首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intracellular staining with HRP of physiologically identified group Ia and Ib afferent fibers in the adult cat lumbosacral cord revealed that group Ia and Ib fibers take a similar course in the dorsal funiculus, but the collaterals emerging from them show a different topographical distribution and a different mode of branching in the gray matter. Ia collaterals terminate in laminae VI, VII, IX, and sometimes VIII, whereas Ib collaterals terminate only in lamina VI, or both VI and IX. In lamina IX, two large motor-type neurons received terminations of both Ia and Ib fibers at the same time.  相似文献   

2.
1. The reversal potentials of several types of inhibitory post-synaptic potentials (IPSPs) have been studied in cat spinal motoneurones with and without modification of intracellular chloride ion (Cl(-)) concentration. Single barrel intracellular micropipette electrodes have been used.2. When studied with potassium citrate filled micropipettes, the reversal potential for IPSPs evoked by stimulation of antagonist group Ia afferents is the same as that for recurrent IPSPs evoked by antidromic stimulation of motoneurone axon collaterals, confirming earlier observations (Araki, Ito & Oscarsson, 1961; Coombs, Eccles & Fatt, 1955).3. Studied with potassium chloride filled micropipettes. the reversal potential for the group Ia IPSP was found to be different from that for the recurrent IPSP when the amount of Cl(-) diffusing or iontophoretically injected into the motoneurone was small. The amount of difference in reversal potential varied from cell to cell but when present the group Ia IPSP reversed to a depolarizing potential more readily than the recurrent IPSP in all cases.4. Interaction between recurrent IPSPs and monosynaptic excitatory post-synaptic potentials (EPSPs) was also studied and the amount of non-linearity of potential summation was measured.5. The results are consistent with the hypothesis that the terminations of Renshaw cells responsible for the recurrent IPSP are located largely on the proximal dendrites of motoneurones, while the terminations of the interneurones generating the group Ia IPSP appear to be closer to or on the cell somata.  相似文献   

3.
Variability is increasingly recognized as a characteristic feature of cellular, synaptic, and network properties. While studies have traditionally focused on mean values, significant effects can result from changes in variance. This study has examined cellular and synaptic variability in the lamprey spinal cord and its modulation by the neuropeptide substance P. Cellular and synaptic variability differed in different types of cell and synapse. Substance P reduced the variability of subthreshold locomotor-related depolarizations and spiking in motor neurons during network activity. These effects were associated with a reduction in the variability of spiking in glutamatergic excitatory network interneurons and with a reduction in the variance of excitatory interneuron-evoked excitatory postsynaptic potentials (EPSPs). Substance P also reduced the variance of postsynpatic potentials (PSPs) from crossing inhibitory and excitatory interneurons, but it increased the variance of inhibitory postsynpatic potentials (IPSPs) from ipsilateral inhibitory interneurons. The effects on the variance of different PSPs could occur with or without changes in the PSP amplitude. The reduction in the variance of excitatory interneuron-evoked EPSPs was protein kinase A, calcium, and N-methyl-d-aspartate (NMDA) dependent. The NMDA dependence suggested that substance P was acting postsynaptically. This was supported by the reduced variability of postsynaptic responses to glutamate by substance P. However, ultrastructural analyses suggested that there may also be a presynaptic component to the modulation, because substance P reduced the variability of synaptic vesicle diameters in putative glutamatergic terminals. These results suggest that cellular and synaptic variability can be targeted for modulation, making it an additional source of spinal cord plasticity.  相似文献   

4.
The degeneration of axon terminals of the lateral (cortico and rubrospinal) and ventral (vestibulo- and reticulospinal) descending and propriospinal (lateral and ventral funiculus) systems was investigated by electron microscopy in the cat spinal cord. We studied the mean diameters of axon terminals, their arrangement on the neuronal structures in the grey matter, as well as the variety of the destructive changes in synaptic terminals. The average size of the ‘dark’ type degenerating axon terminals of fibers in the lateral descending systems was smaller than that of the ‘light’ type degenerating axon terminals in the medial descending systems. The average size of the both ‘dark’ and ‘light’ type degenerating propriospinal terminals of the ventral funiculus differed from those of the lateral funiculus.The findings concerning the sizes of synaptic terminals of the different descending and propriospinal systems correlate to a certain extent with the electrophysiological data about the nature of their synaptic action upon the spinal neurons.  相似文献   

