首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study, we analyzed the effects of two angiotensin II type 1 receptor antagonists, candesartan (0.1 microM) and eprosartan (1 microM), on hKv1.5, HERG, KvLQT1+minK, and Kv4.3 channels expressed on Ltk(-) or Chinese hamster ovary cells using the patch-clamp technique. Candesartan and eprosartan produced a voltage-dependent block of hKv1.5 channels decreasing the current at +60 mV by 20.9 +/- 2.3% and 14.3 +/- 1.5%, respectively. The blockade was frequency-dependent, suggesting an open-channel interaction. Eprosartan inhibited the tail amplitude of HERG currents elicited on repolarization after pulses to +60 mV from 239 +/- 78 to 179 +/- 72 pA. Candesartan shifted the activation curve of HERG channels in the hyperpolarizing direction, thus increasing the current amplitude elicited by depolarizations to potentials between -50 and 0 mV. Candesartan reduced the KvLQT1+minK currents elicited by 2-s pulses to +60 mV (38.7 +/- 6.3%). In contrast, eprosartan transiently increased (8.8 +/- 2.7%) and thereafter reduced the KvLQT1+minK current amplitude by 17.7 +/- 3.0%. Eprosartan, but not candesartan, blocked Kv4.3 channels in a voltage-dependent manner (22.2 +/- 3.5% at +50 mV) without modifying the voltage-dependence of Kv4.3 channel inactivation. Candesartan slightly prolonged the action potential duration recorded in guinea pig papillary muscles at all driving rates. Eprosartan prolonged the action potential duration in muscles driven at 0.1 to 1 Hz, but it shortened this parameter at faster rates (2--3 Hz). All these results demonstrated that candesartan and eprosartan exert direct effects on Kv1.5, HERG, KvLQT1+minK, and Kv4.3 currents involved in human cardiac repolarization.  相似文献   

2.
The inhibitory effects of the novel Kv1.5 channel blocker, S9947 (2'-(benzyloxycarbonylaminomethyl)biphenyl-2-carboxylic acid 2-(2-pyridyl)ethylamide), on cloned human Kv1.5 (hKv1.5), expressed in both Xenopus oocytes and Chinese hamster ovary (CHO) cells, and on native cardiac ultrarapid delayed rectifier potassium currents (IKur) in rat (ventricle myocytes) and human (atrial myocytes) were investigated. The influence of S9947 on the action potential was examined in rat ventricular myocytes. Using the two-electrode voltage-clamp technique in Xenopus oocytes and the patch-clamp technique (whole cell configuration) in CHO cells, hKv1.5 was inhibited by S9947 with IC50 values of 0.65 microM and 0.42 microM, respectively. In addition, inhibition of human Kv4.3 (hKv4.3) and HERG by 10 microM S9947 was low (approximately 20%) and absent, respectively. Using the patch-clamp technique in the whole cell configuration, IKur currents in rat ventricular (rIKur) cardiomyocytes and human atrial (hIKur) cardiomyocytes were inhibited by S9947 with IC50 values of 0.96 microM and 0.07 microM, respectively. In contrast, rat cardiac inward rectifier current (rIK1) and rat (rIto) and human (hIto) cardiac transient outward currents were only inhibited by approximately 20% with 10 microM S9947. In rat cardiomyocytes, using the patch-clamp technique, action potential duration was increased by S9947 in a concentration-dependent (0.3-10 microM) and rate-independent manner. The data show that S9947 suppresses both cloned (Kv1.5) and native (IKur) cardiac potassium currents. Furthermore, S9947 prolongs rat action potential in a rate-independent manner.  相似文献   

