首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Myocardial matrix remodeling is a well-recognized disease modifier in the pathogenesis of heart failure, although the precise underlying molecular mechanisms remain to be elucidated. Here we investigated the effects of leptin, circulating levels of which are typically increased in obese individuals, on MMP and collagen expression and MMP activity in isolated cardiac myofibroblasts. Neonatal rat myofibroblasts were treated with 6 nM recombinant leptin and the collected supernatant analyzed for MMP-2 activity via gelatin zymography. MMP-2, MT1-MMP and procollagen-I and -III protein expression were determined by western blotting and MMP-2 and MT1-MMP mRNA expression were examined utilizing real-time PCR. Procollagen-I levels were analyzed by confocal microscopy and collagen synthesis was determined through [3H]-proline incorporation. Exposure of myofibroblasts to leptin (24 h) significantly increased MMP-2 activity, while mRNA and protein levels remained unchanged. Leptin also significantly enhanced mRNA and protein expression of MT1-MMP, a known activator of MMP-2. Biotinylation assays indicated increased cell surface expression of MT1-MMP in response to leptin and use of a MT1-MMP inhibitor attenuated the leptin-mediated elevation of MMP-2 activity. Total cellular collagen synthesis was unaffected by leptin treatment, however intracellular procollagen-I protein was significantly increased in treated cells. Furthermore, extracellular soluble procollagen-I was increased, while a decrease in soluble procollagen-III protein was observed in conditioned media. In summary, these findings in isolated cardiac myofibroblasts support the suggestion that leptin may directly influence myocardial matrix metabolism, and this may represent a mechanism contributing to cardiac fibrosis in obese patients with elevated plasma leptin levels.  相似文献   

2.
Obesity is a leading risk factor for the development of nephropathy. In nephropathy, one of the major structural alterations found in the kidney is the increase in, or altered profile of, extracellular matrix (ECM) proteins such as collagen. Excessive synthesis and decreased degradation of matrix proteins by proteases such as matrix metalloproteinases (MMPs) may contribute to this process. We hypothesized that alterations observed in nephropathy may be due to alterations in direct effects of leptin, the product of the obesity gene. Here, we investigate the effect of leptin on collagen synthesis and MMP-2 production in rat glomerular mesangial cells. Using quantitative real-time PCR we showed that leptin does not alter the expression of collagen type I and IV mRNA. In keeping with this observation, proline incorporation was not altered by leptin. We also demonstrate that leptin induces MMP-2 expression in glomerular mesangial cells, assessed by quantitative real-time PCR. Analysis of conditioned media by gelatin zymography indicated increased activity at a molecular weight corresponding with that of MMP-2 in leptin-treated samples. In summary, our results indicate that leptin induces MMP-2 expression and activity without altering collagen synthesis, suggesting that normal leptin function has the potential to prevent ECM accumulation.  相似文献   

3.
Background Inhibition of proteolytic MMP activity could be a therapeutic approach to prevent ventricular dilatation by diminishing collagen matrix turnover and interstitial fibrosis. We investigated the time-course of MMP/TIMP activity during transition from hypertrophy to ventricular dilatation in transgenic mice with myocyte overexpression of the human β1-adrenergic receptor (β1TG). These β1TG mice were studied at 3 (normal function), 5 (hypertrophy) and 12 (ventricular dilatation) months of age compared to age-matched controls (WT). Methods Picro Sirius red staining and real-time PCR were performed for total collagen and for collagen type I and III quantification, respectively. MMP-activity assays (zymography), immunoblotting and real-time PCR experiments were done for gelatinase- (MMP-2, -9), collagenase- (MMP-1, -13), membrane-type MMP- (MT1- MMP; MMP-14) and TIMP expression measurements. To investigate β1-integrin activity, integrin-linked kinase (ILK) expression was measured by immunoblotting. Results Compared to WT with normal cardiac function, interstitial collagen type I and III mRNA and protein expression increased 3.6-fold in β1TG at 5 months of age with moderate fibrosis and cardiomyocyte hypertrophy and 17-fold in β1TG at 12 months of age with severe fibrosis and ventricular dilatation. Protein expression of the collagenases MMP-1 and -13 as well as the gelatinase proMMP-2 increased in the β1TG group with cardiac hypertrophy. Maximal activity of the gelatinase MMP-2 (3.5-fold vs.WT) was measured in β1TG at 12 months of age with severe fibrosis and ventricular dilatation, accompanied by coexpression of MT1- MMP (3.8-fold vs.WT) colocalized to the cell membranes. Conclusion These data provide evidence that sympathetic overactivation can trigger interstitial matrix remodeling and fibrosis by induction of MMP/TIMP activity. In particular gelatinolytic MMP-2 activity accompanies ventricular dilatation and the development of heart failure.  相似文献   

