首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mucopolysaccharidosis type VI (MPS VI; Maroteaux-Lamy syndrome) is a lysosomal storage disorder caused by mutations in the N-acetylgalactosamine-4-sulfatase (ARSB) gene. These mutations result in a deficiency of ARSB activity. Ten MPS VI patients were involved in a phase II clinical study of enzyme replacement therapy. Direct sequencing of genomic DNA from these patients was used to identify ARSB mutations. Each individual exon of the ARSB gene was amplified by PCR and subsequently sequenced. Thirteen substitutions (c.215T>G [p.L72R] c.284G>A [p.R95Q], c.305G>A [p.R102H], c.323G>T [p.G108V], c.389C>T [p.P130L], c.511G>A [p.G171S], c.904G>A [p.G302R], c.944G>A [p.R315Q], c.1057T>C [p.W353R], c.1151G>A [p.S384N], c.1178A>C [p.H393P], c.1289A>G [p.H430R] and c.1336G>C [p.G446R]), one deletion (c.238delG), and two intronic mutations (c.1213+5G>A and c.1214-2A>G) were identified. Nine of the 16 mutations identified were novel (R102H, G108V, P130L, G171S, W353R, H430R, G446R, c.1213+5G>A and c.1214-2A>G). The two common polymorphisms c.1072G>A [p.V358M] and c.1126G>A [p.V376M] were identified in some of the patients, along with the silent mutations c.972A>G and c.1191A>G. Cultured fibroblast ARSB mutant protein and residual activity were determined for each patient and, together with genotype information, used to predict the expected clinical severity of each patient.  相似文献   

2.
X-linked agammaglobulinemia (XLA) is an immunodeficiency caused by mutations in the Bruton tyrosine kinase (BTK) gene. Twenty Australian patients with an XLA phenotype, from 15 unrelated families, were found to have 14 mutations. Five of the mutations were previously described c.83G>A (p.R28H), c.862C>T (p.R288W), c.904G>A (p.R302G), c.1535T>C (p.L512P), c.700C>T (p.Q234X), while nine novel mutations were identified: four missense c.82C>A (p.R28S), c.494G>A (p.C165Y), c.464G>A (p.C155Y), c.1750G>A (p.G584E), one deletion c.142_144delAGAAGA (p.R48_G50del), and four splice site mutations c.241-2A>G, c.839+4A>G, c.1350-2A>G, c.1566+1G>A. Carrier analysis was performed in 10 mothers and 11 female relatives. The results of this study further support the notion that molecular genetic testing represents an important tool for definitive and early diagnosis of XLA and may allow accurate carrier status and prenatal diagnosis.  相似文献   

3.
Gaucher disease, the most prevalent sphingolipidosis, is caused by the deficient activity of acid beta-glucosidase, mainly due to mutations in the GBA gene. Over 200 mutations have been identified worldwide, more than 25 of which were in Spanish patients. In order to demonstrate causality for Gaucher disease, some of them: c.662C>T (p.P182L), c.680A>G (p.N188S), c.886C>T (p.R257X), c.1054T>C (p.Y313H), c.1093G>A (p.E326K), c.1289C>T (p.P391L), c.1292A>T (p.N392I), c.1322T>C (p.I402T), and the double mutants [c.680A>G; c.1093G>A] ([p.N188S; p.E326K]) and [c.1448T>C; c.1093G>A] ([p.L444P; p.E326K]), were expressed in Sf9 cells using a baculovirus expression system. Other well-established Gaucher disease mutations, namely c.1226A>G (p.N370S), c.1342G>C (p.D409H), and c.1448T>C (p.L444P), were also expressed for comparison. The levels of residual acid beta-glucosidase activity of the mutant enzymes produced by the cDNAs carrying alleles c.662C>T (p.P182L), c.886C>T (p.R257X), c.1054T>C (p.Y313H), c.1289C>T (p.P391L), and c.1292A>T (p.N392I) were negligible. The c.1226A>G (p.N370S), c.1322T>C (p.I402T), c.1342G>C (p.D409H), c.1448T>C (p.L444P), and [c.1448T>C; c.1093G>A] ([p.L444P; p.E326K]) alleles produced enzymes with levels ranging from 6 to 14% of the wild-type. The three remaining alleles, c.680A>G (p.N188S), c.1093G>A (p.E326K), and [c.680A>G; c.1093G>A] ([p.N188S; p.E326K]), showed higher activity (66.6, 42.7, and 23.2%, respectively). Expression studies revealed that the c.1093G>A (p.E326K) change, which was never found alone in a Gaucher disease-causing allele, when found in a double mutant such as [c.680A>G; c.1093G>A] ([p.N188S; p.E326K]) and [c.1448T>C; c.1093G>A] ([p.L444P; p.E326K]), decreases activity compared to the activity found for the other mutation alone. These results suggest that c.1093G>A (p.E326K) should be considered a "modifier variant" rather than a neutral polymorphism, as previously considered. Mutation c.680A>G (p.N188S), which produces a mutant enzyme with the highest level of activity, is probably a very mild mutation or another "modifier variant."  相似文献   