3.
1. In the present study, two new peptides, phrixotoxins PaTx1 and PaTx2 (29-31 amino acids), which potently block A-type potassium currents, have been purified from the venom of the tarantula Phrixotrichus auratus. 2. Phrixotoxins specifically block Kv4.3 and Kv4.2 currents that underlie I(to1), with an 5 < IC50 < 70 nM, by altering the gating properties of these channels. 3. Neither are the Shaker (Kv1), Shab (Kv2) and Shaw (Kv3) subfamilies of currents, nor HERG, KvLQT1/IsK, inhibited by phrixotoxins which appear specific of the Shal (Kv4) subfamily of currents and also block I(to1) in isolated murine cardiomyocytes. 4. In order to evaluate the physiological consequences of the Ito1 inhibition, mice were injected intravenously with PaTx1, which resulted in numerous transient cardiac adverse reactions including the occurrence of premature ventricular beats, ventricular tachycardia and different degrees of atrioventricular block. 5. The analysis of the mouse electrocardiogram showed a dose-dependent prolongation of the QT interval, chosen as a surrogate marker for their ventricular repolarization, from 249 +/- 11 to 265 +/- 8 ms (P < 0.05). 6. It was concluded that phrixotoxins, are new and specific blockers of Kv4.3 and Kv4.2 potassium currents, and hence of I(to1) that will enable further studies of Kv4.2 and Kv4.3 channel and/or I(to1) expression.  相似文献   

4.
(1) We have determined the molecular basis of nicardipine-induced block of cardiac transient outward K(+) currents (I(to)). Inhibition of I(to) was studied using cloned voltage-dependent K(+) channels (Kv) channels, rat Kv4.3L, Kv4.2, and Kv1.4, expressed in human embryonic kidney cell line 293 (HEK293) cells. (2) Application of the dihydropyridine Ca(2+) channel antagonist, nicardipine, accelerated the inactivation rate and reduced the peak amplitude of Kv4.3L currents in a concentration-dependent manner (IC(50): 0.42 micro M). The dihydropyridine (DHP) Ca(2+) channel agonist, Bay K 8644, also blocked this K(+) current (IC(50): 1.74 micro M). (3) Nicardipine (1 micro M) slightly, but significantly, shifted the voltage dependence of activation and steady-state inactivation to more negative potentials, and also slowed markedly the recovery from inactivation of Kv4.3L currents. (4) Coexpression of K(+) channel-interacting protein 2 (KChIP2) significantly slowed the inactivation of Kv4.3L currents as expected. However, the features of DHP-induced block of K(+) current were not substantially altered. (5) Nicardipine exhibited similar block of Kv1.4 and Kv4.2 channels stably expressed in HEK293 cells; IC(50)'s were 0.80 and 0.62 micro M, respectively. (6) Thus, at submicromolar concentrations, DHP Ca(2+) antagonist and agonist inhibit Kv4.3L and have similar inhibiting effects on other components of cardiac I(to), Kv4.2 and Kv1.4.  相似文献   

5.
Using the whole-cell voltage clamp technique, we investigated the effects of thiopental on membrane currents in H9c2 cells, a cell line derived from embryonic rat heart. Thiopental blocked a rapidly activating, very slowly-inactivating ultra-rapid type I(Kur)-like outward K(+) current in a concentration-dependent manner. The half-maximal concentration (IC(50)) of thiopental was 97 microM with a Hill coefficient of 1.2. The thiopental-sensitive current was also blocked by high concentrations of nifedipine (IC(50) = 9.1 microM) and 100 microM chromanol 293B, a blocker of slowly activating delayed rectifier K+ current (I(Ks)), but was insensitive to E-4031, an inhibitor of rapidly activating delayed rectifier K(+) current (I(Kr)). TEA (tetraethylammonium) at 5 mM and 4-AP (4-aminopiridine) at 1 mM reduced the K(+) current to 30.8 +/- 12.2% and 20.5 +/- 6.5% of the control, respectively. Using RT-PCR, we detected mRNAs of Kv2.1, Kv3.4, Kv4.1, and Kv4.3 in H9c2 cells. Among those, Kv2.1 and Kv3.4 have I(Kur)-type kinetics and are therefore candidates for thiopental-sensitive K(+) channels in H9c2 cells. This is the first report showing that thiopental inhibits I(Kur). This effect of thiopental may be involved in its reported prolongation of cardiac action potentials.  相似文献   