4.
17beta-estradiol reduces myocardial hypertrophy and left ventricular mass, suggesting that the selective estrogen receptor modulator raloxifene may have similar effects. However, it is not clear whether raloxifene inhibits both cardiac hypertrophy and dysfunction. We used transverse aortic-banded mice to produce pressure-overload cardiac hypertrophy and used neonatal rat ventricular cardiomyocytes to investigate the cellular mechanisms of raloxifene on cardiac hypertrophy. Left ventricular mass and fractional shortening of mice hearts were measured by transthoracic echocardiography. Protein synthesis of cardiomyocytes was evaluated by incorporation of [3H]leucine into cardiomyocytes exposed to angiotensin II. Phosphorylation of mitogen-activated protein (MAP) kinase was also observed in cardiomyocytes. Raloxifene prevented increases in left ventricular mass and decreases of fractional shortening at 4 weeks after aortic banding. Pretreatment with raloxifene before angiotensin II stimulation inhibited the increase in [3H]leucine incorporation into neonatal rat cardiomyocytes in a concentration-dependent manner. This inhibition was partially but not significantly attenuated by N(G)-nitro-L-arginine methyl ester (L-NAME), an inhibitor of nitric oxide synthase, and completely abolished by ICI182780, an estrogen receptor antagonist. Although the phosphorylation of p38 MAP kinase, c-Jun N-terminal kinase (JNK), or extracellular signal-regulated protein kinase (ERK) in cardiomyocytes was significantly increased by angiotensin II stimulation as compared with the control, pretreatment with raloxifene attenuated p38 MAP kinase phosphorylation, but neither JNK nor ERK phosphorylation. We conclude that raloxifene inhibits cardiac hypertrophy and dysfunction and that the inhibition of p38 MAP kinase phosphorylation after the stimulation of estrogen receptors may be involved in the cellular mechanisms of this agent.  相似文献   

5.
目的:观察心肌肥厚大鼠模型中基质金属蛋白酶(MMP)-2,MMP-9及其抑制剂(TIMP-1)的表达及强力霉素干预后对其影响。方法:24只大鼠随机分为对照组(A组,只给予0.9%氯化钠溶液腹腔注射);造模组(B组)和药物干预组(C组)均用去甲肾上腺素1.06mg/kg腹腔注射,bid,注射15d,建立大鼠心肌肥厚模型,C组造模同时给予强力霉素10mg/kg腹腔注射,qd,给药15d。全部动物于给药后16d处死测定全心质量指数、左室质量指数、心肌胶原含量、心肌组织MMP-2,MMP-9,TIMP-1、心肌胶原容积分数(CVF)。结果:与A组比较,B组全心质量指数、左室质量指数、MMP-2、MMP-9阳性表达率、心肌胶原含量及CVF均明显增加(P<0.05),TIMP-1阳性表达率明显降低(P<0.05)。与B组比较,C组全心质量指数、左室质量指数、MMP-2、MMP-9阳性表达率、心肌胶原含量及CVF均明显降低(P<0.05),TIMP-1阳性表达率增加(P<0.05)。结论:去甲肾上腺素诱导的心肌肥厚大鼠MMPs/TIMPs系统平衡破坏,使基质胶原降解与合成平衡破坏,从而导致心室重构。强力霉素可通过抑制MMP来逆转心室重构。  相似文献   

