic readout IAS2 and on a high-energy Clinac (6 and 15 MV) equipped with a PV-aS1000 and IAS3 electronics. Tests were performed for three calibration conditions: A: adding buildup on the top of the cassette such that SDD-SSD = d(max) and comparing measurements with corresponding doses computed at d(max), B: without adding any buildup on the top of the cassette and considering only the intrinsic water-equivalent thickness of the electronic portal imaging devices device (0.8 cm), and C: without adding any buildup on the top of the cassette but comparing measurements against doses computed at d(max). This procedure is similar to that usually applied when in vivo dosimetry is performed with solid state diodes without sufficient buildup material. Quantitatively, the gamma index (gamma), as described by Low et al. [D. A. Low, W. B. Harms, S. Mutic, and J. A. Purdy, Med. Phys. 25, 656-660 (1998)], was assessed. The gamma index was computed for a distance to agreement (DTA) of 3 mm. The dose difference deltaD was considered as 2%, 3%, and 4%. As a measure of the quality of results, the fraction of field area with gamma larger than 1 (%FA) was scored. Results over a set of 50 test samples (including fields from head and neck, breast, prostate, anal canal, and brain cases) and from the long-term routine usage, demonstrated the robustness and stability of GLAaS. In general, the mean values of %FA remain below 3% for deltaD equal or larger than 3%, while they are slightly larger for deltaD = 2% with %FA in the range from 3% to 8%. Since its introduction in routine practice, 1453 fields have been verified with GLAaS at the authors' institute (6 MV beam). Using a DTA of 3 mm and a deltaD of 4% the authors obtained %FA = 0.9 +/- 1.1 for the entire data set while, stratifying according to the dose calculation algorithm, they observed: %FA = 0.7 +/- 0.9 for fields computed with the analytical anisotropic algorithm and %FA = 2.4 +/- 1.3 for pencil-beam based fields with a statistically significant difference between the two groups. If data are stratified according to field splitting, they observed %FA = 0.8 +/- 1.0 for split fields and 1.0 +/- 1.2 for nonsplit fields without any significant difference.  相似文献   

5.
Greer PB 《Medical physics》2007,34(10):3815-3824
Amorphous silicon (a-Si) electronic portal imaging devices (EPIDs) have typically been calibrated to dose at central axis (CAX). Division of acquired images by the flood-field (FF) image that corrects for pixel sensitivity variation as well as open field energy-dependent off-axis response variation should result in a flat EPID response over the entire matrix for the same field size. While the beam profile can be reintroduced to the image by an additional correction matrix, the CAX EPID response to dose calibration factor is assumed to apply to all pixels in the detector. The aim of this work was to investigate the dose response of the Varian aS500 amorphous silicon detector across the entire detector area. First it was established that the EPID response across the panel became stable (within approximately 0.2%) for MU settings greater than approximately 200 MU. The EPID was then FF calibrated with a high MU setting of approximately 400 for all subsequent experiments. Whole detector images with varying MU settings from 2-500 were then acquired for two dose rates (300 and 600 MU/min) for 6 MV photons for two EPIDs. The FF corrected EPID response was approximately flat or uniform across the detector for greater than 100 MU delivered (within 0.5%). However, the off-axis EPID response was greater than the CAX response for small MU irradiations, giving a raised EPID profile. Up to 5% increase in response at 20 cm off-axis compared to CAX was found for very small MU settings for one EPID, while it was within 2% for the second (newer) EPID. Off-axis response nonuniformities attributed to detector damage were also found for the older EPID. Similar results were obtained with the EPID at 18 MV energy and operating in asynchronous mode (acquisition not synchronized with beam pulses), however the profiles were flatter and more irregular for the small MU irradiations. By moving the detector laterally and repeating the experiments, the increase in response off-axis was found to depend on the pixel position relative to the beam CAX. When the beam was heavily filtered by a phantom the off-axis response variation was reduced markedly to within 0.5% for all MU settings. Independent measurements of off-axis point doses with ion chamber did not show any change in off-axis factor with MUs. Measurements of beam quality (TMR20-10) for MU settings of 2, 5, and 100 at central axis and at 15 cm off-axis could not explain the effect. The response change is unlikely to be significant for clinical IMRT verification with this imaging/acclerator system where MUs are of the order of 100-300, provided the detector does not exhibit radiation damage artifacts.  相似文献   