5.
Raabe  W. 《Journal of neurophysiology》1989,62(6):1461-1473
1. Glutamine is thought to be a precursor of the pool of glutamate that is used as synaptic transmitter. NH4+ inhibits glutaminase, the enzyme presumed to cleave glutamine into glutamate in synaptic terminals. Therefore a decrease by NH4+ of excitatory synaptic transmission in hippocampus was suggested to be due to the inability to utilize glutamine as a precursor for glutamate and subsequent transmitter depletion. This study reexamines the effects of NH4+ on excitatory synaptic transmission. 2. The effects of NH4+ on excitatory synaptic transmission from low-threshold afferent fibers, presumably Ia-afferent fibers, to motoneurons was investigated in the spinal cord of anesthetized cats in vivo. 3. Action potentials of low-threshold afferent fibers were recorded at the entry of the dorsal roots into the spinal cord. An extracellular electrode within a motoneuron nucleus recorded the action potential of low-threshold afferent fibers and the extracellular monosynaptic excitatory postsynaptic potential, i.e., the focal synaptic potential (FSP). This extracellular electrode also recorded the antidromic field potential (AFP) in response to ventral root stimulation. Electrodes on the ventral roots recorded the monosynaptic reflex (MSR) and the monosynaptic excitatory postsynaptic potential in motoneurons electrotonically conducted into the ventral roots (VR-EPSP). 4. Intravenous infusion of ammonium acetate (AA) reversibly decreased MSR, VR-EPSP, and FSP, i.e., decreased excitatory synaptic transmission. 5. The decrease of VR-EPSP and FSP was accompanied initially by a decrease of conduction and, eventually, a conduction block in presynaptic terminals of low-threshold afferent fibers. 6. The decreases of VR-EPSP and FSP were also accompanied by the transient appearance of a reflex discharge, triggered by VR-EPSPs of decreased amplitude, and changes of the AFP indicating increased invasion of motoneuron somata by antidromic action potentials. 7. It is suggested that NH4+ depolarizes intraspinal Ia-afferent fibers and motoneurons. This depolarization initially decreases and then blocks conduction of action potentials into the presynaptic terminals of Ia-afferent fibers. The conduction block prevents the release of excitatory transmitter and decreases excitatory synaptic transmission. 8. The suggested depolarizing action of NH4+ may be due to K+-like ionic properties of NH4+ and/or an inhibition of K+-uptake into astrocytes. 9. The conduction block in presynaptic terminals of low-threshold afferent fibers can fully explain the decrease of excitatory synaptic transmission by NH4+. Because of the conduction block in presynaptic terminals, this study does not permit a conclusion as to an inhibition by NH4+ fo the utilization of glutamine as a precursor for glutamate used as synaptic transmitter.  相似文献   