6.
Voltage-gated potassium (Kv) channels regulate many physiological functions and represent important therapeutic targets in the treatment of several clinical disorders. Although some of these channels have been well-characterized, the study of others, such as Kv3 channels, has been hindered because of limited pharmacological tools. The current study was initiated to identify potent blockers of the Kv3.2 channel. Chinese hamster ovary (CHO)-K1 cells stably expressing human Kv3.2b (CHO-K1.hKv3.2b) were established and characterized. Stichodactyla helianthus peptide (ShK), isolated from S. helianthus venom and a known high-affinity blocker of Kv1.1 and Kv1.3 channels, was found to potently inhibit 86Rb+ efflux from CHO-K1.hKv3.2b (IC50 approximately 0.6 nM). In electrophysiological recordings of Kv3.2b channels expressed in Xenopus laevis oocytes or in planar patch-clamp studies, ShK inhibited hKv3.2b channels with IC50 values of approximately 0.3 and 6 nM, respectively. Despite the presence of Kv3.2 protein in human pancreatic beta cells, ShK has no effect on the Kv current of these cells, suggesting that it is unlikely that homotetrameric Kv3.2 channels contribute significantly to the delayed rectifier current of insulin-secreting cells. In mouse cortical GABAergic fast-spiking interneurons, however, application of ShK produced effects consistent with the blockade of Kv3 channels (i.e., an increase in action potential half-width, a decrease in the amplitude of the action potential after hyperpolarization, and a decrease in maximal firing frequency in response to depolarizing current injections). Taken together, these results indicate that ShK is a potent inhibitor of Kv3.2 channels and may serve as a useful pharmacological probe for studying these channels in native preparations.  相似文献   

7.
1. The aims of the present study were to investigate the pharmacological effects of quercetin on wild-type (WT) and mutant (I502A) human (h) Kv1.5 channel currents (I(kur)) and to identify whether mutation in the S6 segment is critical to activation of I(kur) by quercetin. 2. Experiments were performed on WT and site-directed mutant hKv1.5 channels, which were stably expressed in Xenopus oocytes using the two-microelectrode voltage-clamp technique. 3. Quercetin increased WT hKv1.5 channel current in a concentration-, voltage- and time-dependent manner, with an EC(50) of 37.8 micromol/L and a negative shift in the steady state activation and inactivation curves. Quercetin accelerated channel activation and inactivation, significantly decreasing activation and inactivation time constants. However, mutating the I502 residue to Ala abolished the activating effect of quercetin. Quercetin did not modify the activation and inactivation kinetics of I502A channels. As an anti-oxidant, tanshinone IIA (4 micromol/L) inhibited the H(2)O(2)-induced activation of WT hKv1.5 channels. In contrast, quercetin had no significant effect. 4. We conclude that: (i) quercetin preferentially binds to and increases the current amplitude of WT hKv1.5 channels; (ii) Ile502, an aliphatic and neutral amino acid residue residing in the S6 segment, is important in quercetin binding; and (iii) quercetin-induced changes in the properties of WT hKv1.5 channels may be foreign to its own anti-oxidant action.  相似文献   

8.
Trazodone, a triazolopyridine antidepressant, is commonly used in the treatment of depression and insomnia. Kv4.3 channels are transiently, and rapidly, inactivating Kv channels that are highly expressed in cardiac myocytes and neurons. To determine the electrophysiological basis for the cardiac and neuronal actions of trazodone, we studied the effects of trazodone on Kv4.3 currents stably expressed in Chinese hamster ovary cells using the whole-cell patch-clamp technique. Trazodone decreased the peak amplitude of Kv4.3 in a concentration-dependent manner with an IC50 of 55.4 μM. Under control conditions, the time course of inactivation of Kv4.3 at +40 mV was fitted to a double exponential function. Trazodone produced a concentration-dependent slowing of the fast and slow components of Kv4.3 inactivation during a voltage step to +40 mV. The inhibition of Kv4.3 by trazodone was voltage independent over the entire voltage range tested. Trazodone shifted the voltage dependence of the steady-state inactivation of Kv4.3 to a hyperpolarizing direction. However, the slope factor of the steady-state inactivation was not affected by trazodone. Under control conditions, the closed-state inactivation of Kv4.3 was fitted to a single exponential function. Trazodone significantly accelerated the closed-state inactivation of Kv4.3. Trazodone produced a weak use-dependent inhibition of Kv4.3 at frequencies of 1 and 2 Hz. m-Chlorophenylpiperazine (m-CPP), a major metabolite of trazodone, inhibited Kv4.3 less potently than trazodone, with an IC50 of 118.6 μM. These results suggest that trazodone preferentially inhibited Kv4.3 by both binding to the closed state and accelerating the closed-state inactivation of the channel.  相似文献   