6.
目的探讨N-乙酰基-丝氨酰-天门冬酰-赖氨酰-脯氨酸(AcSDKP)对血小板源性生长因子(PDGF)诱导的大鼠心脏成纤维细胞增殖、胶原合成和降解代谢的调节作用。方法分离培养新生大鼠心脏成纤维细胞。采用^3H-TdR和。H-脯氨酸掺入法分别检测心脏成纤维细胞增殖与胶原蛋白合成。Western blot法检测心脏成纤维细胞Ⅰ、Ⅲ型胶原蛋白表达和基质金属蛋白酶(MMP)-1蛋白的表达。明胶酶谱法检测心脏成纤维细胞MMP-2和MMP-9活性的表达。结果PDGF促进心脏成纤维细胞增殖、胶原合成,Ⅰ、Ⅲ型胶原表达,以及MMP-2、MMP-9活性和MMP-1表达。AcSDKP对PDGF介导的心脏成纤维细胞增殖、胶原合成均有抑制作用。AcSDKP上调由PDGF介导的心脏成纤维细胞MMP-2、MMP-9活性和MMP-1的表达。结论AcSDKP抑制PDGF介导的心脏成纤维细胞增殖和胶原的合成,上调MMPs活性或表达,促进胶原的降解,这些可能与AcSDKP抗心脏纤维化作用相关。  相似文献   

7.
BACKGROUND: During the transition of pressure overload hypertrophy (POH) to heart failure (HF) there is intense interstitial cardiac remodeling, characterized by a complex balance between collagen deposition and degradation by matrix metalloproteases (MMPs). This study was aimed at investigating the process of cardiac remodeling during the different phases of the transition of POH to HF. METHODS: Guinea pigs underwent thoracic descending aortic banding or sham operation. Twelve weeks after surgery, left-ventricular (LV) end-diastolic internal dimension and ventricular systolic pressure were measured by combined M-mode echocardiography and micromanometer cathetherization. The MMP activity, tissue-specific MMP inhibitors (TIMPs), and collagen fraction were evaluated in LV tissue samples by zymography, ELISA, and computer-aided analysis, respectively. RESULTS: Banded animals were divided by lung weight values into either compensated left-ventricular hypertrophy (LVH) or HF groups, as compared with sham-operated controls. All HF animals exhibited a restrictive pattern of Doppler transmitral inflow, indicative of diastolic dysfunction, and developed lung congestion. Compensated LVH was associated with increased MMP-2 activity, which was blunted after transition to HF, at a time when TIMP-2 levels and collagen deposition were increased. CONCLUSIONS: The cardiac remodeling process that accompanies the development of POH is a phase-dependent process associated with progressive deterioration of cardiac function.  相似文献   

8.
目的探讨压力负荷增高性心肌肥厚大鼠心肌胶原网络的重塑及其与内皮素(ET)的可能关系。方法腹主动脉部分结扎致大鼠心肌肥厚,VG染色和图像处理观察心肌胶原网络重塑,放免测定心肌局部ET1含量,3H胸腺嘧啶(3HTdR)和3H脯氨酸参入试验观察心肌成纤维细胞的分裂增殖和胶原合成。结果手术组大鼠术后2周即出现明显左室肥厚,其程度随时间进展而加重。与假手术组比较,左室心肌总胶原容积百分比(CVFT)于术后2周增高,术后4、8周CVFT和无小血管视野CVF(CVFNV)均明显增高(P<0.01)。手术组大鼠左室心肌局部ET1含量明显高于相应假手术大鼠(P<0.01),且10-12~10-8M浓度的ET1对培养心肌成纤维细胞3HTdR和3H脯氨酸的参入量有明显刺激作用,呈剂量依赖性。结论压力负荷增高性心肌肥厚形成过程中伴有心肌胶原网络重塑,心肌局部ET1含量增加可能与心肌胶原网络重构的形成有一定关系  相似文献   