6.
7.
1. We have developed a technique to measure the total amount of current from a synaptic input system that reaches the soma of a motoneuron under steady-state conditions. We refer to this quantity as the effective synaptic current (IN) because only that fraction of the synaptic current that actually reaches the soma and initial segment of the cell affects its recruitment threshold and firing frequency. 2. The advantage of this technique for analysis of synaptic inputs in comparison to the standard measurements of synaptic potentials is apparent from Ohm's law. Steady-state synaptic potentials recorded at the soma of a cell are the product of IN and input resistance (RN), which is determined by intrinsic cellular properties such as cell size and membrane resistivity. Measuring IN avoids the confounding effect of RN on the amplitudes of synaptic potentials and thus provides a more direct assessment of the magnitude of a synaptic input. 3. Steady-state synaptic inputs were generated in cat medial gastrocnemius (MG) motoneurons by using tendon vibration to activate homonymous Ia afferents. We found that the magnitude of the Ia effective synaptic current (Ia IN) was not the same in all MG cells. Instead, Ia IN covaried with RN (r = 0.64; P less than 0.001), being about twice as large on average in motoneurons with high RN values as in those with low RN values. Ia IN was also correlated with motoneuron rheobase, afterhyperpolarization duration, and axonal conduction velocity. 4. A comparison of transient Ia EPSPs with steady-state Ia EPSPs (Ia EPSPSS) evoked in the same cells suggested that the effective synaptic current that produces the transient Ia EPSP was also greater in motoneurons with high RN values than in those with low RN values. 5. The factors responsible for the Ia IN-RN covariance are uncertain. However, our finding greater values of Ia IN in high RN motoneurons is consistent with other evidence suggesting that Ia boutons on these motoneurons have a higher probability for neurotransmitter release than those on low RN motoneurons (19). 6. The neural mechanisms underlying orderly recruitment are discussed. The effect of the Ia input is to produce an approximately twofold expansion of the differences in motoneuron recruitment thresholds that are generated by intrinsic cellular properties. It is suggested that the higher efficacy of Ia input in low-threshold motoneurons confers particular importance on this input system in the control of vernier movements (7).  相似文献   

8.
9.
1. Composite excitatory postsynaptic potentials (EPSPs) evoked by electrical stimulation of heteronymous group Ia afferents have been studied at various postoperative times in axotomized motoneurons that were denied the opportunity to reinnervate muscle. 2. The medial gastrocnemius (MG) nerve was transected and sutured onto the surface of the normally innervated lateral gastrocnemius (LG) muscle. The denervated MG muscle was excised thereby eliminating access of regenerating MG motor axons to vacant end-plates. 3. The mean amplitude of monosynaptic Ia EPSPs evoked by electrical stimulation of the LG-soleus (LGS) nerve and recorded in axotomized MG motoneurons showed an initial decline at 20 days postoperative (DPO) that was not significant. At 44 DPO, mean amplitude had declined significantly to 43% of the control mean amplitude. At 90 DPO, mean EPSP amplitude was not significantly different from control. At the latest postoperative time (150-180 DPO), mean amplitude was significantly less than the control amplitude. 4. Mean EPSP rise time (time-to-peak) was significantly increased (27%) at the earliest postoperative times (20-44 DPO). At later postoperative times (90-180), mean EPSP rise time was not significantly different from mean control rise time. 5. "Partial responses" superimposed on EPSPs were not observed at any postoperative time. 6. Mean posttetanic potentiation (PTP) of the LGS EPSP was significantly depressed at 20 DPO. At later postoperative times, PTP did not differ significantly from mean control PTP. 7. The possibility is considered that postaxotomy alterations in the electrical properties of motoneurons may explain these complex variations of mean EPSP amplitude and rise time.  相似文献   

