首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Congestive heart failure is one of the major issues for cardiologists. Since cardiac hypertrophy deteriorates into heart failure, it is important to elucidate the mechanisms of cardiac hypertrophy. Hemodynamic overload, namely mechanical stress, is a major cause for cardiac hypertrophy. Mechanical stress induces various hypertrophic responses such as activation of phosphorylation cascades of many protein kinases, expression of specific genes and an increase in protein synthesis. During this process, secretion and production of vasoactive peptides such as angiotensin II and endothelin-1, are increased and play critical roles in the induction of these hypertrophic responses. Recently, a Ca2+ dependent protein kinase, CaMK, and a Ca2+ dependent protein phosphatase, calcineurin, have attracted great attention as critical molecules that induce cardiac hypertrophy. In this review, we described the mechanisms by which mechanical stress induces cardiac hypertrophy, especially focusing on the role of calcineurin in the development of cardiac hypertrophy.  相似文献   

2.
Mechanical stress by pressure overload due to hypertension or valvular heart disease such as aortic valve stenosis induces cardiac hypertrophy. It has been well established that the mechanical stretch of cardiac myocytes in vitro induces hypertrophic responses such as the expression of immediate early response genes including c-fos. However, it remains uncertain whether the mechanical forces due to pure atmospheric pressure can induce similar responses in cardiac myocytes. We thus cultured rat neonatal cardiac myocytes in an atmospheric pressure chamber apparatus and determined the effects of pure pressure stress on c-fos gene expression. Pressures greater than 80 mmHg enhanced c-fos mRNA after 30 minutes. These results suggest that pure atmospheric pressure overload can also induce early hypertrophic responses in cardiac myocytes.  相似文献   

3.
Molecular mechanism of mechanical stress-induced cardiac hypertrophy   总被引:5,自引:0,他引:5  
Mechanical stress is a major cause of cardiac hypertrophy. Although the mechanisms by which mechanical load induces cardiomyocyte hypertrophy have long been a subject of great interest for cardiologists, the lack of a good in vitro system has hampered the understanding of the biochemical mechanisms. For these past several years, however, an in vitro neonatal cardiocyte culture system has made it possible to examine the biochemical basis for the signal transduction of mechanical stress. Passive stretch of cardiac myocytes cultured on silicone membranes activates phosphorylation cascades of many protein kinases including protein kinase C, Raf-1 kinase and extracellular signal regulated kinases, and induces the expression of specific genes as well as an increase in protein synthesis. During that process, the secretion and production of vasoactive peptides such as angiotensin II and endothelin, are increased and they play critical roles in the induction of these hypertrophic responses. Although the involvement of vasoactive peptides in the development of cardiac hypertrophy is clinically important, the "mechanoreceptor" which receives the mechanical stress and converts it into intracellular biochemical signals remained unknown. We have recently obtained evidence suggesting that ion channels and integrins may be the "mechanoreceptor", the activation of which leads to cardiac hypertrophy.  相似文献   

4.
Diverse forms of injury and stress evoke a hypertrophic growth response in adult cardiac myocytes, which is characterized by an increase in cell size, enhanced protein synthesis, assembly of sarcomeres, and reactivation of fetal genes, often culminating in heart failure and sudden death. Given the emerging roles of microRNAs (miRNAs) in modulation of cellular phenotypes, we searched for miRNAs that were regulated during cardiac hypertrophy and heart failure. We describe >12 miRNAs that are up- or down-regulated in cardiac tissue from mice in response to transverse aortic constriction or expression of activated calcineurin, stimuli that induce pathological cardiac remodeling. Many of these miRNAs were similarly regulated in failing human hearts. Forced overexpression of stress-inducible miRNAs was sufficient to induce hypertrophy in cultured cardiomyocytes. Similarly, cardiac overexpression of miR-195, which was up-regulated during cardiac hypertrophy, resulted in pathological cardiac growth and heart failure in transgenic mice. These findings reveal an important role for specific miRNAs in the control of hypertrophic growth and chamber remodeling of the heart in response to pathological signaling and point to miRNAs as potential therapeutic targets in heart disease.  相似文献   