6.
The purpose of this study was to investigate the dose-response characteristics, including ghosting effects, of an amorphous silicon-based electronic portal imaging device (a-Si EPID) under clinical conditions. EPID measurements were performed using one prototype and two commercial a-Si detectors on two linear accelerators: one with 4 and 6 MV and the other with 8 and 18 MV x-ray beams. First, the EPID signal and ionization chamber measurements in a mini-phantom were compared to determine the amount of buildup required for EPID dosimetry. Subsequently, EPID signal characteristics were studied as a function of dose per pulse, pulse repetition frequency (PRF) and total dose, as well as the effects of ghosting. There was an over-response of the EPID signal compared to the ionization chamber of up to 18%, with no additional buildup layer over an air gap range of 10 to 60 cm. The addition of a 2.5 mm thick copper plate sufficiently reduced this over-response to within 1% at clinically relevant patient-detector air gaps (> 40 cm). The response of the EPIDs varied by up to 8% over a large range of dose per pulse values, PRF values and number of monitor units. The EPID response showed an under-response at shorter beam times due to ghosting effects, which depended on the number of exposure frames for a fixed frame acquisition rate. With an appropriate build-up layer and corrections for dose per pulse, PRF and ghosting, the variation in the a-Si EPID response can be reduced to well within +/- 1%.  相似文献   

7.
Menon GV  Sloboda RS 《Medical physics》2003,30(7):1816-1824
The calibration and quality control of compensators is conventionally performed with an ion chamber in a water-equivalent phantom. In our center, the compensator factor and four off-axis fluence ratios are measured to verify the central axis beam modulation and orientation of the compensator. Here we report the investigation of an alternative technique for compensator quality control using an amorphous silicon electronic portal imaging device (a-Si EPID). Preliminary experiments were performed to identify appropriate EPID operating parameters for this relative dosimetric study and also to quantify EPID operation. The pixel value versus energy fluence response of the EPID for both open and compensated fields was then determined, and expressed via calibration curves. For open fields the response was seen to be linear, whereas for compensated fields it exhibited a small quadratic component. To account for field size effects, we measured EPID scatter factors. These exhibited small but non-negligible dependencies on compensator thickness and source-detector distance. Finally, a number of test and clinical compensators were evaluated to assess the suitability of the EPID for compensator quality control. Our results indicate that the a-Si EPID can measure clinical compensator factors and off-axis energy fluence ratios to within 2% of values measured by a Farmer chamber on average, and so is a suitable ion chamber replacement.  相似文献   

8.
Siebers JV  Kim JO  Ko L  Keall PJ  Mohan R 《Medical physics》2004,31(7):2135-2146
This study develops and tests a method to compute dosimetric images for an amorphous silicon (a-Si) flat-panel detector so that an accurate quantitative comparison between measured and computed portal images may be made. An EGS4-based Monte Carlo (MC) algorithm is developed to efficiently tally the energy deposition through the use of a virtual detector dose-scoring methodology. The complete geometry of the a-Si imager is utilized in the MC calculation up to the imager rear housing, which is replaced with a uniform thickness material slab. The detector-mounting hardware is modeled as a uniform backscattering material. The amount of backscatter material required to reproduce the measured backscatter is 0.98 g/cm2 of water. A flood-field irradiation, performed in the measurement imaging session, is used to cross-calibrate the computed images with the measured images. Calibrated MC-computed images reproduce measured field-size dependencies of the electronic portal imaging device (EPID) response to within <1%, without the need for optical glare or other empirical corrections. A 10% dose difference between measured and computed images was observed outside the field edge for a 10 x 10 cm2 field that was entirely blocked by the multileaf collimator (MLC). However, this error corresponded with less than 0.15% of the open-field dose. For 10 x 10 cm2 fields produced by 5 and 20 mm dynamically sweeping MLC gaps, more than 98% of the points were found to have a gamma less than one with a 2%, 2 mm criteria. For an intensity modulated radiation therapy (IMRT) patient test field, over 99% of the points were found to have a gamma less than one with a 2%, 2 mm criteria. This study demonstrates that MC can be an effective tool for predicting measured a-Si portal images and may be useful for IMRT EPID-based dosimetry.  相似文献   