9.
10.
Schram K  Ganguly R  No EK  Fang X  Thong FS  Sweeney G 《Endocrinology》2011,152(5):2037-2047
Altered leptin action has been implicated in the pathophysiology of heart failure in obesity, a hallmark of which is extracellular matrix remodeling. Here, we characterize the direct influence of leptin on matrix metalloproteinase (MMP) activity in primary adult rat cardiac fibroblasts and focus on elucidating the molecular mechanisms responsible. Leptin increased expression and cell surface localization of membrane type 1 (MT1)-MMP, measured by cell surface biotinylation assay and antibody-based colorimetric detection of an exofacial epitope in intact cells. Coimmunoprecipitation analysis showed that leptin also induced the formation of a cluster of differentiation 44/MT1-MMP complex. Qualitative analysis using rhodamine-conjugated phalloidin immunofluorescence indicated that leptin stimulated actin cytoskeletal reorganization and enhanced stress fiber formation. Hence, we analyzed activation of Ras homolog gene family (Rho), member A GTPase activity and found a rapid increase in response to leptin that corresponded with increased phosphorylation of cofilin. Quantitative analysis of cytoskeleton reorganization upon separation of globular and filamentous actin by differential centrifugation confirmed the significant increase in filamentous to globular actin ratio in response to leptin, which was prevented by pharmacological inhibition of Rho (C3 transferase) or its downstream effector kinase Rho-associated coiled-coil-forming protein kinase (ROCK) (Y-27632). Inhibition of Rho or ROCK also attenuated leptin-stimulated increases in cell surface MT1-MMP content. Pro-MMP-2 is a known MT1-MMP substrate, and we observed that enhanced cell surface MT1-MMP in response to leptin resulted in enhanced extracellular activation of pro-MMP-2 measured by gelatin zymography, which was again attenuated by inhibition of Rho or ROCK. Using wound scratch assays, we observed enhanced cell migration, but not proliferation, measured by 5-bromo2'-deoxy-uridine incorporation, in response to leptin, again via a Rho-dependent signaling mechanism. Our results suggest that leptin regulates myocardial matrix remodeling by regulating the cell surface localization of MT1-MMP in adult cardiac fibroblasts via Rho/ROCK-dependent actin cytoskeleton reorganization. Subsequent pro-MMP-2 activation then contributes to stimulation of cell migration.  相似文献   

11.
Leptin is a 16 kDa product of the obesity gene secreted primarily by adipocytes. We recently identified cardiomyocytes as a target for the direct hypertrophic effects of leptin and suggested that leptin may be a biological link between obesity and cardiovascular pathologies. Activation of the renin-angiotensin and endothelin systems is associated with development of cardiovascular diseases and plasma renin levels are elevated in obese individuals. We therefore determined possible interaction between these factors in mediating hypertrophy in cultured neonatal rat ventricular myocytes. Treatment for 24 h with leptin (3.1 nM), angiotensin II (100 nM) or endothelin-1 (ET-1, 10 nM) significantly increased cell area by 37%, 36% and 35%, respectively and significantly increased gene expression of myosin light chain-2 and alpha-skeletal actin as well as leucine incorporation. The hypertrophic effects of all three agents were prevented by leptin and a leptin triple mutant receptor antagonist whereas the AT(1) receptor blocker (Sar1-lle(8))-Ang II or the ET(A) receptor blocker BQ123 was ineffective against leptin-induced hypertrophy. Both angiotensin II and ET-1 significantly increased leptin levels in the culture medium by fivefold. Moreover, both angiotensin II and ET-1 increased the gene expression of the short form (OBRa) by 180% and long form (OBRb) of leptin receptors by 200%, and this increase was abolished by both leptin receptor and leptin antibodies and leptin triple mutant. Although both angiotensin II and ET-1 increased phosphorylation of MAPK (p38, ERK1/2 and JNK) and NF-kappaB, the ability of leptin blockade to attenuate the hypertrophic responses was generally dissociated from these effects suggesting an alternate, yet to be identified cellular pathway mediating this role of leptin. Our studies therefore suggest a novel autocrine function for leptin in mediating the hypertrophic effects of both angiotensin II and ET-1 in cardiac myocytes.  相似文献   

12.
BACKGROUND: Obesity is associated with increased leptin production, which may contribute to cardiac hypertrophy. Although leptin has been shown to produce cardiomyocyte hypertrophy, its mechanism of action is far from clear. Rho proteins have been suggested as major contributors to cardiac hypertrophy, although their potential role in mediating the effect of leptin has not been studied. METHODS: We determined the role of Rho and Rho-associated kinase (ROCK) as mediators of leptin-induced cell hypertrophy in cultured neonatal rat ventricular myocytes. RESULTS: Leptin (3.1 nmol/L) significantly increased cell surface area by 32+/-5% and leucine incorporation by 43 +/- 7%. These effects were associated with significant activation of RhoA to 450 +/- 40% of pre-leptin levels that was attenuated by pretreatment with an anti-leptin receptor (anti-OBR) antibody (166 ng/mL) to 120 +/- 20% of control values. Both the RhoA inhibitor C3 exoenzyme and ROCK inhibitor Y-27632 potently attenuated leptin-induced increased cell surface area and leucine incorporation. The hypertrophic effect of leptin was associated with an increase in phosphorylation of the actin binding protein cofilin to 290 +/- 20% of control values. In addition, the increase in polymerization of actin, as reflected by a decrease in the G/F-actin ratio, was significantly inhibited by both the anti-OBR antibody and Y-27632. Leptin-induced hypertrophy was also attenuated by disruption of actin filaments with 50 nmol/L latrunculin B. RhoA pathway inhibitors and latrunculin B also both attenuated leptin-induced ERK1/2 and p38 activation. CONCLUSION: Our results indicate that the activation of Rho and actin dynamics play a pivotal role in leptin signaling leading to the development of cardiomyocyte hypertrophy.  相似文献   