5.
Mechanical stress is a major cause for cardiac hypertrophy. Although the mechanisms by which mechanical load induces cardiomyocyte hypertrophy have long been a subject of great interest for cardiologists, the lack of a good in vitro system has hampered the understanding of the biochemical mechanisms. For these past several years, however, an in vitro neonatal cardiocyte culture system has made it possible to examine the biochemical basis for the signal transduction of mechanical stress. Passive stretch of cardiac myocytes cultured on silicone membranes activates phosphorylation cascades and induces the expression of specific genes as well as the increase in protein synthesis. Although an important question regarding how mechanical stimulus is converted into biochemical signals remains unanswered, cultured cardiac myocytes may be a good model to examine the signal transduction pathways of mechanical stress.  相似文献   

6.
-Mechanical stress induces a variety of hypertrophic responses, such as activation of protein kinases, reprogramming of gene expression, and an increase in protein synthesis. In the present study, to elucidate how mechanical stress induces such events, we examined the role of Rho family small GTP-binding proteins (G proteins) in mechanical stress-induced cardiac hypertrophy. Treatment of neonatal rat cardiomyocytes with the C3 exoenzyme, which abrogates Rho functions, suppressed stretch-induced activation of extracellular signal-regulated protein kinases (ERKs). Overexpression of the Rho GDP dissociation inhibitor (Rho-GDI), dominant-negative mutants of RhoA (DNRhoA), or DNRac1 significantly inhibited stretch-induced activation of transfected ERK2. Overexpression of constitutively active mutants of RhoA slightly activated ERK2 in cardiac myocytes. Overexpression of C-terminal Src kinase, which inhibits functions of the Src family of tyrosine kinases, or overexpression of DNRas had no effect on stretch-induced activation of transfected ERK2. The promoter activity of skeletal alpha-actin and c-fos genes was increased by stretch, and these increases were completely inhibited by either cotransfection of Rho-GDI or pretreatment with C3 exoenzyme. Mechanical stretch increased phenylalanine incorporation into cardiac myocytes by approximately 1.5-fold compared with control, and this increase was also significantly suppressed by pretreatment with C3 exoenzyme. Overexpression of Rho-GDI or DNRhoA did not affect angiotensin II-induced activation of ERK. ERKs were activated by culture media conditioned by stretch of cardiomyocytes without any treatment, but not of cardiomyocytes with pretreatment by C3 exoenzyme. These results suggest that the Rho family of small G proteins plays critical roles in mechanical stress-induced hypertrophic responses.  相似文献   

7.
Phospholipase C (PLC) epsilon is a recently identified enzyme regulated by a wide range of molecules including Ras family small GTPases, Rho A, Galpha(12/13), and Gbetagamma with primary sites of expression in the heart and lung. In a screen for human signal transduction genes altered during heart failure, we found that PLCepsilon mRNA is upregulated. Two murine models of cardiac hypertrophy confirmed upregulation of PLCepsilon protein expression or PLCepsilon RNA. To identify a role for PLCepsilon in cardiac function and pathology, a PLCepsilon-deficient mouse strain was created. Echocardiography indicated PLCepsilon(-/-) mice had decreased cardiac function, and direct measurements of left ventricular contraction demonstrated that PLCepsilon(-/-) mice had a decreased contractile response to acute isoproterenol administration. Cardiac myocytes isolated from PLCepsilon(-/-) mice had decreased beta-adrenergic receptor (betaAR)-dependent increases in Ca2+ transient amplitudes, likely accounting for the contractile deficiency in vivo. This defect appears to be independent from the ability of the betaAR system to produce cAMP and regulation of sarcoplasmic reticulum Ca2+ pool size. To address the significance of these functional deficits to cardiac pathology, PLCepsilon(-/-) mice were subjected to a chronic isoproterenol model of hypertrophic stress. PLCepsilon(-/-) mice were more susceptible than wild-type littermates to development of hypertrophy than wild-type littermates. Together, these data suggest a novel PLC-dependent component of betaAR signaling in cardiac myocytes responsible for maintenance of maximal contractile reserve and loss of PLCepsilon signaling sensitizes the heart to development of hypertrophy in response to chronic cardiac stress.  相似文献   