4.
Deficiency of the muscle isozyme of glycogen phosphorylase is causative of McArdle disease or Glycogen storage disease type V (GSD-V), the most common autosomal recessive disorder of glycogen metabolism. The typical clinical presentation is characterized by exercise intolerance with cramps, and recurrent myoglobinuria. To date, 46 mutations in the PYGM gene have been detected in GSD-V patients. We report the mutational spectrum in 68 Italian patients. We identified 30 different mutations in the PYGM gene, including 19 mutations that have not been reported previously. The novel mutations include: eight missense mutations (c.475G>A, p.G159R; c.689C>G, p.P230R; c.1094C>T, p.A365E; c.1151C>A, p.A384D; c.1182C>T, p.R428C; c.1471C>T, p.R491C; c.2444A>C, p.D815A; c.2477G>C, p.W826S), two nonsense mutations (c.1475G>A, p.W492X; c.1627A>T, p.K543X), five splice site mutations (c.855 +1G>C; c.1092 +1G>A; c. 1093-1G>T; c.1239 +1G>A; c.2380 +1G>A), and four deletions (c.715_717delGTC, p.V239del; c.304delA, p.N102DfsX4; c.1970_2177del, p.V657_G726; c.2113_2114delGG, p.G705RfsX16). Whereas we confirmed lack of direct correlation between the clinical phenotype and the genotype, we also found that the so-called 'common mutation' (p.R50X) accounted for about 43% of alleles in our cohort and that no population-related mutations are clearly identified in Italian patients.  相似文献   

5.
6.
The most common form of autosomal recessive (AR) hereditary inclusion-body myopathy (HIBM), originally described in Persian-Jewish families, is characterized by onset in early adult life with weakness and atrophy of distal lower limb muscles, which progress proximally and relatively spare the quadriceps. AR HIBM is associated with mutations in the UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase gene (GNE) on chromosome 9p12-13. In the present study we have identified seven novel GNE mutations in patients from five unrelated Italian families with clinical and pathologic features indicative of AR HIBM. Four were missense mutations (c.1556A>G [p.N519S], c.79C>T [p.P27S], c.1798G>A [p.A600T] and c.616G>A [p.G206S]), two consisted in a single-base deletion (c.616delG [p.G206fsX4] and c.1130delT [p.I377fsX16]) and one in an intronic single-base insertion (c.1070+2dupT). These latter findings further extend the type of GNE mutations associated with HIBM. Furthermore, in one patient we also identified the c.737G>A [p.R246Q] missense mutation that corresponds to the one previously reported in a family from the Bahamas. Interestingly, in two of our families distinct mutations affected nucleotide c.616 in exon 3 (c.616delG and c.616G>A). The possibility of specific portions of the gene being more prone to mutations remains to be elucidated.  相似文献   