13.
目的观察基质金属蛋白酶2和9在心肌肥厚大鼠模型中的变化,并采用己酮可可碱进行干预,以确定己酮可可碱对基质金属蛋白酶的影响及其在心肌肥厚过程中的作用。方法24只雄性SD大鼠随机分为对照组、去甲肾上腺素造模组(模型组)和去甲肾上腺素 己酮可可碱组(治疗组)。采用VG染色评价组织胶原表达,并测定心肌组织胶原含量,免疫组织化学法检测心肌组织基质金属蛋白酶2和9的蛋白表达。结果模型组大鼠发生左心室肥厚,胶原含量显著高于对照组(1.929±0.514mg/g比1.009±0.442mg/g,P<0.01);基质金属蛋白酶2和9表达(分别为131.1±9.8、125.3±4.1)显著低于对照组(P<0.01)。己酮可可碱治疗组心肌总胶原含量较模型组显著降低(1.151±0.215mg/g,P<0.01);基质中基质金属蛋白酶2和9的表达(分别为153.5±6.9、149.5±5.3)较模型组显著增高(P<0.01)。结论己酮可可碱能有效防治心肌肥厚的发生及细胞外基质重塑,这一效应可能与其降低心肌组织中基质金属蛋白酶2和9的高表达有关。  相似文献   

14.
The mechanisms by which diet-induced obesity cause remodeling and cardiac dysfunction are still unknown. Interstitial collagen and myocardial ultrastructure are important in the development of left ventricular hypertrophy, and are essential to the adaptive and maladaptive changes associated with obesity. Thus, the accumulation of collagen and ultrastructural damage may contribute to cardiac dysfunction in obesity. The purpose of the present study was to investigate cardiac function in a rat model of diet-induced obesity and to test the hypothesis that cardiac dysfunction induced by obesity is related to myocardial collagen deposition and ultrastructural damage. Thirty-day-old male Wistar rats were fed standard (control [C]) and hypercaloric diets (obese [Ob]) for 15 weeks. Cardiac function was evaluated by echocardiogram and isolated left ventricle papillary muscle. Cardiac morphology was assessed by histology and electron microscopy. Compared with C rats, Ob rats had increased body fat, systolic blood pressure and area under the curve for glucose, leptin and insulin plasma concentrations. Echocardiographic indexes indicated that Ob rats had increased left ventricular mass, increased systolic stress and depressed systolic function. Analysis of the isolated papillary muscle was consistent with higher myocardial stiffness in Ob compared with C rats. The Ob rats had an increase in myocardial collagen and marked ultrastructural changes compared with C rats. Obesity promotes pathological cardiac remodeling with systolic dysfunction and an increase in myocardial stiffness, which, in turn, is probably related to afterload elevation and cardiac fibrosis. Obesity also causes damage to myocardial ultrastructure, but its effect on myocardial function needs to be further clarified.  相似文献   