9.
An independent verification of the leaf trajectories during each treatment fraction improves the safety of IMRT delivery. In order to verify dynamic IMRT with an electronic portal imaging device (EPID), the EPID response should be accurate and fast such that the effect of motion blurring on the detected moving field edge position is limited. In the past, it was shown that the errors in the detected position of a moving field edge determined by a scanning liquid-filled ionization chamber (SLIC) EPID are negligible in clinical practice. Furthermore, a method for leaf trajectory verification during dynamic IMRT was successfully applied using such an EPID. EPIDs based on amorphous silicon (a-Si) arrays are now widely available. Such a-Si flat panel imagers (FPIs) produce portal images with superior image quality compared to other portal imaging systems, but they have not yet been used for leaf trajectory verification during dynamic IMRT. The aim of this study is to quantify the effect of motion distortion and motion blurring on the detection accuracy of a moving field edge for an Elekta iViewGT a-Si FPI and to investigate its applicability for the leaf trajectory verification during dynamic IMRT. We found that the detection error for a moving field edge to be smaller than 0.025 cm at a speed of 0.8 cm/s. Hence, the effect of motion blurring on the detection accuracy of a moving field edge is negligible in clinical practice. Furthermore, the a-Si FPI was successfully applied for the verification of dynamic IMRT. The verification method revealed a delay in the control system of the experimental DMLC that was also found using a SLIC EPID, resulting in leaf positional errors of 0.7 cm at a leaf speed of 0.8 cm/s.  相似文献   

10.
Amorphous silicon electronic portal imaging devices (a-Si EPIDs) allow fast acquisition of high resolution portal images (PI). A visualization of organ movement for adaptive image-guided radiotherapy (IGRT) can be reached by implantation and automatic detection of fiducial markers. A method of automatic detection has been developed for fiducial spherical tungsten markers on PIs, acquired with an a-Si flat-panel imager. The detection method consists of a 2D Mexican hat filter (MHF), whose parameters are tuned to the particular marker signal. The high selectivity of this filter allows a reliable and precise detection of tungsten markers down to a diameter of 1.5 mm. The presented method allows fast, automatic and unsupervised detection of markers. Inevitably, the detection is hampered by image background (bone structures, etc) and noise. A detection success rate higher than 95% was reached, analysing PIs of patients with markers fixed on their skin. Furthermore, this approach to automatic marker detection can also be generalized to elliptic MHFs for the detection of cylindrical markers. The accuracy and detection probability of this method may allow accurate and fast online localization of the considered organ.  相似文献   

11.
This work validates the use of an amorphous-silicon, flat-panel electronic portal imaging device (a-Si EPID) for use as a gauge of patient or phantom radiological thickness, as an alternative to dosimetry. The response of the a-Si EPID is calibrated by adapting a technique previously applied to scanning liquid ion chamber EPIDs, and the stability, accuracy and reliability of this calibration are explored in detail. We find that the stability of this calibration, between different linacs at the same centre, is sufficient to justify calibrating only one of the EPIDs every month and using the calibration data thus obtained to perform measurements on all of the other linacs. Radiological thickness is shown to provide a reliable means of relating experimental measurements to the results of BEAMnrc Monte Carlo simulations of the linac-phantom-EPID system. For these reasons we suggest that radiological thickness can be used to verify radiotherapy treatment delivery and identify changes in the treatment field, patient position and target location, as well as patient physical thickness.  相似文献   

12.
Inverse planned intensity modulated radiotherapy (IMRT) fields can be highly modulated due to the large number of degrees of freedom involved in the inverse planning process. Additional modulation typically results in a more optimal plan, although the clinical rewards may be small or offset by additional delivery complexity and/or increased dose from transmission and leakage. Increasing modulation decreases delivery efficiency, and may lead to plans that are more sensitive to geometrical uncertainties. The purpose of this work is to assess the use of maximum intensity limits in inverse IMRT planning as a simple way to increase delivery efficiency without significantly affecting plan quality. Nine clinical cases (three each for brain, prostate, and head/neck) were used to evaluate advantages and disadvantages of limiting maximum intensity to increase delivery efficiency. IMRT plans were generated using in-house protocol-based constraints and objectives for the brain and head/neck, and RTOG 9406 dose volume objectives in the prostate. Each case was optimized at a series of maximum intensity ratios (the product of the maximum intensity and the number of beams divided by the prescribed dose to the target volume), and evaluated in terms of clinical metrics, dose-volume histograms, monitor units (MU) required per fraction (SMLC and DMLC delivery), and intensity map variation (a measure of the beam modulation). In each site tested, it was possible to reduce total monitor units by constraining the maximum allowed intensity without compromising the clinical acceptability of the plan. Monitor unit reductions up to 38% were observed for SMLC delivery, while reductions up to 29% were achieved for DMLC delivery. In general, complicated geometries saw a smaller reduction in monitor units for both delivery types, although DMLC delivery required significantly more monitor units in all cases. Constraining the maximum intensity in an inverse IMRT plan is a simple way to improve delivery efficiency without compromising plan objectives.  相似文献   