7.
The molecular basis of cystathionine beta-synthase (CBS) deficiency has been studied in 536 patient alleles with 130 different mutations described. To date, no study has reported on the incidence of any of the reported mutations in patients from the UK and the US. We developed a new antisense oligonucleotide (ASO) PCR/hybridization method to screen for 12 of the most frequent CBS mutations in 14 unrelated patients from the UK and 38 unrelated patients from the US, a total of 104 independent alleles. We determined 16/28 (57%) and 28/76 (37%) of the affected alleles in the UK and US patients, respectively. Four different mutations were identified in the UK patients (c.374G>A, R125Q; c.430G>A, E144K; c.833T>C, I278T; c.919G>A, G307S) and 8 mutations identified in the patients from the US (c.341C>T, A114V; c.374G>A, R125Q; c.785C>T, T262M; c.797G>A, R266K; c.833T>C, I278T; c.919G>A, G307S; g.13217A>C (del ex 12); c.1330G>A, D444N). The I278T was the predominant mutation in both populations, present in 8 (29%) of 28 independent alleles from the UK and in 14 (18%) of 76 independent alleles from the US. The incidence of the G307S mutation was 21% in the UK patients and 8% in the US patients. The spectrum of mutations observed in the patients from the UK and US is closer to that which is observed in Northern Europe and bears less resemblance to that observed in Ireland.  相似文献   

8.
To better characterize Niemann-Pick type C (NPC) in Spain and improve genetic counselling, molecular analyses were carried out in 40 unrelated Spanish patients. The search identified 70/80 alleles (88%) involving 38 different NPC1 mutations, 26 of which are described for the first time. No patient with NPC2 mutations was identified. The novel NPC1 mutations include 14 amino acid substitutions [R372W (c.1114C>T), P434L (c.1301C>T), C479Y (c.1436G>A), K576R (c.1727G>A), V727F (c.2179G>T), M754K (c.2261T>A), S865L (c.2594C>T), A926T (c.2776G>A), D948H (c.2842G>C), V959E (c.2876T>A), T1036K (c.3107C>A), T1066N (c.3197C>A), N1156I (c.3467A>T) and F1224L (c.3672C>G)], four stop codon [W260X (c.780G>A), S425X (c.1274C>A), C645X (c.1935T>A) and R1059X (c.3175C>T)], two donor splice-site mutations [IVS7+1G>A (g.31432G>A) and IVS21+2insG (g.51871insG)], one in-frame mutation [N961_F966delinsS (c.2882del16bpins1bp)] and five frameshift mutations [V299fsX8 (c.895insT), A558fsX11 (c.1673insG), C778fsX10 (c.2334insT), G993fsX3 (c.2973_78delG) and F1221fsX20 (c.3662delT)]. We also identified three novel changes [V562V (c.1686G>A), A580A (c.1740C>G) and A1187A (c.3561G>T)] in three independent NPC patients and five polymorphisms that have been described previously. The combination of these polymorphisms gave rise to the establishment of different haplotypes. Linkage disequilibrium was detected between mutations C177Y and G993fsX3 and specific haplotypes, suggesting a unique origin for these mutations. In contrast, I1061T mutation showed at least two different origins. The most prevalent mutations in Spanish patients were I1061T, Q775P, C177Y and P1007A (10, 7, 7 and 5% of alleles, respectively). Our data in homozygous patients indicate that the Q775P mutation correlates with a severe infantile neurological form and the C177Y mutation with a late infantile clinical phenotype.  相似文献   