10.
The present series of investigations was aimed to disclose the possible sites of action of excitatory and inhibitory inputs on tho-interneuron pathway mediating the primary afferent depolarization (PAD) of group I afferents of extensor muscles in the cat spinal cord. To this end we compared the effects produced by stimulation of segmental and descending pathways on the PAD generated either by stimulation of group I fibers of flexor muscles or by intraspinal microstimulation. It was assumed that under the appropriate conditions the PAD produced by intraspinal microstimulation results from the activation of the last-order interneurons in the PAD pathway and may, therefore, allow detection pathway. The PAD of single group I afferent fibers was determined in barbiturate-anesthetized preparations by measuring the test stimulus current required to maintain a constant probability of antidromic firing. This was achieved by means of a feedback system that continuously adjusted the test stimulus current to the required values. The PAD of individual group Ia gastrocnemius soleus (GS) fibers that is produced by activation of the low-threshold afferents of the posterior biceps and semitendinosus nerve was found to be inhibited by conditioning stimulation of the relatively low-threshold cutaneous fibers and also by stimulation of supraspinal structures such as the ipsilateral brain stem reticular formation, the contralateral red nucleus, and the contralateral pyramidal tract. In contrast, the PAD of group Ia fibers produced by microstimulation applied in the intermediate nucleus could be inhibited only by stimulation of the brain stem reticular formation but not by stimulation of the other descending inputs presently tested or by stimulation of cutaneous nerves. PAD of group Ia fibers was produced also by microstimulation applied within the motor nucleus. However, in most fibers the resulting PAD could not be inhibited either by stimulation of the brain stem reticular formation, the red nucleus, the pyramidal tract, or cutaneous nerves. Stimulation of cutaneous and of flexor muscle nerves of the brain stem reticular formation, the red nucleus, and the pyramidal tract all produced PAD of the group Ib GS fibers.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Although there is much evidence for the presence of serotonergic fibers in the spinal gray matter, there is little evidence for the location of descending serotonergic fiber tracts in the spinal white matter. Using a highly sensitive immunocytochemical technique, we localized serotonin-immunoreactive axons throughout the white and gray matter of the spinal cord. Prominent concentrations of serotonergic axons were found in the dorsolateral and ventral funiculi. It is likely that these two descending fiber tracts contribute serotonergic input to the dorsal and ventral horns, respectively.  相似文献   

12.
In the spinal cord of the anesthetized cat, we measured the changes in extracellular concentration of potassium ions [K+]e and the negative DC shifts produced by stimulation of muscle, cutaneous and mixed afferent nerves, together with alterations in the threshold of single group Ia fibers that were tested at the same site as the potassium measurements. This approach provided information on the extent to which the excitability changes of single Ia-fibers can be correlated with the changes in [K+]e occurring at the same site. Stimulation of the tibial (TIB) nerve and of the cutaneous sural (SU), and superficial peroneous (SP) nerve (100-Hz trains lasting 30-60 s) with stimulus strengths of 10-15 times threshold increased the concentration of [K+]e in the dorsal horn by 2-5 mmol/l above the resting value of 3 mmol/l. This was in clear contrast with the very small [K+]e increases produced at the same site during stimulation of muscle nerves, such as the posterior biceps and semitendinosus (PBSt), gastrocnemius soleus (GS), and deep peroneus (DP), which were generally smaller than 0.25 mmol/l. Stimulation of the PBSt and GS muscle nerves did produce small, but clear, increases of [K+]e (up to 0.3 mmol/l) in the region of the intermediate nucleus, where these fibers synapse with second order cells. These changes were nevertheless smaller than those produced at the same site by stimulation of the TIB, SU, and SP nerves. The peak amplitudes of the [K+]e transients produced by long-lasting 100-Hz trains applied to cutaneous and/or to muscle nerves showed a linear relationship with the amplitudes of the slow negative DC shifts, which were simultaneously recorded from the NaCl barrel of the potassium electrode assembly. Stimulus trains (100 Hz) applied to group I muscle afferents (PBSt and DP) very effectively reduced the threshold for intraspinal activation of individual group I GS fibers but produced negligible negative DC shifts at the same site. On the other hand, 100-Hz stimulus trains applied to the SU and SP nerves produced large negative DC shifts, even with low-stimulus strengths (2 X T, where T is threshold), but had much smaller effects on the threshold of group Ia GS fibers. Increasing the intensity of the stimuli applied to cutaneous and mixed nerves above 2 X T strength further reduced the threshold of the Ia-fibers.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
1. Interneurones identified by physiological criteria (Hultborn, Jankowska & Lindstr?m, 1971b) to mediate Ia reciprocal inhibition of motoneurones in the spinal cord of the cat were stained by intracellular injection of a fluorescent dye (Procion Yellow).2. The somas of the stained cells were found in Rexed's lamina VII, just dorsal or dorsomedial to the motor nuclei. Their size was about 30 x 20 mum. The cells had four to five slender, weakly branching dendrites. The total extension of their dendritic trees was about 600 mum dorsoventrally, 400 mum mediolaterally and 300 mum rostrocaudally.3. The axons originated from a separate axon hillock or from the base of a dendrite. They were myelinated with external diameter of about 6-14 mum and projected to either the ipsilateral ventral or lateral funiculi. Early collaterals were found only exceptionally. Some axons bifurcated into an ascending and a descending branch within the funiculi.4. The possibility of identifying the Ia inhibitory interneurones on purely morphological grounds is discussed.  相似文献   