13.
Greer PB  Popescu CC 《Medical physics》2003,30(7):1618-1627
Dosimetric properties of an amorphous silicon electronic portal imaging device (EPID) for verification of dynamic intensity modulated radiation therapy (IMRT) delivery were investigated. The EPID was utilized with continuous frame-averaging during the beam delivery. Properties studied included effect of buildup, dose linearity, field size response, sampling of rapid multileaf collimator (MLC) leaf speeds, response to dose-rate fluctuations, memory effect, and reproducibility. The dependence of response on EPID calibration and a dead time in image frame acquisition occurring every 64 frames were measured. EPID measurements were also compared to ion chamber and film for open and wedged static fields and IMRT fields. The EPID was linear with dose and dose rate, and response to MLC leaf speeds up to 2.5 cm s(-1) was found to be linear. A field size dependent response of up to 5% relative to dmax ion-chamber measurement was found. Reproducibility was within 0.8% (1 standard deviation) for an IMRT delivery recorded at intervals over a period of one month. The dead time in frame acquisition resulted in errors in the EPID that increased with leaf speed and were over 20% for a 1 cm leaf gap moving at 1.0 cm s(-1). The EPID measurements were also found to depend on the input beam profile utilized for EPID flood-field calibration. The EPID shows promise as a device for verification of IMRT, the major limitation currently being due to dead-time in frame acquisition.  相似文献   

14.
Grein EE  Lee R  Luchka K 《Medical physics》2002,29(10):2262-2268
The relationship between the pixel value and exit dose was investigated for a new commercially available amorphous silicon electronic portal imaging device. The pixel to dose mapping function was established to be linear for detector distances between 116.5 cm to 150 cm from the source, radiation field sizes from 5 x 5 cm2 to 20 x 20 cm2 and beam energies of 6 to 18 MV. Coefficients in the mapping function were found to be dependent on beam energy and field size. Open and wedged field profiles measured with the device showed agreement to a maximum of 5% and 8%, respectively, as compared to film. A comparison of relative transmission measurements between the EPID and ion chamber indicate a maximum deviation of 6% and 2% at 6 and 18 MV, respectively, for an attenuator thickness of 21 cm and SDD > or = 130 cm. It was found that accuracies of better than 1% could be obtained if detector position and field size specific fitting parameters were used to generate unique mapping functions for each configuration.  相似文献   

15.
We present an investigation into the use of a fast video-based electronic portal-imaging device (EPID) to study intensity modulated radiation therapy (IMRT) delivery. The aim of this study is to test the feasibility of using an EPID system to independently measure the orchestration of collimator leaf motion and beam fluence; simultaneously measuring both the delivered field fluence and shape as it exits the accelerator head during IMRT delivery. A fast EPID that consists of a terbium-doped gadolinium oxysulphide (GdO2S:Tb) scintillator coupled with an inexpensive commercial 30 frames-per-second (FPS) CCD-video recorder (16.7 ms shutter time) was employed for imaging IMRT delivery. The measurements were performed on a Varian 2100 C/D linear accelerator equipped with a 120-leaf multileaf-collimator (MLC). A characterization of the EPID was performed that included measurements of spatial resolution, linac pulse-rate dependence, linear output response, signal uniformity, and imaging artifacts. The average pixel intensity for fields imaged with the EPID was found to be linear in the delivered monitor units of static non-IMRT fields between 3x3 and 15x15 cm2. A systematic increase of the average pixel intensity was observed with increasing field size, leading to a maximum variation of 8%. Deliveries of a clinical step-and-shoot mode leaf sequence were imaged at 600 MU/min. Measurements from this IMRT delivery were compared with experimentally validated MLC controller log files and were found to agree to within 5%. An analysis of the EPID image data allowed identification of three types of errors: (1) 5 out of 35 segments were undelivered; (2) redistributing all of the delivered segment MUs; and (3) leaf movement during segment delivery. Measurements with the EPID at lower dose rates showed poor agreement with log files due to an aliasing artifact. The study was extended to use a high-speed camera (1-1000 FPS and 10 micros shutter time) with our EPID to image the same delivery to demonstrate the feasibility of imaging without aliasing artifacts. High-speed imaging was shown to be a promising direction toward validating IMRT deliveries with reasonable image resolution and noise.  相似文献   

16.
An evaluation of the capabilities of a commercially available camera-based electronic portal imaging system for intensity-modulated radiotherapy verification is presented. Two modifications to the system are demonstrated which use a novel method to tag each image acquired with the delivered dose measured by the linac monitor chamber and reduce optical cross-talk in the imager. A detailed performance assessment is presented, including measurements of the optical decay characteristics of the system. The overall geometric accuracy of the system is determined to be +/-2.0 mm, with a dosimetric accuracy of +/-1.25 MU. Finally a clinical breast IMRT treatment, delivered by dynamic multileaf collimation, is successfully verified both by tracking the position of each leaf during beam delivery and recording the integrated intensity observed over the entire beam.  相似文献   