9.
The mutation spectrum of the BRCA1 gene among ethnic groups from Asia has not been well studied. We investigated the frequency of mutations in the BRCA1 gene among Malay breast cancer patients from Singapore, independent of family history. By using the protein truncation test (PTT) and direct sequencing, BRCA1 mutations were detected in 6 of 49 (12.2%) unrelated patients. Four novel missense mutations in exon 11, T557A (1788A>G), T582A (1863A>G), N656S (2086A>G) and P684S (2169C>T) were identified in one patient. Two patients had missense mutations in exon 23, V1809A (5545T>C), which has been previously detected in individuals from Central and Eastern Europe. Three unrelated patients had the deleterious 2846insA frameshift mutation in exon 11. Methylation specific PCR (MSP) of the promoter region of the BRCA1 gene detected hypermethylation of tumor DNA in an additional 2 patients. Haplotype analysis using the microsatellite markers D17S855, D17S1323 and D17S1325 revealed a common haplotype for the three unrelated patients and their three relatives with the 2846insA mutation. These findings strongly suggest that the 2846insA mutation, the most common deleterious mutation in this study, may possibly be a founder mutation in breast cancer patients of Malay ethnic background.  相似文献   

10.
Eighteen unrelated pyruvate kinase (PK)-deficient Indian patients were identified in the past 4 years with varied clinical phenotypes ranging from a mild chronic haemolytic anaemia to a severe transfusion-dependent disorder. We identified 17 different mutations in the PKLR gene among the 36 mutated alleles. Ten novel mutations were identified: 427G>A, 499C>A, 1072G>A, 1180G>T, 1216G>A, 1220A>G, 644delG, IVS5 (+20) C>A, IVS9 (+44) C>T, and IVS9 (+93) A>C. A severe syndrome was commonly associated with some mutations, 992A>G, 1436G>A, 1220A>G, 644delG and IVS9 (+93) A>C, in the PKLR gene. Molecular graphics analysis of human red blood cell PK (RPK), based on the crystal structure of human PK, shows that mutations located near the substrate or fructose 1,6-diphosphate binding site may change the conformation of the active site, resulting in very low PK activity and severe clinical symptoms. The mutations target distinct regions of RPK structure, including domain interfaces and catalytic and allosteric sites. In particular, the 1216G>A and 1219G>A mutations significantly affect the interdomain interaction because they are located near the catalytic site in the A/B interface domains. The most frequent mutations in the Indian population appear to be 1436G>A (19.44%), followed by 1456C>T (16.66%) and 992A>G (16.66%). This is the first study to correlate the clinical profile with the molecular defects causing PK deficiency from India where 10 novel mutations that produce non-spherocytic haemolytic anaemia were identified.  相似文献   

11.
Classical galactosemia is an autosomal recessive disorder of galactose metabolism due to galactose-1-phosphate uridyltransferase (GALT) deficiency. Treatment through restriction of dietary galactose intake is lifesaving, but, in spite of this diet, most patients develop abnormalities. In this paper we report the mutational spectrum of classical galactosemia in a cohort of 123 Dutch patients, all with biochemically proven classical galactosemia. In the human GALT gene, which is located on chromosome 9p13, we identified 24 different mutations, including nine mutations that have not been reported previously. The novel mutations include five missense mutations (c.152G>A/p.R51Q, c.404C>T/p.S135W, c.687G>T/p.K229N, c.756G>T/p.Q252H, and c.1140A>C/p.X380C), a frame shift mutation (c.410dupT), a splice site mutation (c.821-2A>G), a possible branch point mutation (c.508-29delT), and a large deletion encompassing at least exons 1-11. Six of these novel mutations were found in patients of Dutch descent: p.R51Q, p.S135W, p.K229N, p.Q252H, p.X380C, and c.410dupT.  相似文献   

12.
Methylcrotonylglycinuria (MCG) is an inborn error of leucine catabolism and has a recessive pattern of inheritance that results from the deficiency of 3-methylcrotonyl-CoA carboxylase (MCC). The clinical phenotypes are highly variable ranging from neonatal onset with severe neurological involvement to asymptomatic adults. Here we identified two novel MCCA (exon 3: c.137G>A; p.46G>E), (IVS7-1G>A splice site mutation), and four novel MCCB (exon 11: c.1065A>T; p.355L>F), (exon 15: c.1430A>G; p.477Q>R), (exon 16: c.1549G>A; p.517G>R), (exon 16: c.1559A>C; p.520Y>S) mutant alleles from five MCC-deficient patients.  相似文献   