14.
Low intensity (1-20 micro A) intraspinal stimulation produces in the sural nerve of the anesthetized cat short latency responses (3-4 ms) due to antidromic activation of fibers conducting in the A range (43-65 m/s). With higher stimulus intensities (up to 400 micro A) late responses (120-250 ms latency) may also be recorded. Simultaneous recording from two sites in the sural nerve shows that the peripheral processes of the fibers generating the late responses have a conduction velocity between 0.8-1.3 m/s. Collision between antidromic and orthodromic responses further indicates that these fibers have a peripheral threshold 20-25 times that of the A fibers. The late responses were largest when the intraspinal stimulating electrode was located in the dorsal horn, in the region corresponding to Laminae II and III of Rexed. The above observations suggest that the late responses are due to population responses of C fibers which are antidromically activated in the dorsal horn. The excitability of the C fiber terminals is increased by conditioning stimuli applied to other cutaneous afferents with a time course resembling that of the excitability increase of the A fibers on the same nerve. It is suggested that the effectiveness of synaptic transmission from C fibers to second order cells may be modulated presynaptically. In the decerebrate cat the antidromic responses of C fibers are reduced, but not abolished, by reversible spinalization produced by cooling or by sectioning the thoracic spinal cord. This suggests in addition that in the decerebrate preparation the presynaptic effectiveness of the C fiber (presumably nociceptive) input may be tonically decreased by supraspinal influences.  相似文献   

15.
In pentobarbitone-anaesthetised spinal cats, a comparison was made of the effects of intravenous bicuculline hydrochloride, a GABAA-receptor antagonist, and several (-)-baclofen (GABAB-receptor) antagonists (CGP 35348, 46381, 56999A) on the prolonged inhibition of extensor-muscle monosynaptic reflexes, recorded from lumbar ventral roots, by brief or continuous tetanic stimulation of low-threshold afferent fibres of hindlimb flexor muscles. Two components of brief tetanus inhibition were detected. Whilst possibly of similar central latency, the inhibition associated with GABAB receptors had a longer time course than that reduced by bicuculline. Furthermore, whereas bicuculline reduced primary afferent depolarization, generated by the inhibitory volleys, and detected as dorsal-root potentials, such potentials were generally enhanced by intravenous baclofen antagonists. The inhibition of reflexes during and after continuous (333 Hz) tetanic flexor-nerve stimulation appeared to be predominantly associated with the activation of GABAB receptors. In the period following continuous tetanic flexor-nerve stimulation, during which monosynaptic extensor reflexes were reduced in amplitude, the action potentials of the intraspinal terminations of extensor-muscle group-Ia afferent fibres were reduced in duration, as detected by the time course of the recovery of the threshold to extracellular microstimulation following the arrival of an orthodromic impulse. A reduction in termination action-potential duration also accompanied the reduction by microelectrophoretic (-)-baclofen of the release of excitatory transmitter from group-Ia terminations, both presynaptic effects being blocked by microelectrophoretic baclofen antagonists. However, the reduction of the duration of the action potential of individual group-Ia terminations, which followed continuous flexor-nerve stimulation, was not sensitive to the baclofen antagonist CGP 55845A, but was diminished by bicuculline methochloride. Intravenously administered bicuculline hydrochloride, however, had little or no effect on the inhibition of reflexes following continuous flexor-nerve stimulation. These observations are discussed in the context of possible intraspinal pathways and pre- and postsynaptic mechanisms for GABAA and GABAB receptor-mediated inhibition of the monosynaptic excitation of spinal motoneurones and of the functional significance of central GABAB receptor-associated inhibitory processes, given the relatively minimal effects on motor activity and behaviour produced by baclofen antagonists that penetrate the mammalian blood-brain barrier. Received: 2 July 1997 / Accepted: 30 January 1998  相似文献   