17.
Measurements have been made of the increase in exit surface dose resulting from backscattered radiation generated by the Varian amorphous silicon electronic portal imaging device (EPID). An increase of < or = 14% was demonstrated at both 6 MV and 10 MV, in a manner which suggests that backscatter from the EPID acts to re-establish electronic equilibrium at the exit surface, normally absent in the build-down region. The magnitude of this effect was influenced by field size, measurement depth and exit surface to EPID distance. Assuming typical constraints of portal imaging frequency and geometry, the results suggest that EPID generated backscatter is unlikely to alter the frequency or severity of exit skin reactions. However, the results do suggest that a limit on the minimum separation between the EPID and the exit surface should be set, and that similar investigations should be made for other EPID models.  相似文献   

18.
Kubo HD  Shapiro EG  Seppi EJ 《Medical physics》1999,26(11):2410-2414
Current electronic portal imaging devices (EPID) are limited in their ability to provide direct and quick verification and monitoring of patients during both setup and treatment of breathing synchronized radiotherapy (BSRT, including breathing gated, voluntary and forced breath-hold radiotherapy treatment.) These limitations are largely due to their slow image capture rate and poor image quality. An amorphous silicon array flat panel electronic portal imaging device (si-EPID) is emerging to meet the challenge. The purpose of this study is threefold: (1) to characterize the performance of a prototype si-EPID; (2) to compare image quality against that of digitized films; and (3) to evaluate the device in terms of verification of patient setup and monitoring during BSRT. In this study a Varian prototype si-EPID detector array and Clinic accelerator at the University of California Davis Cancer Center were used for imaging. Three quality assurance phantoms: a Lutz PVC phantom, a modified "Las Vegas" phantom, and a RMI model 1151 phantom, were used to characterize the imaging system. A Rando head phantom was used for anthropomorphic imaging tests. Images were obtained with the si-EPID and a Fuji RX film in a Kodak X-Omatic cassette. To investigate the clinical application, two sets of si-EPID images were collected from a lung cancer patient during a 22 s breath-hold and normal breathing. The quality of images obtained with the fast mode was found to be comparable to that obtained with the digitized films. The images with the standard mode were found to be better than the digitized film images. With this prototype si-EPID, it is possible to collect the images at the beginning, middle, and end of each breath-hold for those patients who can hold their breath for longer than 15 s. The si-EPID images can provide a quick verification of the initial patient setup and subsequent treatment position throughout the daily fractionation.  相似文献   

19.
Three variants of the Schiff equation are investigated to model the spectra produced by megavoltage linear accelerators. These models are tested against well-validated Monte Carlo (MC) generated spectra on the central axis of large-area fields, and show excellent agreement. Numerical reconstructions of 6 and 10 MV spectra using the same models are then presented, using experimental attenuation data derived from an electronic portal imager. The process of deriving spectra from experimental attenuation data is shown to be inherently badly constrained mathematically, with the derived spectrum being highly sensitive to noise in the source data, and non-unique. By placing a priori constraints on the Schiff model from both physical knowledge of the construction of the accelerator and MC data, physically useful results are gained and presented for both the energy dependence and off-axis behaviour of photon spectra.  相似文献   

20.
We investigate the potential of megavoltage (MV) cone-beam CT with an amorphous silicon electronic portal imaging device (EPID) as a tool for patient position verification and tumor/organ motion studies in radiation treatment of lung tumors. We acquire 25 to 200 projection images using a 22 x 29 cm EPID. The acquisition is automatic and requires 7 minutes for 100 projections; it can be synchronized with respiratory gating. From these images, volumetric reconstruction is accomplished with a filtered backprojection in the cone-beam geometry. Several important prereconstruction image corrections, such as detector sag, must be applied. Tests with a contrast phantom indicate that differences in electron density of 2% can be detected with 100 projections, 200 cGy total dose. The contrast-to-noise ratio improves as the number of projections is increased. With 50 projections (100 cGy), high contrast objects are visible, and as few as 25 projections yield images with discernible features. We identify a technique of acquiring projection images with conformal beam apertures, shaped by a multileaf collimator, to reduce the dose to surrounding normal tissue. Tests of this technique on an anthropomorphic phantom demonstrate that a gross tumor volume in the lung can be accurately localized in three dimensions with scans using 88 monitor units. As such, conformal megavoltage cone-beam CT can provide three-dimensional imaging of lung tumors and may be used, for example, in verifying respiratory gated treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号