15.
Xu X  Fassett J  Hu X  Zhu G  Lu Z  Li Y  Schnermann J  Bache RJ  Chen Y 《Hypertension》2008,51(6):1557-1564
This study examined whether endogenous extracellular adenosine acts to facilitate the adaptive response of the heart to chronic systolic overload. To examine whether endogenous extracellular adenosine can protect the heart against pressure-overload-induced heart failure, transverse aortic constriction was performed on mice deficient in extracellular adenosine production as the result of genetic deletion of CD73. Although there was no difference in left ventricular size or function between CD73-deficient mice (knockout [KO] mice) and wild-type mice under unstressed conditions, aortic constriction for 2 or 4 weeks induced significantly more myocardial hypertrophy, left ventricular dilation, and left ventricular dysfunction in KO mice compared with wild-type mice. Thus, after 2 weeks of transverse aortic constriction, left ventricular fractional shortening decreased to 27.4+/-2.5% and 21.9+/-1.7% in wild-type and KO mice, respectively (P<0.05). Consistent with a role of adenosine in reducing tissue remodeling, KO mice displayed increased myocardial fibrosis and myocyte hypertrophy compared with wild-type mice. Furthermore, adenosine treatment reduced phenylephrine-induced cardiac myocyte hypertrophy and collagen production in cultured neonatal rat cardiac myocytes and cardiac fibroblasts, respectively. Consistent with a role for adenosine in modulating cardiomyocyte hypertrophy, KO mice demonstrated increased activation of mammalian target of rapamycin signaling, accompanied by higher expression of the hypertrophy marker atrial natriuretic peptide. Conversely, the adenosine analogue 2-chloro-adenosine significantly reduced cell size, mammalian target of rapamycin/p70 ribosomal S6 kinase activation, and atrial natriuretic peptide expression in cultured neonatal cardiomyocytes. These data demonstrate that CD73 helps to preserve cardiac function during chronic systolic overload by preventing maladaptive tissue remodeling.  相似文献   

16.
OBJECTIVE: Adipocyte hypertrophy combined with hyperplasia, observed during the growth of adipose tissue in obesity, might promote the occurrence of hypoxic areas within the tissue. The aim of the present study is to assess the influence of hypoxia on the expression and secretion of adipocyte-derived proangiogenic factors. DESIGN AND METHODS: Differentiated 3T3-F442A adipocytes were submitted either to ambient hypoxia (5% O(2)) or to chemically induced hypoxia by treatments with cobalt chloride or desferrioxamine. The activities of the matrix metalloproteinases 2 and 9 (MMP-2 and -9) were determined by gelatin zymography. The expression of vascular endothelial growth factor (VEGF), hypoxia inducible factor 1 alpha (HIF-1alpha), leptin, MMP-2 and -9 were studied by the use of Western blotting and RT-PCR analyses. RESULTS: Low oxygen pressure exposure and hypoxia mimics treatments were associated with increased glucose consumption and release of lactate in differentiated 3T3-F442A adipocytes. They also led to an upregulation of the expression of leptin, VEGF and MMPs. An enhanced accumulation of HIF-1alpha protein was observed in the hypoxic adipocyte nuclei. CONCLUSION: Hypoxia, in adipocytes, markedly enhances the expression of leptin, VEGF and MMPs and stimulates the HIF-1 pathway. The present data demonstrate that hypoxic adipocytes express more proangiogenic factors and suggest that hypoxia, if occurring in adipose tissue, might be a modulator of the angiogenic process.  相似文献   

17.
OBJECTIVE: Extracellular matrix, particularly type I fibrillar collagen, provides tensile strength that allows cardiac muscle to perform systolic and diastolic functions. Collagen is induced during the transition from compensatory hypertrophy to heart failure. We hypothesized that cardiac stiffness during decompensatory hypertrophy is partly due to a decreased elastin:collagen ratio. MATERIALS AND METHODS: We prepared left ventricular tissue homogenates from spontaneously hypertensive rats (SHR) aged 30-36 weeks, which had compensatory hypertrophy with no heart failure, and from SHR aged 70-92 weeks, which had decompensatory hypertrophy with heart failure. Age- and sex-matched Wistar-Kyoto (WKY) rats were used as normotensive controls. In both SHR groups, increased levels of collagen were detected by immuno-blot analysis using type I collagen antibody. Elastin and collagen were quantitated by measuring desmosine/isodesmosine and hydroxyproline spectrophometrically, respectively. To determine whether the decrease in elastin content was due to increased elastinolytic activity of matrix metalloproteinase-2, we performed gelatin and elastin zymography on left ventricular tissue homogenates from control rats, SHR with compensatory hypertrophy and SHR with heart failure. RESULTS: The elastin:collagen ratio was 0.242 +/- 0.008 in hearts from WKY rats. In SHR without heart failure, the ratio was decreased to 0.073 +/- 0.003 and in decompensatory hypertrophy with heart failure, the ratio decreased to 0.012 +/- 0.005. Matrix metalloproteinase-2 activity was increased significantly in SHR with heart failure compared with controls (P < 0.001). The level of tissue inhibitor of metalloproteinase-4 was increased in compensatory hypertrophy and markedly reduced in heart failure. Decorin was strongly reduced in decompensatory heart failure compared with control hearts. CONCLUSIONS: Since collagen was induced in SHR with heart failure, decorin and elastin were decreased and the ratios of gelatinase A and elastase to tissue inhibitor of metalloproteinase-4 were increased, we conclude that heart failure is associated with adverse extracellular matrix remodeling.  相似文献   