16.
An extracellular microstimulation technique has been used to investigate and compare the properties of group I primary afferent myelinated fibres in the dorsal column and group Ia unmyelinated terminations in the lumbar spinal cord of cats anaesthetised with pentobarbitone sodium. Fibres were distinguished from terminations on the basis of location, anodic blocking factor and sensitivity to GABAA mimetics. The recovery curves of threshold following an orthodromic impulse provided an estimate of both action potential duration and rate of repolarization. The action potentials of group Ia terminations were of briefer duration (by a factor of approximately 2) with more rapid rates of repolarization (factor of approximately 3) than those of the myelinated fibres. The prolongation of termination but not fibre action potentials by microelectrophoretic tetraethylammonium and 4-aminopyridine indicated the presence of voltage-activated potassium channels in the termination membrane. Differences in the effects on Ia termination action potentials of depolarizations (reductions in threshold) associated with a preceding action potential, synaptically released GABA, microelectrophoretic piperidine-4-sulphonic acid or dl-homocysteic acid suggest that an increase in termination membrane conductance is the major factor in the reduction of transmitter release during the activation of presynaptic GABAA receptors.  相似文献   

17.
The dye Procion brown was used to identify in the light and electron microscope, synaptic contacts made between monosynaptically coupled neurons in the lamprey spinal cord whose synaptic interaction had been recorded. Synaptic contacts were made on different dendrites of the postsynaptic cell at different distances from the soma. Some of the contacts were made on dentritic spines and some on the smooth shaft of the dentrites. Serial sections through synaptic contacts made on dendritic processess of the postsynaptic cells were used for three-dimensional reconstruction of the synapses using computer graphics techniques. The computer reconstructions and detailed examination of the serial EM micrographs revealed the large proliferation of membrane involved in making these en passant synapses as well as the morphological changes due to stimulation of the presynaptic axon. These changes include depletion of synaptic vesicles and formation of complex vesicles and synaptic cisternae. Besides chemical synaptic contacts, four electrotonic contacts were located, confirming the mixed electrochemical synaptic response recorded from the postsynaptic cell. The mean quantum content was estimated and compared with the estimate of the available transmitter pool, assuming the quantal release hypothesis applies at these synapses. The total transmitter pool was estimated by counting all synaptic vesicles in all synaptic contacts. It was estimated that about 6% of the total transmitter pool is available for release at these synapses. This compares with less than 1% at the neuromuscular junction and about 20% at sympathetic synapses. These results support the hypothesis that synaptic vesicles may be recycled as described by Heuser and Reese (22) at the neuromuscular junction. Ongoing studies are investigating the effect on a variety of synaptic junctions to stimulation for different periods of time of presynaptic axons. The methods described in this study can also be used to test the models of synaptic interaction on dendritic trees described by Rall (39) and Jack and Redman (24).  相似文献   

18.
Composite excitatory postsynaptic potentials were elicited in lumbar motoneurones by Ia afferents from muscles of the triceps surae group. These excitatory postsynaptic potentials were examined in the same cell before, during and after interruption of descending spinal pathways. After transection or cold block of the spinal cord at T12-T13, the amplitude of composite excitatory postsynaptic potentials showed no significant change for a period of up to seven hours after transection. However, there was a reduction in amplitude of the monosynaptic reflex in the extensor motoneurones which may be due to an observed hyperpolarization and reduction in membrane time constant in these neurones. The reduction in amplitude of the monosynaptic reflex observed in spinal shock can be attributed to the effects of these changes, rather than to a decrease in the size of the monosynaptic excitatory postsynaptic potential.  相似文献   