9.
AZD7009 is a novel antiarrhythmic compound in early clinical development for management of atrial fibrillation. Electrophysiological studies in animals have shown high antiarrhythmic efficacy, predominant action on atrial electrophysiology, and low proarrhythmic activity. AZD7009 has previously been shown to inhibit hERG and hNav1.5 currents. The main objective of the present study was to characterize the effects of AZD7009 on hKv1.5 and hKv4.3/hKChIP2.2 currents to get a deeper understanding of the ion channel-blocking properties of the compound. hKv1.5 and hKv4.3/hKChIP2.2 currents were expressed in CHO cells. Currents were measured using the whole-cell configuration of the voltage-clamp technique. AZD7009 inhibited hKv1.5 and hKv4.3/hKChIP2.2 currents with equal potency: the IC50 for hKv1.5 block was 27.0 +/- 1.6 muM (n = 6), and the IC50 for hKv4.3/hKChIP2.2 block was 23.7 +/- 4.4 muM (n = 5). Block of the hKv4.3/hKChIP2.2 current was frequency dependent with larger block at higher frequency, whereas block of the hKv1.5 current was slightly decreased at higher frequency. In conclusion, AZD7009 inhibits both the hKv1.5 and the hKv4.3/hKChIP2.2 currents. These effects likely contribute to the effects described in animals in vivo.  相似文献   

10.
BAPTA-AM is a well-known membrane permeable Ca(2+) chelator. The present study found that BAPTA-AM rapidly and reversibly suppressed human ether a-go-go-related gene (hERG or Kv11.1) K(+) current, human Kv1.3 and human Kv1.5 channel currents stably expressed in HEK 293 cells, and the effects were not related to Ca(2+) chelation. The externally applied BAPTA-AM inhibited hERG channels in a concentration-dependent manner (IC(50): 1.3 microM). Blockade of hERG channels was dependent on channel opening, and tonic block was minimal. Steady-state activation V(0.5) of hERG channels was negatively shifted by 8.5 mV (from -3.7+/-2.8 of control to -12.2+/-3.1 mV, P<0.01), while inactivation V(0.5) was negatively shifted by 6.1 mV (from -37.9+/-2.0 mV of control to -44.0+/-1.6 mV, P<0.05) with application of 3 microM BAPTA-AM. The S6 mutant Y652A and the pore helix mutant S631A significantly attenuated blockade by BAPTA-AM at 10 microM causing profound blockade of wild-type hERG channels. In addition, BAPTA-AM inhibited hKv1.3 and hKv1.5 channels in a concentration-dependent manner (IC(50): 1.45 and 1.23 microM, respectively), and the blockade of these two types of channels was also dependent on channel opening. Moreover, EGTA-AM was found to be an open channel blocker of hERG, hKv1.3, hKv1.5 channels, though its efficacy is weaker than that of BAPTA-AM. These results indicate that the membrane permeable Ca(2+) chelator BAPTA-AM (also EGTA-AM) exerts an open channel blocking effect on hERG, hKv1.3 and hKv1.5 channels.  相似文献   

11.
l-alpha-acetylmethadol is a long-acting narcotic analgesic that is used in the treatment of opiate addiction. However, the drug has been associated with cases of QT interval prolongation and ventricular arrhythmia. To understand the mechanism underlying these clinical findings, we examined the effects of l-alpha-acetylmethadol on the cloned human cardiac K(+) channels HERG (human ether-a-go-go-related gene), KvLQT1/minK and Kv4.3. Using patch clamp electrophysiology, we found that l-alpha-acetylmethadol inhibited HERG channel currents in a voltage-dependent manner displaying an IC(50) value of 3 microM. The major active metabolite of l-alpha-acetylmethadol, noracetylmethadol, inhibited HERG with an estimated IC(50) values of 12 microM. l-alpha-acetylmethadol had little or no effect on Kv4.3 or KvLQT1/minK K(+) channel currents at concentration up to 10 microM. We conclude that the proarrhythmic effects of l-alpha-acetylmethadol are due to specific blockade of the HERG cardiac K(+) channel and that its active metabolite noracetylmethadol may provide a safer alternative in the treatment of opiate addiction.  相似文献   