8.
Prolonged cardiac hypertrophy of pathologic etiology is associated with arrhythmia, sudden death, decompensation, and dilated cardiomyopathy. In an attempt to understand the mechanisms that underlie the hypertrophic response, extensive investigation has centered on a characterization of the molecular pathways that initiate or maintain the pathologic growth of individual cardiac myocytes. While a large number of signal transduction cascades have been identified as critical regulators of cardiac hypertrophy, here the scientific evidence implicating the protein phosphatase calcineurin (PP2B) and the mitogen-activated protein kinases (MAPK) as co-regulators of reactive hypertrophy will be discussed. Gain- and loss-of-function studies in genetically altered mice and in cultured cardiomyocytes have demonstrated the necessity and sufficiency of calcineurin to regulate pathologic cardiac hypertrophy. However, using similar approaches, the hypertrophic regulatory role attributed to various branches of the MAPK signaling pathway has been less conclusive, although a loose consensus suggests that the c-Jun N-terminal kinases (JNK) and p38 kinases function as mediators of dilated cardiomyopathy, while extracellular signal-regulated kinases (ERKs) function as regulators of hypertrophy. More recently, the actions of calcineurin and MAPK signaling pathways have been shown to be co-dependent such that unitary activation of calcineurin in myocytes leads to up-regulation in ERK and JNK signaling, but down-regulation in p38 signaling. Conversely, unitary activation of JNK or p38 in cardiac myocytes leads to down-regulation of calcineurin effectiveness by directly antagonizing nuclear factor of activated T cells (NFAT) nuclear occupancy. Thus, an emerging paradigm suggests that calcineurin-NFAT and MAPK signaling pathways are inter-dependent and together orchestrate the cardiac hypertrophic response.  相似文献   

9.
Proteins in cardiac myocytes assemble into contractile units known as sarcomeres. Contractile force is generated by interaction between sarcomeric thick and thin filaments. Thin filaments also transmit force within and between myocytes. Mutations in genes encoding the thin filament proteins actin and tropomyosin cause hypertrophic cardiomyopathy. Mutations affecting functionally distinct domains of actin also cause dilated cardiomyopathy (DCM). We used a non-positional candidate gene approach to test further the hypothesis that dysfunction of sarcomeric thin filaments, due to different mutations in the same gene, can lead to either hypertrophic or dilated cardiomyopathy. Mutational analyses of alpha-tropomyosin 1 were performed in patients with idiopathic DCM. We identified two mutations that alter highly conserved residues and that, unlike hypertrophic cardiomyopathy-associated mutations, cause localized charge reversal on the surface of tropomyosin. Therefore, substitution of different amino acid residues in the same thin filament proteins is associated with the distinct phenotypes of cardiac hypertrophy or congestive heart failure.  相似文献   

10.
In a heart with hypertrophic cardiomyopathy without asymmetrical septal hypertrophy the number of transmural myocytes, the mean size of myocytes, and the percentage area of interstitial space were similar in the ventricular septum and left ventricular posterior wall, whereas in a reported series of 14 hearts with hypertrophic cardiomyopathy with asymmetrical septal hypertrophy the number of transmural myocytes was greater in the ventricular septum than in the left ventricular posterior wall. In hearts with hypertrophic cardiomyopathy without asymmetrical septal hypertrophy the mean size of myocytes was significantly greater than that of normal hearts, but the number of transmural myocytes was not increased. The extent and distribution pattern of myocardial fibre disarray and fibrosis in the left ventricle were similar in hearts with hypertrophic myopathy whether or not asymmetrical septal hypertrophy was present.  相似文献   

11.
In a heart with hypertrophic cardiomyopathy without asymmetrical septal hypertrophy the number of transmural myocytes, the mean size of myocytes, and the percentage area of interstitial space were similar in the ventricular septum and left ventricular posterior wall, whereas in a reported series of 14 hearts with hypertrophic cardiomyopathy with asymmetrical septal hypertrophy the number of transmural myocytes was greater in the ventricular septum than in the left ventricular posterior wall. In hearts with hypertrophic cardiomyopathy without asymmetrical septal hypertrophy the mean size of myocytes was significantly greater than that of normal hearts, but the number of transmural myocytes was not increased. The extent and distribution pattern of myocardial fibre disarray and fibrosis in the left ventricle were similar in hearts with hypertrophic myopathy whether or not asymmetrical septal hypertrophy was present.  相似文献   