13.
We characterized 29 unrelated patients presenting with the severe form of Pompe disease (Glycogen Storage Disease Type II, acid maltase deficiency) and identified 26 pathogenic mutations divided over 28 different genotypes. Among the eight new mutations, five were exonic point mutations (c.572A>G, c.1124G>T, c.1202A>G, c.1564C>G and c.1796C>A) leading to codon changes (p.Y191C, p.R375L, p.Q401R, p.P522A and p.S599Y); two were intronic point mutations (c.-32-3C>A and c.1636+5G>C) affecting mRNA processing; one was a single base deletion (c.742delC) generating a truncated protein (p.L248PfsX20). A comprehensive evaluation, based on different methodological approaches, confirmed the detrimental effect of the eight mutations on the protein and its function. Structural alterations potentially induced by the five missense mutations were also predicted through visual inspection of the atomic model of the GAA protein, in terms of both function and spatial orientation of specific residues as well as disturbance generated by amino acid substitutions. Although the remarkable heterogeneity of the mutational spectrum in Pompe disease was already known, our data demonstrate and confirm the power of molecular and functional analysis in predicting the natural course of Pompe disease.  相似文献   

14.
Fabry disease, an X-linked inborn error of glycosphingolipid catabolism, results from mutations in the alpha-galactosidase A gene (GLA). Here we report molecular studies in 22 unrelated Spanish patients with Fabry disease ( 20 males and two females). Fifteen novel mutations were identified. In addition 7 previously described mutations and two previously reported polymorphisms were detected. The 15 novel mutations comprise: eight missense E48K (c.142G>A), W81S (c.242G>C), D170H (c.508G>C), W226C (c.678G>T), Q279R (c.836A>G), C382Y (c.1145G>A), I407K (c.1220T>A), L414S (c.1241T>C); one nonsense W95X (c.284G>A); one insertion Y216fsX15 (c.646_647insT); two small deletions G346fsX1 (c.1037delG), K426fsX23 (c.1277_1278delAA); one gross deletion comprising exons 5, 6, 7; one complex mutation (insertion and deletion) A368fsX24 (c.1102delGinsTTATAC), and one splice-site mutation IVS4+1G>A (c.639+1G>A). One of the females was found homozygous for Q279R mutation and she presented with the classic phenotype since the age of 8 years, this case extending into women the severe phenotype observed in classically affected males. Mutation analysis provided precise identification for 30 heterozygotes among female relatives and detection of a de novo mutation. The molecular studies on Spanish Fabry patients here reported further contribute to the identification of new mutations in this disease, and allow reliable detection of heterozygotes which has consequences for genetic counselling and for treatment.  相似文献   

15.
Defects in mitochondrial DNA (mtDNA) maintenance comprise an expanding repertoire of polymorphic diseases caused, in part, by mutations in the genes encoding the p140 mtDNA polymerase (POLG), its p55 accessory subunit (POLG2) or the mtDNA helicase (C10orf2). In an exploration of nuclear genes for mtDNA maintenance linked to mitochondrial disease, eight heterozygous mutations (six novel) in POLG2 were identified in one control and eight patients with POLG-related mitochondrial disease that lacked POLG mutations. Of these eight mutations, we biochemically characterized seven variants [c.307G>A (G103S); c.457C>G (L153V); c.614C>G (P205R); c.1105A>G (R369G); c.1158T>G (D386E); c.1268C>A (S423Y); c.1423_1424delTT (L475DfsX2)] that were previously uncharacterized along with the wild-type protein and the G451E pathogenic variant. These seven mutations encode amino acid substitutions that map throughout the protein, including the p55 dimer interface and the C-terminal domain that interacts with the catalytic subunit. Recombinant proteins harboring these alterations were assessed for stimulation of processive DNA synthesis, binding to the p140 catalytic subunit, binding to dsDNA and self-dimerization. Whereas the G103S, L153V, D386E and S423Y proteins displayed wild-type behavior, the P205R and R369G p55 variants had reduced stimulation of processivity and decreased affinity for the catalytic subunit. Additionally, the L475DfsX2 variant, which possesses a C-terminal truncation, was unable to bind the p140 catalytic subunit, unable to bind dsDNA and formed aberrant oligomeric complexes. Our biochemical analysis helps explain the pathogenesis of POLG2 mutations in mitochondrial disease and emphasizes the need to quantitatively characterize the biochemical consequences of newly discovered mutations before classifying them as pathogenic.  相似文献   