12.
The regulation of cardiac delayed rectifier potassium (Kv) currents by cAMP-dependent protein kinase (PKA) contributes to the control of blood pressure and heart rate. We investigated the modulation by PKA and protein phosphatases of cloned Kv1.5 channels expressed in Xenopus laevis oocytes. Exposure of oocytes to activators of PKA (100 nM forskolin, 1 mM 8-bromo-cAMP, or 1 mM 3-isobutyl-1-methylxanthine) had no effect on the amplitude of Kv1.5 currents. Inhibition of PKA by injection of protein kinase A inhibitor peptide or exposure to myristoylated protein kinase A inhibitor peptide (M-PKI; 100 nM) reduced currents mediated by Kv1.5. M-PKI also reduced the amplitude of currents mediated by mutated Kv1.5 channels in which the COOH terminal PKA phosphorylation sites and PSD-95, Disc-large, and ZO-1-binding domain were removed. The reduction of Kv1.5 currents by M-PKI was attenuated by inhibition of actin polymerization by 1 microM cytochalasins B and D, but was not affected by 10 microM phalloidin (stabilizes actin filaments) or 50 microM colchicine (disrupts microtubules). Treatment of oocytes with antisense oligonucleotides against alpha-actinin-2 abolished the reduction in Kv1.5 current by M-PKI. These observations suggest that Kv1.5 currents are activated by endogenous PKA in "resting" oocytes and that inhibition of PKA activity reveals the action of endogenous phosphatases. Indeed, injection of alkaline phosphatase reduced currents mediated by Kv1.5. Further preincubation of oocytes with 1 mM sodium orthovanadate (a protein tyrosine phosphatase inhibitor) abolished the reduction in Kv1.5 currents by M-PKI. We conclude that currents encoded by Kv1.5 are regulated by PKA and protein tyrosine phosphatase and that this regulation requires an intact actin cytoskeleton and alpha-actinin-2.  相似文献   

13.
Ajmaline is a class Ia anti-arrhythmic compound that is widely used for the diagnosis of Brugada syndrome and the acute treatment of atrial or ventricular tachycardia. For ajmaline, inhibitory effects on a variety of cardiac K+ channels have been observed, including cardiac Kv1 and Kv4 channels. However, the exact pharmacological properties of channel blockade have not yet been addressed adequately. Using two different expression systems, we analysed pharmacological effects of ajmaline on the potassium channels Kv1.5 and Kv4.3 underlying cardiac I Kur and I to current, respectively. When expressed in a mammalian cell line, we find that ajmaline inhibits Kv1.5 and Kv4.3 with an IC50 of 1.70 and 2.66 μM, respectively. Pharmacological properties were further analysed using the Xenopus expression system. We find that ajmaline is an open channel inhibitor of cardiac Kv1.5 and Kv4.3 channels. Whereas ajmaline results in a mild leftward shift of Kv1.5 activation curve, no significant effect on Kv4.3 channel activation could be observed. Ajmaline did not significantly affect channel inactivation kinetics. Onset of block was fast. For Kv4.3 channels, no significant effect on recovery from inactivation or channel deactivation could be observed. Furthermore, there was no use-dependence of block. Taken together, we show that ajmaline inhibits cardiac Kv1.5 and Kv4.3 channels at therapeutic concentrations. These data add to the current understanding of the electrophysiological basis of anti-arrhythmic action of ajmaline.  相似文献   