19.
Summary The descending pathways responsible for eliciting forelimb stepping are located in the lateral funiculus (Yamaguchi 1986). In order to determine into which spinal segments the descending pathways project and to know the projections and functions of the other descending system, the ventral funicular pathways, we placed various lesions in the cervical spinal cord of decerebrate cats with the lower thoracic cord transected and studied their effects on forelimb stepping evoked by stimulation of the midbrain locomotor region. (1) The lateral funiculus was transected on one side. The operation removes descending input to all the segments caudal to the lesion. Experiments with serial transections from the caudal to rostral segment revealed that stepping activity of the limb on the lesioned side is reduced when the lesion is placed at the level between the C6 and C7 segment and then between C5 and C6. A slight reduction of activity was also observed after a lesion placed between C7 and C8. (2) Consistently, bilateral transection of the lateral funiculus at the level between C5 and C6 abolished stepping movements of both forelimbs. (3) The cervical cord was split in the parasagittal plane through the dorsal root entry. The operation removes the descending input to the segment in which the lesion is placed. The parasagittal lesions from the C1 to C6 did not abolish stepping activity, although a lesion placed between C5 and C6 could slightly affect stepping. The results, (1)–(3) suggest that the lateral funicular pathways project into the spinal segments mainly at the C6–C7 level with some rostrocaudal extension into C5 and C8. (4) Complete transections of the medial part of the spinal cord cut extensor bursts short and raised stepping frequency. Nevertheless, if the lesion at C1–C5 spared the ventromedial part of the ventral funiculus, it did not result in such high-frequency stepping or in weakened extensor activity. In the case of segments caudal to C6, medial transections which spared the corresponding region could result in such stepping. It is suggested that the pathways descending through the ventromedial part of the ventral funiculus in the rostral segments provide extensor activity during stepping. They may change their course in the more dorsal part of the ventral funiculus below the C6 and presumably project into the grey matter of more caudal segments.  相似文献   

20.
Summary The relative contribution of specific and unspecific (potassium) components involved in the generation of primary afferent depolarization (PAD) of cutaneous fibres was analyzed in the spinal cord of the anaesthetized cat. To this end we examined the correlation between the intraspinal threshold changes of single afferent fibres in the sural nerve produced by segmental and descending inputs and the negative DC potential shifts produced by these same stimuli at the site of excitability testing, the latter taken as indicators of the changes in extracellular concentration of potassium ions. Stimulation of the ipsilateral brain-stem reticular formation and of the contralateral red nucleus with 100–200 Hz trains reduced very effectively the intraspinal threshold of sural nerve fibres ending in the dorsal horn practically without producing any negative DC potential shifts at the site of excitability testing. However, negative DC potential shifts were produced more ventrally, in the intermediate nucleus and/or motor nucleus. Stimulation of the sural and superficial peroneus nerves with pulses at 2 Hz and strengths below 2×T, also reduced the intraspinal threshold of single SU fibres without producing significant DC potential changes at the site of excitability testing. On the other hand, 100 Hz trains with strengths above 2×T produced negative DC potential shifts and a proportional reduction of the intraspinal threshold of the SU fibres. The PAD of sural fibres produced by stimulation of rubro-spinal and reticulospinal fibres as well as by stimulation of sensory nerves with low frequency trains was unaffected or slightly increased, by i.v. injection of strychnine (0.2 mg/kg), but was readily abolished 5–10 min after the i.v. injection of picrotoxin (2 mg/kg). The results suggest that activation of reticulo-spinal and rubrospinal fibres, as well as stimulation of cutaneous nerves with low frequencies and low strengths, produce PAD of cutaneous fibres involving activation of specific interneuronal pathways with interposed last-order GABAergic interneurons. The potassium component of the PAD produced by cutaneous fibres becames dominant with high stimulus frequencies and strengths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号