12.
Epac mediates beta-adrenergic receptor-induced cardiomyocyte hypertrophy   总被引:1,自引:0,他引:1  
Cardiac hypertrophy is promoted by adrenergic overactivation and can progress to heart failure, a leading cause of mortality worldwide. Although cAMP is among the most well-known signaling molecules produced by beta-adrenergic receptor stimulation, its mechanism of action in cardiac hypertrophy is not fully understood. The identification of Epac (exchange protein directly activated by cAMP) proteins as novel sensors for cAMP has broken the dogma surrounding cAMP and protein kinase A. However, their role and regulation in the mature heart remain to be defined. Here, we show that cardiac hypertrophy induced by thoracic aortic constriction increases Epac1 expression in rat myocardium. Adult ventricular myocytes isolated from banded animals display an exaggerated cellular growth in response to Epac activation. At the molecular level, Epac1 hypertrophic effects are independent of its classic effector, Rap1, but rather involve the small GTPase Ras, the phosphatase calcineurin, and Ca(2+)/calmodulin-dependent protein kinase II. Importantly, we find that in response to beta-adrenergic receptor stimulation, Epac1 activates Ras and induces adult cardiomyocyte hypertrophy in a cAMP-dependent but protein kinase A-independent manner. Knockdown of Epac1 strongly reduces beta-adrenergic receptor-induced hypertrophic program. Finally, we report for the first time that Epac1 is mainly expressed in human heart as compared with Epac2 isoform and is increased in heart failure. Taken together, our data demonstrate that the guanine nucleotide exchange factor Epac1 contributes to the hypertrophic effect of beta-adrenergic receptor in a protein kinase A-independent fashion and may, therefore, represent a novel therapeutic target for the treatment of cardiac disorders.  相似文献   

13.
14.
15.
We report a case of idiopathic giant cell myocarditis accompanied by asymmetric septal hypertrophy. A 64-year-old woman was admitted because of dyspnea. There was no past history of hypertension or heart disease and no family history of hypertrophic cardiomyopathy. Laboratory examinations revealed general inflammatory changes and mild elevation of serum CK and GOT. The clinical course was fulminant and the patient died of heart failure one day after admission. On autopsy, asymmetric septal hypertrophy was revealed and the pathohistological examination revealed panmyocarditis with mononuclear cell infiltration, interstitial edema, necrosis of myocytes, and giant cells. The inflammatory changes were most severe in the ventricular septum with asymmetric septal hypertrophy. The extent of myocardial fibers with disarray was within normal limits. Thus, the asymmetric septal hypertrophy appeared to be due to marked interstitial edema and inflammatory cell infiltration in the septum. This case suggests that myocardial inflammation and edema may cause thickening of the ventricular wall during the course of acute myocarditis.  相似文献   

16.
Cultured neonatal rat cardiac myocytes have been used extensively to study cellular and molecular mechanisms of cardiac hypertrophy. However, there are only a few studies in cultured mouse myocytes despite the increasing use of genetically engineered mouse models of cardiac hypertrophy. Therefore, we characterized hypertrophic responses in low-density, serum-free cultures of neonatal mouse cardiac myocytes and compared them with rat myocytes. In mouse myocyte cultures, triiodothyronine (T3), norepinephrine (NE) through a beta-adrenergic receptor, and leukemia inhibitory factor induced hypertrophy by a 20% to 30% increase in [(3)H]phenylalanine-labeled protein content. T3 and NE also increased alpha-myosin heavy chain (MyHC) mRNA and reduced beta-MyHC. In contrast, hypertrophic stimuli in rat myocytes, including alpha(1)-adrenergic agonists, endothelin-1, prostaglandin F(2alpha), interleukin 1beta, and phorbol 12-myristate 13-acetate (PMA), had no effect on mouse myocyte protein content. In further contrast with the rat, none of these agents increased atrial natriuretic factor or beta-MyHC mRNAs. Acute PMA signaling was intact by extracellular signal-regulated kinase (ERK1/2) and immediate-early gene (fos/jun) activation. Remarkably, mouse but not rat myocytes had hypertrophy in the absence of added growth factors, with increases in cell area, protein content, and the mRNAs for atrial natriuretic factor and beta-MyHC. We conclude that mouse myocytes have a unique autonomous hypertrophy. On this background, T3, NE, and leukemia inhibitory factor activate hypertrophy with different mRNA phenotypes, but certain Gq- and protein kinase C-coupled agonists do not.  相似文献   