16.
Mucopolysaccharidosis type VI (MPS VI), or Maroteaux-Lamy syndrome, is a lysosomal storage disorder caused by a deficiency of N-acetylgalactosamine-4-sulfatase (ARSB). Seven MPS VI patients were chosen for the initial clinical trial of enzyme replacement therapy. Direct sequencing of genomic DNA from these patients was used to identify ARSB mutations. Each individual exon of the ARSB gene was amplified by PCR and subsequently sequenced. Nine substitutions (c.289C>T [p.Q97X], c.629A>G [p.Y210C], c.707T>C [p.L236P], c.936G>T [p.W312C], c.944G>A [p.R315Q], c.962T>C [p.L321P], c.979C>T [p.R327X], c.1151G>A [p.S384N], and c.1450A>G [p.R484G]), two deletions (c.356_358delTAC [p.Y86del] and c.427delG), and one intronic mutation (c.1336+2T>G) were identified. A total of 7 out of the 12 mutations identified were novel (p.Y86del, p.Q97X, p.W312C, p.R327X, c.427delG, p.R484G, and c.1336+2T>G). Two of these novel mutations (p.Y86del and p.W312C) were expressed in Chinese hamster ovary cells and analyzed for residual ARSB activity and mutant ARSB protein. The two common polymorphisms c.1072G>A [p.V358M] and c.1126G>A [p.V376M] were identified among the patients, along with the silent mutation c.1191A>G. Cultured fibroblast ARSB mutant protein and residual activity were determined for each patient, and, together with genotype information, were used to predict the expected clinical severity of each MPS VI patient.  相似文献   

17.
Molecular characterization of twelve unrelated patients affected by the autosomal recessive osteosclerotic skeletal dysplasia, Pycnodysostosis (cathepsin k deficiency), revealed 11 different genotypes. The mutational profile consisted of 12 different mutations, including nine previously unreported ones, spread throughout the whole gene. One mutation occurred in regions coding predomain, two affected the prodomain and nine others occurred in the mature domain. The novel lesions consisted in six missense mutations c.20T>C (p.L7P), c.494A>G (p.Q165R), c.580G>A (p.G194S), c.746T>C (p.I249T), c.749A>G (p.D250G), c.955G>T (p.G319C), two frameshifts c.60_61dupGA (p.I21RfsX29), c.282dupA (p.S95VfsX9) and a splicing mutation c.890G>A (r.785_890del). The six new missense mutations were examined by western blots of COS-7 cells transfected with mutant CTSK genes. The L7P, occurring within the predicted hydrophobic domain of signal peptide, showed a significantly reduced expression level compared to the wild type control. These findings suggested that the mutation affected targeting and translocation of the nascent lysosomal protein across the endoplasmatic reticulum membrane. The novel amino acid changes were also modeled into the three-dimensional structure that predicted incorrect protein folding for all of them. Molecular characterization of the patients is of particular value for genetic counseling of patients and their families as diagnosis of Pycnodysostosis based on enzyme assay is unpractical and thus not offered routinely.  相似文献   