14.
Previously, we found that a furocoumarin derivative, psoralen (7H-furo[3,2-g][1]benzopyran-7-one), blocked a human Kv1.5 potassium channel (hKv1.5) and has a potential antiarrhythmic effect. In the present study, to develop more potent hKv1.5 blockers or antiarrhythmic drugs, we synthesized ten psoralen derivatives and examined their blocking effects on hKv1.5 stably expressed in Ltk cells. Among the newly synthesized psoralen derivatives, three derivatives (Compounds 5, 9 and 10) showed the open channel-blocking effect. Compound 9 among them was the most potent in blocking hKv1.5. We found that compound 9, one of the psoralen derivatives, inhibited the hKv1.5 current in a concentration-, use- and voltage-dependent manner with an IC50 value of 27.4 +/- 5.1 nM at +60 mV. Compound 9 accelerated the inactivation kinetics of the hKv1.5 channel, slowed the deactivation kinetics of hKv1.5 current resulting in a tail crossover phenomenon. Compound 9 inhibited hKv1.5 current in a use-dependent manner. These results indicate that compound 9, one of psoralen derivatives, acts on hKv1.5 channel as an open channel blocker and is much more potent than psoralen in blocking hKv1.5 channel. If further studies were done, compound 9 might be an ideal antiarrhythmic drug for atrial fibrillation.  相似文献   

15.
A furocoumarin derivative, psoralen (7H-furo[3,2-g][1]benzopyran-7-one), was isolated from the n-hexane fraction of Heracleum moellendorffii Hance. We examined the effects of psoralen on a human Kv1.5 potassium channel (hKv1.5) cloned from human heart and stably expressed in Ltk- cells. We found that psoralen inhibited the hKv1.5 current in a concentration-, use- and voltage-dependent manner with an IC50 value of 180 +/- 21 nM at +60 mV. Psoralen accelerated the inactivation kinetics of the hKv1.5 channel, and it slowed the deactivation kinetics of the hKv1.5 current resulting in a tail crossover phenomenon. These results indicate that psoralen acts on the hKv1.5 channel as an open channel blocker. Furthermore, psoralen prolonged the action potential duration of rat atrial muscles in a dose-dependent manner. Taken together, the present results strongly suggest that psoralen may be an ideal antiarrhythmic drug for atrial fibrillation.  相似文献   

16.
17.
OBJECTIVE: Atrial-selective drug therapy represents a novel therapeutic approach for atrial fibrillation management. The aim of the present study was to investigate the mechanism of hKv1.5 channel inhibition by the atrial-selective compound AVE1231. METHODS: Ionic currents were recorded from CHO cells transfected with KCNA5 cDNA with whole-cell patch-clamp technique. The effect of AVE1231 on human atrial cell action potentials was explored with a computer model. RESULTS: KCNA5 expression resulted in typical K currents that activated and inactivated voltage dependently. Ascending concentrations of AVE1231 (0.1-100 microM) led to concentration- and voltage-dependent current inhibition (IC50 at +40 mV: 2.0 +/- 0.5 microM, Hill coefficient 0.69 +/- 0.12). Acceleration of hKv1.5 current inactivation occurred with increasing AVE1231 concentrations, indicating channel inhibition in the open state (eg, taufast at +40 mV: 318 +/- 92 milliseconds under control; 14 +/- 1 milliseconds with 3 microM, P < 0.05). Using 1/taufast as an approximation of the time course of drug-channel interaction, association rate (K+1) and dissociation rate (K-1) constants were 8.18 x 10 M/s and 45.95 seconds, respectively (KD = 5.62 microM). The onset of current inhibition occurred more rapidly with higher concentrations along with a prominent tail current crossover phenomenon after AVE1231 application. Drug inhibition remained effective through a range of stimulation frequencies. Computer modeling suggested more pronounced prolongation of action potential duration under conditions of atrial remodeling. CONCLUSION: AVE1231 is an inhibitor of hKv1.5 currents with predominant action on channels in their open state; thus, it may be suitable for the treatment of AF.  相似文献   

18.
Using high-performance liquid chromatography Tst26, a novel potassium channel blocker peptide, was purified from the venom of the Brazilian scorpion Tityus stigmurus. Its primary structure was determined by means of automatic Edman degradation and mass spectrometry analysis. The peptide is composed of 37 amino acid residues and tightly folded through three disulfide bridges, similar to other K+ channel blocking peptides purified from scorpion venoms. It contains the “essential dyad” for K+ channel recognition comprised of a lysine at position 27 and a tyrosine at position 36. Electrophysiological assays revealed that Tst26 blocked hKv1.2 and hKv1.3 channels with high affinity (Kd = 1.9 nM and 10.7 nM, respectively) while it did not affect several other ion channels (mKv1.1, hKv1.4, hKv1.5, hERG, hIKCa1, hBK, hNav1.5) tested at 10 nM concentration. The voltage-dependent steady-state parameters of K+ channel gating were unaffected by the toxin in both channels, but due to the fast association and dissociation kinetics Tst26 slowed the rate of inactivation of Kv1.3 channels. Based on the primary structure, the systematic nomenclature proposed for this peptide is α-KTx 4.6.  相似文献   