17.
Receptor-mediated Gq signaling promotes hypertrophic growth of cultured neonatal rat cardiac myocytes and is postulated to transduce in vivo cardiac pressure overload hypertrophy. Although initially compensatory, hypertrophy can proceed by unknown mechanisms to cardiac failure. We used adenoviral infection and transgenic overexpression of the alpha subunit of Gq to autonomously activate Gq signaling in cardiomyocytes. In cultured cardiac myocytes, overexpression of wild-type Gαq resulted in hypertrophic growth. Strikingly, expression of a constitutively activated mutant of Gαq, which further increased Gq signaling, produced initial hypertrophy, which rapidly progressed to apoptotic cardiomyocyte death. This paradigm was recapitulated during pregnancy in Gαq overexpressing mice and in transgenic mice expressing high levels of wild-type Gαq. The consequence of cardiomyocyte apoptosis was a transition from compensated hypertrophy to a rapidly progressive and lethal cardiomyopathy. Progression from hypertrophy to apoptosis in vitro and in vivo was coincident with activation of p38 and Jun kinases. These data suggest a mechanism in which moderate levels of Gq signaling stimulate cardiac hypertrophy whereas high level Gq activation results in cardiomyocyte apoptosis. The identification of a single biochemical stimulus regulating cardiomyocyte growth and death suggests a plausible mechanism for the progression of compensated hypertrophy to decompensated heart failure.  相似文献   

18.
Cardiac hypertrophy involves the accumulation of extracellular matrix proteins, such as fibronectin, leading to increasing myocardial stiffness, ventricular dysfunction and heart failure. To better understand the possible role of extracellular matrix-evoked intracellular signalling in ventricular myocytes, we investigated the effect of fibronectin on myocyte hypertrophic responses using cell culture models. Cell size in myocytes cultured on fibronectin-coated dishes was three times larger than that grown on non-coated dishes. However, the number of cells on fibronectin-coated dishes was not changed throughout the experiment. Protein synthesis was significantly increased by fibronectin, as were synthesis of atrial and brain natriuretic peptides. Fibronectin also elicited actin reorganization, co-localization of beta 1 integrin and vinculin, formation of focal adhesions and tyrosine phosphorylation of focal adhesion kinase in myocytes. These fibronectin-mediated effects were inhibited in a dose-dependent manner by GRGDSP, a competitive antagonist of the fibronectin receptors; GRGDSP had no effect on cell number or viability. Blocking antibody for beta 1 and beta 3 integrin significantly suppressed fibronectin-induced secretion of natriuretic peptides. Myocyte hypertrophy was observed in myocyte-nonmyocyte co-culture that reflects more closely the myocyte environment in vivo. GRGDSP may also suppress the myocyte hypertrophic response in the co-culture. These findings demonstrate that the interaction of fibronectin and RGD-dependent integrins is involved in the hypertrophic responses of myocyte in vitro, and suggest that extracellular matrix proteins such as fibronectin are not merely passive adhesive molecules but are active participants in processes leading to myocyte hypertrophy.  相似文献   

19.
20.
Cardiac hypertrophy is a thickening of the heart muscle that results in enlargement of the ventricles, which is the primary response of the myocardium to stress or mechanical overload. Cardiac pathological and physiological hemodynamic overload causes enhanced protein synthesis, sarcomeric reorganization and density, and increased cardiomyocyte size, all culminating into structural remodeling of the heart. With clinical evidence demonstrating that sustained hypertrophy is a key risk factor in heart failure development, much effort is centered on the identification of signals and pathways leading to pathological hypertrophy for future rational drug design in heart failure therapy. A wide variety of studies indicate that individual microRNAs exhibit altered expression profiles under experimental and clinical conditions of cardiac hypertrophy and heart failure. Here we review the recent literature, illustrating how single microRNAs regulate cardiac hypertrophy by classifying them by their prohypertrophic or antihypertrophic properties and their specific effects on intracellular signaling cascades, ubiquitination processes, sarcomere composition and by promoting inter-cellular communication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号