18.
目的探讨阿托伐他汀对去甲肾上腺素诱导的心肌肥厚大鼠细胞外基质重塑的影响及其可能的机制.方法雄性SD大鼠随机分为三组(1)对照组,(2)去甲肾上腺素组[1.06 mg/(kg·d)×15 d],(3) 去甲肾上腺素+阿托伐他汀组[50 mg/(kg·d)×15 d].去甲肾上腺素ip,2次/d,15 d,建立心肌肥厚模型.应用超声心动图及病理学方法评价整体心肌肥厚及组织胶原表达.用逆转录-聚合酶链反应法(RT-PCR)及免疫组化检测细胞外基质调节因子-基质金属蛋白酶(MMP-9)及其生理性抑制剂(TIMP-1)和转化生长因子β1(TGF-β1)mRNA和蛋白表达.结果去甲肾上腺素组大鼠发生左心室肥厚及纤维化,胶原含量及MMP-9、TIMP-1和TGF-β-1蛋白、mRNA表达显著高于健康对照组(P<0.01).阿托伐他汀能减少心肌中总体胶原及Ⅰ、Ⅲ型胶原的合成及MMP-9、TGF-β-1表达(P<0.01).结论 MMP-9、TIMP-1和TGF-β-1与心肌肥厚大鼠的细胞外基质重塑有关.阿托伐他汀能有效防治心肌纤维化及细胞外基质重塑,这一效应与其降低心肌中高表达的MMP-9和TGF-β-1有关.  相似文献   

19.
Tajmir P  Ceddia RB  Li RK  Coe IR  Sweeney G 《Endocrinology》2004,145(4):1550-1555
Obesity is a major risk factor for the development of heart failure. Importantly, it is now appreciated that a change in the number of myocytes is one of multiple structural and functional alterations (remodeling) leading to heart failure. Here we investigate the effect of leptin, the product of the obese (ob) gene, on proliferation of human and murine cardiomyocytes. Leptin caused a time- and dose-dependent significant increase in proliferation of HL-1 cells that was inhibited by preincubation with PD98059 and LY294002, suggesting that leptin mediated proliferation via extracellular signal-regulated kinase-1/2- and phosphatidylinositol-3-kinase-dependent signaling pathways. We confirmed that leptin activates both extracellular signal-regulated kinase-1/2 phosphorylation and association of phosphatidylinositol-3-kinase (regulatory p85 subunit) with phosphotyrosine immunoprecipitates. We also examined bromodeoxyuridine incorporation as a measure of new DNA synthesis and demonstrated a stimulatory effect of leptin in both HL-1 cells and human cardiomyocytes. Bromodeoxyuridine incorporation in HL-1 cells was inhibited by PD98059 and LY294002. Our results establish a mitogenic effect of leptin in cardiomyocytes and provide additional evidence for a potential direct link between leptin and cardiac remodeling in obesity.  相似文献   

20.
Cardiac structural changes associated with dilated cardiomyopathy (DCM) include cardiomyocyte hypertrophy and myocardial fibrosis. Connective tissue growth factor (CTGF) has been associated with tissue remodeling and is highly expressed in failing hearts. Our aim was to test if inhibition of CTGF would alter the course of cardiac remodeling and preserve cardiac function in the protein kinase Cε (PKCε) mouse model of DCM. Transgenic mice expressing constitutively active PKCε in cardiomyocytes develop cardiac dysfunction that was evident by 3 months of age, and that progressed to cardiac fibrosis, heart failure, and increased mortality. Beginning at 3 months of age, PKCε mice were treated with a neutralizing monoclonal antibody to CTGF (FG-3149) for an additional 3 months. CTGF inhibition significantly improved left ventricular (LV) systolic and diastolic functions in PKCε mice, and slowed the progression of LV dilatation. Using gene arrays and quantitative PCR, the expression of many genes associated with tissue remodeling was elevated in PKCε mice, but significantly decreased by CTGF inhibition. However total collagen deposition was not attenuated. The observation of significantly improved LV function by CTGF inhibition in PKCε mice suggests that CTGF inhibition may benefit patients with DCM. Additional studies to explore this potential are warranted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号