19.
Flecainide has been used to differentiate Kv4.2-based transient-outward K(+)-currents (flecainide-sensitive) from Kv1.4-based (flecainide-insensitive). We found that flecainide also inhibits ultrarapid delayed rectifier (I(Kur)) currents in Xenopus laevis oocytes carried by Kv3.1 subunits (IC(50), 28.3 +/- 1.3 microM) more strongly than Kv1.5 currents corresponding to human I(Kur) (IC(50), 237.1 +/- 6.2 microM). The present study examined molecular motifs underlying differential flecainide sensitivity. An initial chimeric approach pointed to a role for S6 and/or carboxyl-terminal sites in Kv3.1/Kv1.5 sensitivity differences. We then looked for homologous amino acid residues of the two sensitive subunits (Kv4.2 and Kv3.1) different from homologous residues for insensitive subunits (Kv1.4 and Kv1.5). Three candidate sites were identified: two in the S5-S6 linker and one in the S6 segment. Mutation of the proximal S5-S6 linker site failed to alter flecainide sensitivity. Mutation at the more distal site in Kv1.5 (V481L) modestly increased sensitivity, but the reciprocal Kv3.1 mutation (L401V) had no effect. S6 mutants caused marked changes: flecainide sensitivity decreased approximately 8-fold for Kv3.1 L422I (IC(50), 213 +/- 9 microM) and increased approximately 7-fold for Kv1.5 I502L (IC(50), 35.6 +/- 1.9 microM). Corresponding mutations reversed flecainide sensitivity of Kv1.4 and Kv4.2; L392I decreased Kv4.2 sensitivity by approximately 17-fold (IC(50) of 37.4 +/- 6.9 to 628 +/- 36 microM); I547L increased Kv1.4 sensitivity by approximately 15-fold (IC(50) of 706 +/- 37 to 40.9 +/- 7.3 microM). Our observations indicate that the flecainide sensitivity differences among these four voltage-gated K(+)-channels are determined by whether an isoleucine or a leucine is present at a specific amino acid location.  相似文献   

20.
The alpha1-adrenoceptor agonist methoxamine acted independently of receptor activation to reduce Ito and the sustained outward current in rat ventricular myocytes, and hKv 1.5 and Kv 4.2 cloned K+ channel currents. Two hundred microM methoxamine reduced Ito by 36% in the presence of 2 microM prazosin, and by 37 and 38% after preincubation of myocytes with either N-ethylmaleimide or phenoxybenzamine (n=6). The EC50 values at +60 mV for direct reduction of Ito, hKv 1.5, and Kv 4.2 by methoxamine were 239, 276, and 363 microM, respectively, with Hill coefficients of 0.87-1.5. Methoxamine accelerated Ito and Kv 4.2 current inactivation in a concentration- and voltage-dependent manner. Apparent rate constants for methoxamine binding and unbinding gave Kd values in agreement with EC50 values measured from dose-response relations. The voltage-dependence of block supported charged methoxamine binding to a putative intracellular site that sensed approximately 20% of the transmembrane electrical field. In the presence of methoxamine, deactivating Kv 4.2 tail currents displayed a distinct rising phase, and were slowed relative to control, such that tail current crossover was observed. These observations support a dominant mechanism of open channel block, although closed channel block could not be ruled out. Single-channel data from hKv 1.5 patches revealed increased closed times with blank sweeps and decreased burst duration in the presence of drug, and a reduction of mean channel open time from 1.8 ms in control to 0.4 ms in 500 microM methoxamine. For this channel, therefore, both open and closed channel block appeared to be important mechanisms for the action of methoxamine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号