18.
Initiator codon mutations are relatively uncommon and less well characterized compared to other types of mutations. We identified a novel initiator codon mutation (c.2T>C) heterozygously in a Japanese patient (Patient GK30) with mitochondrial acetoacetyl-CoA thiolase (T2) gene deficiency (ACAT1 deficiency); c.149delC was on the other allele. We examined translation efficiencies of nine mutant T2 cDNAs harboring one-base substitutions at the initiator methionine codon using in vivo transient expression analysis. We found that all the mutants produced wild-type T2 polypeptide, to various degrees (wild type (100%) > c.1A>C (66%) > c.2T>C, c.3G>C, c.3G>T (22%) > c3G>A, c.1A>G (11%) > c.2T>A, c.2T>G, c.1A>T (7.4%)). T2 mRNA expression levels in Patient GK08 (a homozygote of c.2T>A) and Patient GK30 fibroblasts, respectively, were almost the same as in control fibroblasts, when examined using semiquantitative PCR. This means that initiator codon mutations did not affect T2 mRNA levels. We propose that all one-base substitutions at the initiator methionine codon in the T2 gene could be mutations, which retain some residual T2 activity.  相似文献   

19.
This study aims to compare the spectrum of the mutations identified in the gene responsible for cystic fibrosis in three cohorts of patients of Celtic origin from Brittany and Ireland. It included 389 patients from Brittany, 631 from Dublin and 139 from Cork. The CFTR gene analysis relied on the detection of the most common mutations, followed by a complete gene scanning using DGGE or D-HPLC. High mutation detection rates were obtained in each cohort: 99.6%, 96.8%, and 96.0% respectively. A high frequency of the c.1652_1655 del3 mutation (F508del: 74.8% to 81.3%) and of the "Celtic" mutation (c.1784G>A (G551D): 3.7% to 9.7%) was observed in each population. Apart from this, the mutation spectrums differed. In Brittany, the most common abnormalities were: c.1078delT (3.6%), c.4041C>G (N1303K: 1.4%), c.2670G>A (W846X(2): 1.0%) and c.1717-1G>A (1.0%), whereas in the cohort of Dublin, the main mutations were: c.482G>A (R117H: 3.0%), c.1811G>C (R560T: 2.4%) and c.621+1G>T (1.7%). Finally, in the Cork area, only the c.482G>A mutation (R117H) reached a frequency of 1%. Two previously-unreported mutations were identified in the Dublin cohort: c.2623-2A>G and c.3446T>G (M1105R). This collaborative study highlights the similarities of the CFTR alleles in the Breton and Irish populations, but also the disparities that exist between these populations, despite their common origin. Each population has its own history, with its mixture of founder effects and genetic drifts, which are at the origin of the current mutation distribution. The molecular study of the CFTR gene provides new tools for retracing European populations' histories.  相似文献   

20.
Congenital agammaglobulinemia is a humoral primary immunodeficiency and affected patients have extremely low levels of peripheral B cells and profound deficiency of all immunoglobulin isotypes. Mutations of the Bruton's tyrosine kinase (BTK) gene are responsible for most of the congenital agammaglobulinemia. In this study, the phenotypes of congenital agammaglobulinemia were investigated in 21 male children from 21 unrelated Chinese families. Sixteen different mutations of BTK gene were identified in 18 patients, and three patients did not have BTK gene mutations. Nine mutations had been reported previously including one gross deletion (c.722_2041del), one missense mutation (c.1764G>T), three non-sense mutations (c.194C>A, c.895C>T and c.1821G>A) and four invariant splice-site mutations (c.971+2T>C, c.1481+2T>A, c.1482-2A>G, c.1699-2A>G). Seven novel mutations were identified (c.373_441del, c. 504delG, c.537delC, c.851delA, c.1637G>A, c.1879T>C and c. 1482_1882 del). Ten of the eighteen mutations of BTK gene were located in the TK domain, four in the PH domain, three in the SH3 domain and one spanned the TH, SH3, SH2 and TK domain. Candidate genes of autosomal-recessive agammaglobulinemia, including IGHM, CD79a, CD79b and IGLL1, were screened in three patients without mutations in the BTK gene. A compound heterozygosity mutation in the IGHM gene (c.1956G>A, c.175_176insC) was identified in one patient. The results of our study further support that molecular genetic testing represents an important tool for early confirmed diagnosis of congenital agammaglobulinemia and may allow accurate carrier detection and prenatal diagnosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号